Схемы реле времени задержки выключения нагрузки | Vtuz.Auto.Zavod
Реле времени (РВ) успешно используется для задержки выключения нагрузки. Такие устройства можно купить в готовом виде или сделать простенькие схемы самостоятельно. Как пример предлагаем 3 схемы реле времени задержки выключения нагрузки на базисе микросхемы-таймера LM555. А если вы хотите купить реле времени или получить ответы на все интересующие вопросы, переходите на наш сайт. И часто для управления климатическим оборудованием для контроля по температуре во времени в цепь управления дополнительнно добавляют терморегуляторы, про них смотрите тут
Схема №1. Таймер для отключения нагрузки
Устройство предназначено для задержки управляющего сигнала, например отсроченного выключения освещения, лампы подсветки, приемника (любого электроприбора). Регулировать интервал задержки времени можно используя:
- Разные типы конденсаторов на 220 мкф. Например, чтобы увеличить время экспозиции нужно использовать танталовые электролиты серии К52-18.
- Большие номиналы резисторов вместо сопротивления 10 мОм (подходит для маломощных систем).
Если вы будете использовать номиналы электронных компонентов, указанные на схеме, время экспозиции составит 40 минут.
Достоинства схемы:
- простота сборки;
- отсутствие потребления электроэнергии в ждущем режиме;
- элементарное управление (с помощью кнопки, нажатие которой обеспечивает поступление питание на микросхему-таймер).
Совет: Перед подключением к сети обязательно протестируйте собранную схему.
Схема №2. Схема РВ с увеличенным временным интервалом
Простота сборки этой схемы реле времени позволяет собрать устройство даже начинающему радиолюбителю. Его основное назначение — прерывисто изменять время эксплозии поступления сигнала с шагом в 5 минут в диапазоне 5-30 минут. Это достигается с помощью переключателя. Схема работает, благодаря:
- маломощной микросхеме с большим входным сопротивлением;
- 7 сопротивлениям больших номиналов.
Возможность увеличить номинал резисторов позволяет удлинить время задержки сигнала. Это основное достоинство данной схемы.
Схема №3. Два варианта тиристорного реле времени
Управлять отключением подачи напряжения, если его источником служит бытовая электросеть, можно без реле, используя как коммутатор триак ТС 120-22 с максимально допустимым током 25 А.
Напряжение подается на микросхему сразу по замыкании контактов, а выключение прибора происходит с задержкой в 11 секунд, если вы используете указанный на схеме номинал резистора, соединенного с микросхемой (10 Мом).
Во втором варианте тиристорного реле, представленного на схеме, включение нагрузки происходит после нажатия на кнопку, подача питания на микросхему осуществляется через конденсатор номиналом 1 мкф 400 В.
Время экспозиции регулируется резистором (на схеме это сопротивление 1 мОм, вы можете использовать больший или меньший номинал), но учтите, что задающий время конденсатор (на схеме это емкость номиналом 470 мкф 20 В) должен иметь минимальную утечку.
Достоинство данной схемы реле времени задержки выключения нагрузки в том, что время экспозиции, поддерживаемое ею, может регулироваться в диапазоне 0-8,5 минут.
Как сделать реле времени своими руками: схема, видео, фото
С помощью электронных реле можно неплохо экономить деньги, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он автоматически отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, если вы забыли его выключить. Это устройство не только полезно, но и очень удобно. В этой статье мы расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.
Простейший вариант
Пример конструктора для самодельной сборки таймера задержки отключения:При желании возможно самостоятельно собрать реле времени по следующей схеме:
Времязадающим элементом является конденсатор С1, в стандартной комплектации КИТ-набора он имеет следующие характеристики: 1000 мкФ/16 В, время задержки в этом случае составляет приблизительно 10 минут. Регулировка времени осуществляется переменным резистором R1. Питание платы 12 Вольт. Управление нагрузкой производится через контакты реле. Плату можно не делать, а собрать на макетной плате или навесным монтажом.
Для того, чтобы сделать реле времени, нам понадобятся следующие детали:
Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.
Самоделка на базе таймера NE 555
Другая схема электронного таймера для сборки своими руками также легка и доступна для повторения. Сердцем данной схемы является микросхема интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:
NE555 – это специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Она достаточно распространена, поэтому ее можно найти в любом радиомагазине. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение полезной нагрузки.
Управление таймером осуществляется двумя кнопками: «старт» и «стоп». Для начала отсчета времени необходимо нажать на кнопку «старт». Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой «стоп». Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения реле времени.
При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, для ее функционирования требуется дополнительный источник внешнего питания на 12 Вольт.
Для того чтобы реле само включалось сразу при подаче на плату питания, необходимо немного изменить схему: вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе. Более наглядно о данной схеме можно узнать из видео, где подробно описан процесс сборки и работы с устройством:
Реле на одном транзисторе
Самый простой вариант — использовать схему реле времени всего на одном транзисторе, КТ 973 А, его импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр (переменный резистор). Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.
При подаче питания на устройство емкость С1 начинается заряжаться через резистор R1 и через R3, открывая тем самым транзистор VT1. Когда емкость зарядится до состояния отключения VT1, обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и используемого типа реле.
Выбранные вами элементы могут иметь незначительный разброс в номиналах, это не повлияет на работоспособность схемы.
Задержка может немного отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!
Будет интересно прочитать:
Реле задержки 220в. Несколько схем реле времени и задержки выключения нагрузки
Приветствую! Представляю вам несколько схем реле времени и задержки выключения нагрузки. Нагрузкой может быть как лампочка так и телевизор. Фантазию включать вам.
Вот эта схема нужна для выключения чего либо через определенный интервал времени.
Рис.1. Схема таймера для автоматического отключения нагрузки .
При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 мин (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).
В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1. Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.
Следующая схема для отключения нагрузки через 5-30 минут с шагом в 5 минут нажатием кнопки SA1.
Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + . .. + Rn).
Рис.2. Схема таймера с увеличенным временным интервалом для отключения нагрузки
Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис.3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.
В схеме на рис.3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 с). Цепь R1-C1 обеспечивает запуск одновибратора при включении.
Рис.3. Бестрансформаторная схема управления сетевой нагрузкой
Рис.4. Схема для автоматического отключения сетевой нагрузки
Во второй схеме (рис.4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме). Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.
Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.
Тот, кто хочет узнать, что такое реле времени, должен вспомнить старые стиральные машинки. Вспомните, как они работают? Для пуска аппарата необходимо было лишь повернуть ручку на несколько делений. При этом машинка начинала работать, а внутри корпуса около ручки что-то начинало тикать. Как только ручка доходила до нулевой отметки, стиральная машина переставала работать. Вот так работало реле времени с задержкой выключения 220В.
Конечно, разнообразие этих приборов со временем менялось. Так после простых реле стали появляться сдвоенные варианты, которые работали и на стирку, и на отжим. Они собой представляли цилиндрические конструкции с двумя выводами и ручкой управления. При этом сам часовой механизм располагался внутри цилиндра.
Необходимо отметить, что машинки-автоматы современного образца также без реле времени 12 вольт не работают. Правда, это уже не то массивное устройство. Электронный вариант входит в состав блока управление, и установлен на плате. Вся его работа основана на программном обеспечении, где основную роль играет микроконтроллер. Самое удивительное то, что количество стадий выдержек временных периодов в современной стиральной машинке-автомате практически не поддается подсчету. То есть, если использовать в ней старое устройство временной задержки, то сам контролирующий прибор не поместился в стиральный аппарат. Настолько он будет громоздкий.
Понятно, что реле времени 12В устанавливаются сегодня практически на все бытовые приборы. Не будем их перечислять. Но именно на стиральной машинке (особенно старого образца) очень хорошо видно, как работает данный прибор. Его просто можно пощупать руками. Вот последовательность работы:
- Повернули ручку – запустили реле и электродвигатель.
- Величина задержки времени – это угол поворота ручки.
- Как только рукоятка дошла до нулевой отметки – происходит выключение и реле, и мотора.
Обратите внимание! При повороте рукоятки задается сразу два действа: загрузка величины задержки времени и запуск самой задержки.
Думаю многие помнят как работал таймер в старых стиральных машинках — это наглядный пример реле времени с задержкой
Точно также работают таймеры (реле времени) и в микроконтроллерах. То есть, включение и отключение происходит по одному и тому же принципу.
Микроконтроллеры
Современные электронные микроконтроллеры могут совершать в одну секунду несколько миллионов операций. И это большое достижение науки. Если есть необходимость задержать время до бесконечности, то всего лишь необходимо зациклить операцию. Но есть у этой стороны дела и отрицательная сторона. То есть, получается так, что микроконтроллер кроме этой операции больше ничего делать не будет. А если появляется необходимость сделать выдержку времени не на одну секунду, а на одну минуту. Как же тогда? Ведь процессор будет простаивать, приборы греться, будут выполняться команды, которые никому не нужны.
Чтобы добиться этого, необходимо в микроконтроллер установить таймер, а лучше несколько. Что же собой представляет это реле времени в микроконтроллерах? Если не вдаваться глубоко в конструкцию и принцип работы, то это, по сути, обычный счетчик двоичного типа, который считает импульсы. Последние вырабатывает специальная схема, установленная в микроконтроллер. Кстати, в семействе серии 8051 импульс выходит при выполнении каждой отдельной команды. Поэтому реле просто считает количество выполненных команд. А вот процессор в это время занимается выполнением всей программы.
Чтобы было понятно:
- Производится запуск счетчика от нулевого уровня. Реле начинает считать команды.
- Один импульс – одна единица¸ которая увеличивает содержание счетчика.
- Как только счетчик заполнится полностью, происходит его обнуление. Это и есть время задержки.
Но, как сделать выдержку короче? И здесь все достаточно просто. Для примера возьмем восьмиразрядный таймер, у которого переполнение счетчика будет происходить через 256 импульсов с любой периодичностью. Чтобы укоротить выдержку времени, необходимо начать считать импульсы не с нулевой отметки, а с промежуточной, например, с 150. Здесь главное правильно провести настройку.
Но и тут есть один нюанс. Одна операция будет производиться за 255 микросекунд. А ведь наша задача увеличить выдержку до минуты. Все дело в том, что переполнение счетчика – это своеобразное большое событие. Оно способствует прерыванию всего процесса, то есть, работы всей программы. Процессор на это реагирует мгновенно, он тут же переходит на подпрограмму. Последняя из всех выдержек может сложить большое количество разных вариантов, и в этом плане временной показатель ничем не ограничен.
Сама же подпрограмма – это буквально несколько команд. Поэтому она действует непродолжительно. После чего процессор заново переходит на основную программу.
Виды реле времени
Итак, основная задача реле времени 12В – это произвести задержку от начального сигнала до конечного. Так вот эту самую задержку можно сформировать несколькими способами. Отсюда и различные виды:
- Механические.
- Электромеханические.
- Электронные.
- С демпфирующими устройствами.
К последним можно отнести пневматический подвид, в состав которого входят пневматические приставки и электромагнитный привод. Кстати, своими руками его собрать проще простого. Но все это уже в прошлом, кроме электронных аналогов.
Где можно использовать
Разбор реле времени в нашей статье был сделан на примере бытовых электрических приборов. Но эти устройства сегодня устанавливаются во многих операционных и технологических схемах. К примеру, в теплицах, где необходимо контролировать освещение по часам.
Для этого в электрическую схему освещения 220В устанавливается таймер, который подключен к исполнительному механизму, включающему и отключающему систему освещения. Этот же прибор можно установить в технологическую цепочку нескольких станков. Он будет настроен под технологию, в которой учитывается определенное время включения и выключения каждого станка (электрооборудования) по отдельности. То есть, вариантов применения реле времени большое количество.
Необходимо отметить, что программирование таймера – одно из важнейших категорий правильной его работы. В настоящее время производители предлагают реле времени с задержкой выключения 12-220В, с помощью которых можно запрограммировать его работу на один день (суточное), на неделю, месяц и год. То есть, диапазон настроек практически не имеет ограничения. Что для многих технологических процессов (схем) это немаловажный критерий эффективной и корректной работы.
Похожие записи:
Привет друзья!
Сегодня мы с вами детально рассмотрим схему и конструкцию достаточно полезного устройства – реле времени с задержкой выключения нагрузки. Разумеется, устройство можно использовать и для включения нагрузки и для переключения между двумя разными нагрузками. Рабочее напряжение нагрузки может составлять до 220В, максимальный коммутируемый ток – до 5 А. Путем несложных вычислений получаем, что мощность нагрузки может составлять до 1100 Вт.
Схема устройства и принцип ее работ
Прежде всего изучим схему реле задержки времени. Важный момент: разработчиком схемы я не являюсь и на авторские права не претендую.
Представленная схема работает следующим образом. При нажатии на тактовую кнопку SW1 осуществляется зарядка конденсатора С1, открывается транзистор VT1 (транзистор VT2 и транзистор VT3 находятся в закрытом состоянии). Поскольку контакты реле (Х3 и Х4) разомкнуты, нагрузка отключена. В процессе разряда конденсатора С1 транзистор VT1 закрывается. В то же время открываются транзисторы VT2 и VT3, и через катушку реле начинает протекать ток, что приводит к замыканию контактов реле (Х3 и Х4) и включению нагрузки.
Можно догадаться, что основным времязадающим элементом является конденсатор С1. Именно от него напрямую зависит максимальное время задержки включения/выключения. Также время срабатывания реле зависит от сопротивления переменного резистора R1. Соответственно для изменения времени задержки достаточно изменить номиналы резистора R1 и конденсатора С1.
Схема питается от источника постоянного тока напряжением 12 В. Потребление тока не превышает 100 мА.
Что касается деталей. Все транзисторы, использованные в схеме, однотипные – BC547. Данные транзисторы могут быть заменены транзисторами с аналогичными параметрами. Например, вместо ВС547 можно вполне успешно применить транзисторы серии КТ3102 с любыми буквенными индексами.
Электромеханическое реле – BS115C с напряжением срабатывания 9В. В принципе, реле может быть любым малогабаритным с напряжением срабатывания от 9 до 12В, например, это может быть реле JQC-3F-1C-9VDC.
Печатная плата реле времени
Устройство собирается на печатной плате из фольгированного стеклотекстолита, размерами 41×35 мм. Для удобства монтажа рекомендую нанести на плату «схему» расположения элементов. Нанесение рисунка расположения элементов может осуществляться все тем же лазерно-утюжным методом.
Рисунок печатной платы и расположение элементов
Вот так печатная плата получилась у меня:
Конструкция реле задержки выключения
Устройство может быть собрано в абсолютно любом корпусе подходящих размеров. Не забывайте, что помимо самого реле в корпусе должен уместиться еще и блок питания. В моем случае использован пластиковый корпус для сборки блока питания. Думаю, что аналогичный корпус можно без проблем приобрести практически в любом радиомагазине.
Как можно заметить и плата с реле и блок питания умещаются в таком корпусе просто замечательно. Кстати, в качестве блока питания можно взять зарядное от сотового телефона. Для того, чтобы повысить выходное напряжение такой зарядки, достаточно заменить в ней стабилитрон на большее напряжение. О том, как правильно это сделать, можно найти в Ютубе.
Простая схема реле времени, задержки выключения нагрузки на одном полевом транзисторе, как ее сделать.
Порой возникает необходимость в выключении тех или иных электронных устройств через определенный промежуток времени в автоматическом режиме. К примеру, всем известный электронный мультиметр типа DT830 (самая простая модель тестера) не имеет внутри себя автоматического выключения. И когда забываешь после измерений его выключать, то к следующему измерению его батарейка уже успевает полностью разрядится. Естественно, это нуждается в доработке. В более дорогостоящих мультиметрах такая функция имеется, и если тестером не пользуешься несколько минут, то он автоматически выключается. Вот эту схему, что я предлагаю на Ваше рассмотрение, как раз и можно использовать для подобных случаев. И как видно сама схема автоматического выключения электрической нагрузки через заданное время очень проста.
Ну, а для новичков поясню сам принцип действия этой схемы. Итак, по сути эта схема является схемой самого обычного реле времени, только роль реле тут выполняет полевой транзистор n-типа, с индуцируемым каналом. Как известно, полевые транзисторы подобного типа имеют три вывода – затвор, исток и сток. Канал сток-исток является силовым, через который протекает основной ток относительно большой величины.
И в изначальном состоянии, когда между управляющим каналом затвор-исток нет нужного напряжения, этот полевой транзистор закрыт. В таком состоянии его силовой переход имеет бесконечно большое сопротивление. Но как только мы подадим на управляющий канал затвор-исток нужное напряжение, то силовой канал откроется. Именно у этого транзистора (BS170), что стоит в схеме, сопротивление канала сток-исток в полностью открытом состоянии равно 5 Ом. Что для небольших нагрузок является крайне незначительным сопротивлением.
Основные характеристики полевого транзистора BS170:
» тип проводимости – n-канальный;
» максимальный ток сток-исток – до 0,5 А;
» максимальная рассеиваемая мощность – 0,83 Вт;
» пороговое напряжение открытия транзистора – 3 В;
» максимальное напряжение между сток-исток – до 60 В;
» максимальное напряжение между затвор-исток – до 20 В;
» сопротивление канало сток-исток в открытом состоянии – 5 Ом;
» максимальная температура канала – 150 °C;
Итак, на вход схемы автоматического отключения нагрузки подается постоянное напряжение от источника питания (к примеру 9 вольтовой батарейки). Плюс с входа сразу идет на выход схемы. А вот минус входа проходит через силовой переход сток-исток полевого транзистора, который в изначально состоянии полностью закрыт и не проводит через себя ток. То есть, изначально на выходе схемы отсутствует напряжение для питания нагрузки. Чтобы транзистор открылся, мы должны на его затвор подать положительный потенциал, а на исток отрицательный. Минус сразу подается на исток от источника питания, а вот плюс проходит через нормально разомкнутый выключатель B1. Параллельно управляющему переходу транзистора стоят электролитический конденсатор и подстроечный (или можно взять переменный) резистор.
Когда мы кратковременно нажимаем переключатель B1, то полюс от источника питания поступает на затвор полевика и открывает его. При этом также происходит быстрая зарядка емкости конденсатора C1. И когда уже кнопка B1 отпущена, и через нее плюс не подается на затвор, то транзистор остается открытым из-за наличия электрического заряда на конденсаторе. Ну, а чтобы был эффект реле времени в данной схеме, то есть произошло закрытие полевого транзистора через определенное время, параллельно конденсатору стоит сопротивление, которое с некоторой скоростью разряжает его. И чем меньше будет сопротивление R1, тем быстрее разрядится конденсатор и закроется полевой транзистор.
В итоге работа схемы такова. Изначально на выходе схемы напряжения питания нагрузки отсутствует. Мы кратковременно нажимает переключатель B1. Конденсатор заряжается, а транзистор открывается, на выходе схемы появляется напряжение питания нагрузки. Поскольку резистор разряжает конденсатор, то спустя определенное время, когда величина напряжения на конденсаторе достигнет порогового уровня закрытия полевого транзистора VT1 (а это 3 вольта), то транзистор закроется и на выходе схемы пропадет напряжение питания нагрузки. Вот такая простая работа у данной схемы. Причем стоит заметить, что время ожидания схемы перед закрытием полевика зависит как от резистора, так и от емкости конденсатора. Чем больше будет емкость у конденсатора C1, и чем меньше сопротивление резистора R1, тем это время будет больше. Само же время может быть от нуля до очень много (часы, а то и больше).
Эта схема реле времени на полевом транзисторе может работать с нагрузками, у которых ток потребления до пол ампера (0,5 А). Поскольку такой максимальный ток имеет силовой переход полевого транзистора. Если этого тока Вам будет мало, то просто стоит в схему поставить другой полевой транзистор подобного типа с нужной величиной максимального тока силового перехода полевика. Естественно, при выборе обращайте внимание на сопротивление перехода сток-исток в открытом состоянии. По возможности его сопротивление должно быть как можно меньше. Это положительно повлияет на экономию электроэнергии и уменьшит нагрев транзистора при его работе.
Помимо этого учтите, что обычно у полевых транзисторов подобного типа максимальное напряжение перехода затвор-исток около 20 вольт. Это значит, что напряжение питания на входе схемы не должно превышать этого значения, поскольку в противном случае полевик попросту выйдет из строя. Если все же имеется такая необходимость в напряжении более 20 вольт, то параллельно переходу затвор-исток нужно поставить стабилитрон, который будет ограничивать напряжение на данном переходе полевика, что защитит его от выхода из строя. Ну, и конденсатор C1 должен быть рассчитан на напряжение чуть более, чем напряжение на входе схемы. Иначе, он также может испортится.
Видео по этой теме:
P.S. Естественно, данную схему автоматического выключения электронной нагрузки через заданное время можно использовать не только для мультиметров. Как я сказал вначале, это аналого схемы обычного реле времени, только вместо реле тут стоит полевой транзистор. Так что схема может работать с любыми электрическими, электронными нагрузками постоянного тока, которые нуждаются в автоматическом отключении через нужный интервал времени.
ВЛ-162 — Реле времени с задержкой включения или отключения | РЕЛСiС
ВЛ-162
- Задержка времени на включение.
- Задержка выключения после отключения напряжения питания —
после пропадания напряжения питания реле разомкнётся только по истечении установленной выдержки времени. - Универсальное питание АС/DC 12-240 В.
- Индикация наличия питания и состояния выходного ключа.
- Коммутируемый ток 8 А (АС-1).
Скачать подробное описание реле ВЛ-162
Выполняемые функции:
e — Задержка на включение;a — Задержка на выключение при пропадании напряжения.
Технические характеристики
Питание, вход | |
---|---|
Номинальное напряжение питания: | универсальное AC/DC 12-240 В |
Потребляемая мощность: | 0,7-3 ВА (0,5-1,7 Вт) |
Индикация наличия напряжения питания: | зеленый светодиод |
Выход | |
Диапазон выдержек времени:
Настройка выдержки поворотными переключателями |
от 0,1 с до 10 мин |
Погрешность уставки времени | 5 % |
Разброс: | 0,2 % |
Погрешность от изменения температуры на 1 °С | 0,01 % (нормальное значение 20 °С) |
Количество и род выходных контактов: | 2 переключающих |
Номинальный ток (категория применения АС-1): | 8 А |
Замыкаемая мощность: | 2000 ВА/АС1, 192 Вт/DC |
Замыкаемое напряжение: | 250 В (АС1), 24 В (DC) |
Индикация выхода | красный светодиод |
Механическая износостойкость: | 3х107 циклов |
Электрическая изностойкость: | 0,7×105 |
Диапазон рабочих температур | -20. ..+55 °С |
Степень защиты корпуса | IP40 |
Габариты, (масса): | 90х17,6х64 мм (93 грамма) |
Схема подключения реле ВЛ-162
Габаритные и установочные размеры
Скачать подробное описание реле ВЛ-162
Реле времени регулируемые «Регтайм» — 12В
Реле используются для включения на (РЕГТАЙМ1), через (РЕГТАЙМ2) или с задержкой выключения на (РЕГТАЙМ3) определенное время. РЕГТАЙМ5 представляет из себя генератор импульсов, длительность и частота которых регулируются двумя многооборотными подстроечными резисторами.
Изделия выполнены по схеме с таймером, управляющим силовым переключающим реле.
Реле работают по однопроводной схеме, в которой с корпусом автомобиля соединен отрицательный вывод источника питания, и работают только при поданном напряжении.
Реле изготовлены с возможностью ручной регулировки времени работы. Регулировка осуществляется с помощью подстроечного резистора через отверстие в корпусе реле. Для контроля срабатывания предусмотрен светодиод под полупрозрачным корпусом изделия. Для удобства ручной регулировки разработаны реле двухвременных диапазонов: от 0 до 60, от 60 до 600.
Возможно изготовление реле с фиксированным временем работы или другим диапазоном регулировки по требованию заказчика (от 100 штук).
Посмотреть видео работы реле времени Регтайм1
Посмотреть видео работы реле времени Регтайм2
Посмотреть видео работы реле времени Регтайм3
Варианты комбинирования реле времени:
Посмотреть видео Генератор импульсов на Регтайм1 и Регтайм3
Посмотреть видео Генератор одиночных импульсов при включении/выключении на Регтайм2 и Регтайм3
Обозначение контактов для реле Регтайм с регулировкой времени
Схемы подключения реле времени
Реле времени — повсеместно применяющиеся устройства, как в бытовых целях, так и на крупных промышленных предприятиях. Приборы выпускаются механического типа, представляющие собой простейшие конструкции, и электронными, оснащенными сложными системами управления, программируемыми пользователем.
Область применения
Реле времени – это устройство, предназначенное для включения/выключения приборов, управления процессами с определенным промежутком времени.
Такое оборудование довольно часто используются в промышленности для управления производственными процессами без участия человека. Реле не менее часто применяется в быту. Оно может использоваться для систематического полива, включения в определенное время освещения и т. д.
Электронное микропроцессорное реле времени модели PCR-513 может программироваться самим пользователемВиды и классификация
Такие приборы, как реле времени разделяются на:
- блочные;
- модульные;
- встраиваемые.
Блочные отличаются спецификой процесса установки, требующим индивидуального запитывания от сети. Встраиваемые не нуждаются в организации отдельного питания, так как чаще всего используются как вспомогательные элементы в более сложных схемах. Модульные реле времени также не подключаются к отдельной питающей линии. Крепление модульных реле производиться на DIN – рейку.
Также реле времени могут быть:
- электромагнитными;
- пневматическими;
- электронными;
- моторными.
Для использования в быту в основном применяются электронные или электромагнитные реле. Это объясняется тем, что они максимально эффективны в работе, а также их стоимость невысока и доступна для любого потребителя.
Читайте также статью ⇒ Подключение реле максимального тока.
Преимущества и недостатки устройства
У электронных реле преимущественным качеством является то, что они с высокой точностью выполняют свои функции. Из отрицательных качеств можно отметить только то, что для них требуется точность в программировании, интервал времени, который может устанавливаться, значительно меньше чем у электромеханических. Также стоит отметить и достаточно высокую стоимость.
Основными достоинствами электромагнитных реле являются низкая цена, они не требуют постоянного обслуживания, регулярного программирования, изменения настроек. Недостатком таких устройств является ограниченный ресурс работы, а также не слишком хорошая работа с постоянным током.
Реле времени на современном рынке представлены в широком разнообразии типов и моделейПринцип работы
Принцип работы реле времени заключается в следующем.
Так как это приборы, которые производят подсчет времени, в каждом из них имеется таймер, который выставляется на определенный период. Поэтому необходимо выставить таймер на требуемое время включения или выключения. Таймер вмонтирован в лицевую часть прибора. В зависимости от заданных характеристик этот прибор будет отключать сеть от питания и в определенное время включать ее. Такой цикл будет продолжаться до тех пор, пока реле не будет переведено в состояние покоя.
Реле времени независимо от его исполнения и характеристик может выставляться от одной секунды до 999 часов.
Читайте также статью ⇒ Подключение указательное реле.
Технические характеристики
Все приборы, которые используются в электросети, должны своими характеристиками соответствовать ее параметрам, то есть должны выполняться условия при которых их работа будет стабильной.
Независимо от типа и конкретной модели, реле времени характеризуются следующими параметрами:
- напряжение, при котором этот прибор будет работать стабильно;
- коммутирующий ток, определяющий ток управления прибора;
- износостойкость, определяющаяся количеством включений или выключений и подходящий больше для электромагнитных реле;
- тип защиты;
- количество контактов;
- мощность устройства, указывающая, на какую максимальную нагрузку этот прибор может коммутировать без подключения контактора.
Исходя из этих данных, можно подобрать прибор с нужными характеристиками для определенных параметров обслуживающейся электросети.
Как читать маркировку
При маркировке таких приборов производителя стараются максимально упростить читаемость. На корпусе изначально указывается фирма производитель и модель устройства. Также указывается напряжение, подходяще для нормальной работы прбора. В большинстве случаев это 220 В.
Также помечается, для работы при какой величине и типе тока (постоянном или переменном) подходит устройство. На приборе также должно быть указан максимальный ток нагрузки для конкретного прибора.
Практически у всех реле времени присутствует маркировка выводов и обозначение подключения ноля и фазы.
Анализ производителей
Реле времени изготавливаются множеством производителей, заводы которых расположены по всему миру. В таблице ниже приведены наиболее популярные в нашей стране модели с указанием производителей и типа крепления устройства.
Модель | Страна производитель | Название фирмы | Крепление |
РВЦ-10/D | Украина | УКР РЕЛЕ | DIN рейка |
TR4N 4CO | Польша | Relpol | DIN рейка |
TM M1 | Италия | LOVATO Electric | DIN рейка |
IO 1080/IO | Италия | Perry | DIN рейка |
LT4H-AC240VS | Малайзия | Panasonic | На панель |
Схемы подключения реле времени
Для подключения реле времени не используются сложные схемы. При его установке важно знать, какую нагрузку оно будет коммутировать.
Такая схема позволяет выполнять различные операции путем включения/выключения реле в штатном режимеПредставленная выше схема подключения используется в большинстве случаев для домашнего использования. Такая схема обеспечивает стабильную работу прибора. Единственным недостатком является то, что реле времени может подключаться только на одну линию с небольшой нагрузкой. Например, уличное освещение или полив газона.
Схема подключения реле времени к сети с электроприборами со значительной нагрузкойСхема с контактором используется в тех случаях, когда необходимо отключать более мощную нагрузку. Ее применение в быту также можно часто встретить. В ней роль выключающего устройства более мощной нагрузки исполняет контактор. Такая схема может контролировать, например, работу асинхронного двигателя. Она также применяется, если необходимо с помощью маломощного реле времени коммутировать более мощную нагрузку.
Схема подключения реле времени марки ERF-09 к трехфазной сети через контакторТакже реле времени можно подключать и в трехфазной сети. Схема, которая представлена выше наглядно это демонстрирует. Она применяется в местах с трехфазным напряжением. Основным выключающим устройством служит контактор работу, которого контролирует реле времени.
Читайте также статью ⇒ Реле напряжения.
Пошаговая инструкция по установке
Для того чтобы самостоятельно подключить реле времени необходимо определиться, в какой сети будет происходить монтаж. Она может быть однофазной или трехфазной. Также нужно заранее знать, что будет коммутировать этот прибор, то есть какую нагрузку требуется отключать или включать.
Исходя из этих данных, нужно приобрести устройство с нужными характеристиками, или же любой доступный, но в комплекте с ним также необходимо приобрести контактор.
Совет №1: Перед монтажом реле времени требуется обесточить всю электросеть для безопасного проведения работ. Это делается с помощью вводного автомата.
Реле времени устанавливается после счетчика электроэнергии. На следующем этапе с помощью паспортных данных прибора необходимо определить, где у него вход и выход. Вход — это клеммы, к которым требуется выполнять присоединение провода. Выход — это клеммы, от которых будет выходить коммутирующее напряжение.
Непрерывное импульсное реле времени на 16 А часто используется в домашнем хозяйствеСовет №2: Пред установкой также требуется проверить прибор на работоспособность. Это необходимо сделать до отключения электричества.
Для этого к прибору необходимо подключить шнур с вилкой по заданной схеме и выставить минимальное время срабатывания. С помощью тестера проверяется наличие напряжения на контактах выхода.
Перед подключением реле времени необходимо надежно установить. У большинства этих приборов крепление производиться на DIN-рейку. После установки проводится подключение. Натяжение болтов должно быть максимальным, так как при плохом контакте прибор будет нагреваться и может быстро выйти из строя, или что еще хуже может быть причиной пожара.
Аналоги реле времени
Подбор аналогичных устройств осуществляется по специальной таблице, имеющейся на сайте каждого производителя реле времени. Например, реле ВС10-38 соответствует прибор РСВ17-3. Или устройство РКВ 11-43-11 успешно заменит модель РП21М-003В1.
Ошибки при установке
Основной ошибкой является подключение реле времени к приборам со слишком большой нагрузкой, например, к электрокотлу. Для управления отопителем обязательно требуется подключение реле через магнитный пускатель, соединяющийся с котлом.
Также не менее часто монтаж реле времени осуществляют в помещениях с климатическими условиями, не подходящими для нормальной эксплуатации устройства. Температура должна находиться в диапазоне -20 — 50°С при влажности не выше 80%.
Оцените качество статьи:
Множество различных функций реле с задержкой времени
Реле дает команду на включение электрических и электронных устройств и машин. Мы полагаемся на реле для активации множества бытовых приборов, машин и оборудования, начиная от автомобилей и мобильных телефонов до печных вентиляторов и конвейерных лент.
Реле с выдержкой времениимеют встроенную функцию задержки времени. Реле с задержкой времени срабатывают различными способами, что позволяет минимизировать количество энергии, используемой для запуска крупного промышленного оборудования или для включения и выключения освещения или оборудования в определенное время.Их также можно использовать для обеспечения того, чтобы разные части машины запускались отдельно в заранее определенное время, например:
Релес выдержкой времени можно использовать для управления нагрузками или производственными процессами различными способами. Например, реле с временной задержкой может гарантировать, что предметы перемещаются с одного конвейера на другой, когда это необходимо, чтобы предметы на конвейерной ленте не складывались друг на друга.
В качестве примера обеспечения безопасности печи или другие камеры сгорания требуют вентиляции, чтобы избавиться от дыма и избежать возможности взрыва.Реле задержки времени может обеспечить окно по расписанию для удаления ядовитых газов из камеры.
Обычно реле задержки срабатывает при размыкании или замыкании цепи или при подаче входного тока. Триггерный сигнал может быть разработан с помощью управляющего переключателя с сухим контактом, такого как поплавковый переключатель, концевой переключатель или нажимная кнопка; или с напряжением. Однако существует несколько типов реле с задержкой времени, и их временные функции работают по-разному.
Как работает реле с выдержкой времени
Тип используемого реле с выдержкой времени будет зависеть от настройки системы.Таймеры задержки включения и выключения представляют собой наиболее типичные используемые реле времени задержки. К другим типам относятся таймеры интервалов включения, таймеры мигания и повторения цикла.
Нормально разомкнутые таймеры задержки включения начинают отсчет времени при подаче входного напряжения (мощности). Выход активизируется в конце задержки. Необходимо снять входное напряжение, чтобы обесточить выход и сбросить реле задержки времени.
Также называемые таймерами задержки при срабатывании, они часто используются в двигателях нагнетателей для задержки срабатывания на определенный период времени после включения газового, электрического или масляного нагревателя.Таймеры задержки включения также используются для смещения времени запуска нескольких компрессоров или двигателей, которые активируются главным выключателем. Это позволяет избежать чрезмерного скачка тока в линии электропередачи. Другие приложения включают в себя охранную сигнализацию и охранную сигнализацию, предупреждения об открытых дверях, определение последовательности подачи электроэнергии, средства управления воспламенителем духовки и средства управления вентиляторами.
Таймеры задержки выключения (также известные как таймеры задержки при отпускании, задержки при выключении или задержки при включении) готовы принять триггер при подаче входного напряжения.На выход подается питание с помощью триггера, который необходимо отключить, чтобы сработала задержка по времени. Выход обесточивается в конце периода задержки. Если триггер сработает во время задержки, он будет сброшен.
Таймеры задержки выключения могут использоваться в системах кондиционирования воздуха для удержания двигателя вентилятора в работе в течение определенного периода времени после того, как термостат выключил охлаждающий компрессор. Их также можно использовать для управления электрическими устройствами и двигателями в течение определенного времени, например, монетными сушилками в коммерческих прачечных.Другие приложения включают управление газовым клапаном, управление телефонной цепью и управление дверью лифта.
Также называемые одноразовыми таймерами, выход для интервальных таймеров уже запитан, и отсчет времени начинается при подаче входного напряжения. По истечении периода задержки выход обесточивается. Необходимо снять входное напряжение, чтобы можно было сбросить реле задержки времени.
Реле временной задержки с интервалом включения могут использоваться для широкого спектра сложных промышленных и коммерческих приложений общего назначения, в зависимости от выбранной конкретной модели. В некоторых системах охранной сигнализации используются интервальные таймеры. Другие области применения включают синхронизированные циклы для электросварочных аппаратов, системы предупреждения о ремнях безопасности автомобилей, дозирующее оборудование и насосные станции.
Когда на мигалку подается входное напряжение, контакты включаются и отключаются один за другим. Продолжительность включения и выключения одинакова. Таймер сбрасывается путем снятия напряжения и его повторной подачи. Таймеры мигалок обычно используются с системами сигнализации, световыми индикаторами, системами предупредительной световой сигнализации и последовательными таймерами, такими как те, которые используются для освещения взлетно-посадочной полосы в аэропортах.
Таймеры повторения цикла имеют два элемента управления, поэтому циклы можно регулировать независимо. Эти циклы будут повторяться до тех пор, пока на реле с выдержкой времени будет подано напряжение. Некоторые таймеры повторного цикла запускают сначала таймер выключения, а другие запускают таймер включения. Например, они могут использоваться вместе друг с другом для включения и выключения ламп.
Реле задержки времени The Amperite Co.
Amperite Co. предлагает широкий ассортимент реле с выдержкой времени для множества применений.В то время как наши основные рынки состоят в основном из производителей оригинального оборудования (OEM) и электроники, мы также предлагаем индивидуальные продукты для удовлетворения всех потребностей клиентов.
Не стесняйтесь обращаться к нам, чтобы узнать, как мы можем помочь вашему бизнесу добиться успеха.
1 | ЗАДЕРЖКА ВКЛЮЧЕНИЯ: Когда на катушку подается питание, начинается период ЗАДЕРЖКИ ВКЛЮЧЕНИЯ, и контакты в это время не переключаются.По истечении времени ЗАДЕРЖКИ ВКЛЮЧЕНИЯ контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Контакты остаются в переданном состоянии до тех пор, пока с катушки не будет отключено питание. Затем они возвращаются в исходное состояние, и устройство готово к новому циклу. |
2 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ I: На катушку постоянно подается питание. При замыкании пускового переключателя («сухой» внешний контакт) контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку.Когда пусковой переключатель разомкнут, начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакты остаются в переданном положении до окончания периода ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ. Затем они возвращаются в исходное положение, и агрегат готов к новому циклу. |
3 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ II: На катушку постоянно подается питание. После включения и выключения пускового переключателя («сухой» внешний контакт) начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ и контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Когда период отсчета времени заканчивается, контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
4 | ИНТЕРВАЛЬНАЯ ЗАДЕРЖКА: При подаче питания на катушку (в многофункциональных таймерах пусковой переключатель должен быть переставлен), начинается период времени ИНТЕРВАЛ и контакты переключаются, либо соединяются (нормально разомкнутые контакты), либо разъединяются (нормально замкнутые контакты) Загрузка. По окончании интервала времени контакты возвращаются в исходное положение.Устройство перезагружается при отключении питания от катушки, делая устройство готовым к новому циклу. |
5 | ВЫСТРЕЛ ЦИКЛА 1 (РАВНОЕ ВРЕМЯ ВЫКЛ. / ВКЛ.): При подаче питания на таймер начинается отсчет времени. Выходное реле выключено на установленное время, а затем включено на установленное время только на 1 цикл. Таймер сбрасывается при отключении питания или подаче сигнала сброса. |
6 | ПОВТОРНЫЙ ЦИКЛ (РАВНЫЕ ВРЕМЯ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ): Когда питание подается на катушку, инициируется период времени ВЫКЛЮЧЕНИЯ; контакты не переносятся.В конце периода времени выключения начинается период времени включения. Контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. В конце периода включения контакты переключаются, и цикл продолжается до тех пор, пока с катушки не будет отключено питание. |
7 | ПОВТОРНЫЙ ЦИКЛ (НЕЗАВИСИМЫЕ ВРЕМЯ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ): Когда питание подается на катушку, период ВКЛЮЧЕНИЯ инициируется переключением контактов (нормально разомкнутые контакты замыкаются, нормально замкнутые контакты разомкнуты).В конце периода ВЫКЛ контакты размыкаются и начинается период ВКЛ. Цикл продолжается до тех пор, пока с катушки не будет отключено питание. |
8 | ИНТЕРВАЛ СИГНАЛА / ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ: На катушку постоянно подается питание. После замыкания пускового выключателя («сухой» внешний контакт) начинается цикл ИНТЕРВАЛ; контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. В конце цикла ИНТЕРВАЛ начинается цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакты остаются в переключенном состоянии до тех пор, пока цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ не закончится.Затем контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
9 | ЗАДЕРЖКА ВКЛЮЧЕНИЯ / ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ СИГНАЛА: На катушку постоянно подается питание. После замыкания пускового выключателя («сухой» внешний контакт) начинается цикл ЗАДЕРЖКИ ВКЛЮЧЕНИЯ; контакты не переносятся. В конце цикла ЗАДЕРЖКИ ВКЛЮЧЕНИЯ контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. После отпускания пускового переключателя начинается цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; контакты остаются переданными. В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
10 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ ПИТАНИЯ: При подаче питания на катушку контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Когда питание обмотки прекращается, начинается отсчет времени ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; контакты остаются переданными.В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
11 | WATCHDOG (RETRIGGERABLE SINGLE SHOT): При подаче входного напряжения реле задержки времени готово принимать сигналы запуска. При подаче триггерного сигнала реле включается и начинается заданное время. По истечении заданного времени реле обесточивается, если триггерный сигнал не срабатывает и не размыкается до истечения времени ожидания (до истечения заданного времени). Непрерывное переключение триггерного сигнала со скоростью, превышающей заданное время, приведет к тому, что реле останется под напряжением. |
Схема регулируемого таймера задержки автоматического включения и выключения с использованием 555 IC
Учебное пособие о том, как создать схему регулируемого таймера задержки с использованием микросхемы 555 IC, которая может автоматически включать / выключать любой выход по истечении фиксированного времени. Эта схема электронного таймера полезна, когда вам нужно включить / выключить любые устройства переменного тока по прошествии заранее определенного времени.Например, вы можете использовать эту схему для автоматического выключения мобильного зарядного устройства, скажем, через 1 час, чтобы предотвратить перезарядку аккумулятора.
Задержку таймера можно установить на периоды времени, например 1, 5, 10 минут и т. Д. (Или на любую продолжительность от нескольких секунд до часов).
Посмотрите видеоурок выше, чтобы получить подробные пошаговые инструкции о том, как построить эту схему, и для визуальной демонстрации того, как эта схема работает. (Включены оба сценария, а именно автоматическое выключение и автоматическое включение)
Необходимые компоненты
Ниже приведен список компонентов, необходимых для построения схемы электронного таймера задержки:
- 555 Таймер IC
- Кнопочный переключатель мгновенного действия
- Светодиод / любое выходное устройство
- Конденсатор 470 мкФ
- Резисторы: 68K, 10K, 220R
- Макетная плата
- Несколько разъемов макетной платы Источник питания
- (5-12) В
- Потенциометр (дополнительно)
- Релейный модуль
Обратитесь к таблице резисторов светодиодов, показанной в видеоуроке, чтобы узнать точное значение последовательного резистора светодиода (220R)
Цепь таймера с фиксированной задержкой включения
На рисунке ниже представлена схема простого таймера автоматического включения и выключения с фиксированный резистор синхронизации и конденсатор. Таким образом, период времени, по истечении которого эта схема будет автоматически включать / выключать выход, является фиксированным и может быть определен с помощью формулы, упомянутой в разделе расчетов.
Для управления устройствами переменного тока или любыми тяжелыми нагрузками, такими как двигатели постоянного тока, с использованием этой схемы, вам необходимо добавить модуль реле на выходе микросхемы таймера 555 (как показано в видеоуроке).
Схема регулируемого таймера задержки включения и выключения
Для регулировки продолжительности таймера «на лету» резистор синхронизации заменяется потенциометром, и его соединения выполняются, как показано на принципиальной схеме ниже.Вы можете выбрать значение потенциометра в зависимости от требуемой максимальной продолжительности.
Как работает эта схема
В предыдущих руководствах серии проектов таймера 555 мы узнали, как триггерный вывод (вывод 2) и пороговый вывод (вывод 6) микросхемы таймера 555 определяют напряжения и управляют выходом. Ниже приводится резюме:
- Если триггерный вывод (вывод 2 микросхемы таймера 555) обнаруживает любое напряжение менее 1/3 напряжения питания, он включает на выход
- Если порог Контакт (контакт 6 микросхемы таймера 555) определяет любое напряжение, превышающее 2/3 напряжения питания, он выключает ВЫКЛ. выход
- Когда выход микросхемы таймера 555 находится в состоянии ВЫКЛ. , Разрядный вывод (вывод 7) действует как заземление / отрицательная шина i.е, он внутренне подключен к 0V
Принимая во внимание вышеупомянутые 3 пункта, давайте попробуем понять, как эта схема работает.
Первоначально, когда эта схема включена, выход будет в состоянии ВЫКЛ. Когда выход выключен, разрядный вывод (вывод 7) будет внутренне подключен к 0 В. Таким образом, конденсатор полностью разряжается и не может заряжаться через последовательный резистор, соединяющий его с положительной шиной.
При нажатии кнопочного переключателя мгновенного действия i.е, таймер задержки активируется, происходит следующая последовательность:
- 0 В подается на контакт триггера (контакт 2) через кнопочный переключатель
- Поскольку это приложенное напряжение (0 В) на контакте 2 меньше 1 / 3-го напряжения питания, выход включается
- Одновременно вывод разрядки внутренне отключается от 0 В
- Итак, теперь конденсатор начинает заряжаться через резистор / потенциометр, который соединяет его с положительной шиной
- Поскольку входной вывод порогового значения (вывод -6) подключен к положительному выводу конденсатора, он активно контролирует напряжение на нем
- Как только конденсатор заряжается до 2/3 напряжения питания, вывод 6 отключает выход
- (этот период времени для время задержки, которое конденсатор заряжает от 0 В до 2/3 напряжения питания)
- Как только выход выключается, контакт 7 внутренне повторно подключается к 0 В, и конденсатор полностью разряжается
- Вышеуказанные шаги: повторять d каждый раз при нажатии кнопочного переключателя
Включение выхода означает, что напряжение на выходном контакте (контакт 3) таймера 555 равно Vs (напряжение питания). Выход в выключенном состоянии означает, что напряжение равно 0 В.
В видеоуроке я подключил анод синего светодиода к выходу микросхемы таймера 555, а катод — к отрицательной шине. Что касается красного светодиода, я подключил его катод к выходу микросхемы таймера 555, а анод — к положительной шине. Таким образом, когда выход таймера 555 находится во включенном состоянии, горит синий светодиод, а когда выход выключается, горит красный светодиод.
Расчет периода задержки таймера
Период времени созданной нами схемы таймера задержки равен времени, необходимому конденсатору для зарядки от 0 В до 2/3 напряжения питания, и теоретически это значение равно:
Т = 1.1 * R * C, где T — период времени в секундах, а R, C — значения используемых резистора синхронизации и конденсатора.
Например, на принципиальной схеме таймера с фиксированной продолжительностью задержки мы использовали резистор 68 кОм и конденсатор емкостью 470 мкФ, что дает нам время задержки:
T = 1,1 * (68000) * (0,000470) = 32 секунды.
А чтобы вычислить значения компонентов для заданного времени задержки, проще зафиксировать номинал конденсатора и рассчитать номинал резистора. Например, если нам требуется время задержки 60 секунд:
60 = 1.1 * Р * (0,000470). Решая это уравнение, мы получаем значение R равное 116К.
Практически время задержки будет больше расчетного значения из-за утечки конденсатора. Итак, для вашей справки, я измерил и свел в таблицу значения временного резистора и конденсатора для основных интервалов, как показано на изображении ниже.
Приложения
- Для автоматического выключения мобильных зарядных устройств для предотвращения перезарядки аккумулятора
- Для автоматического выключения ламп для чтения по истечении установленного времени
- Для управления последовательностью устройств вывода одно за другим после регулярных / нерегулярных периодов времени ( Это может быть достигнуто путем каскадного подключения нескольких схем таймера задержки через вывод сброса микросхемы таймера 555)
- В схемах автоматического включения / выключения питания с использованием реле
Если у вас есть какие-либо вопросы / предложения, не стесняйтесь размещать их в разделе комментариев из этого видео: Регулируемая схема таймера задержки автоматического включения и выключения с использованием реле таймера 555 IC
: принцип работы, приложения
Большинство тех, кто занимается электромонтажными работами, знают, что такое реле времени. Это очень популярное и хорошо известное устройство на энергетическом рынке. Реле времени известно с 1968 года благодаря своей надежной конструкции, обеспечивающей длительный срок службы при низких затратах на техническое обслуживание. Благодаря эффективному принципу работы реле таймера дают вам возможность выбирать между функциями и диапазонами временной задержки, чтобы гарантировать, что вы получите идеальный таймер, соответствующий вашим потребностям.
Продолжайте читать, чтобы понять основные типы, области применения и параметры выбора реле времени.
Что такое реле таймера?
Реле таймера, после подачи напряжения на его катушку, циклически изменяет состояние своих контактов.Обычно период времени, в течение которого контакты могут оставаться замкнутыми или разомкнутыми, регулируется извне, а период цикла может варьироваться от нескольких миллисекунд до нескольких сотен часов. Количество управляемых контактов и продолжительность цикла зависят от конструкции таймера.
Реле с таймероммогут быть пневматическими, полупроводниковыми или моторными. Твердотельные таймеры обычно включаются в так называемые программируемые контроллеры (ПК), которые можно запрограммировать на предоставление желаемого периода цикла любому количеству контактов.
Как работает реле таймера?Принцип действия реле таймера следующий:
- Сначала на реле таймера подается напряжение питания.
- Во-вторых, микропроцессор начинает загружаться.
- На следующем этапе микропроцессор считывает информацию с интерфейса. Интерфейс состоит из различных возможностей регулировки на передней панели таймера. Здесь необходимо установить функцию времени, временной диапазон и точную настройку желаемого времени задержки с помощью поворотных переключателей и потенциометров.
- На четвертом этапе микропроцессор считывает информацию управляющих входов, таких как управляющий вход для запуска задержки. Эта информация для таймера предназначена для запуска операции и называется «пусковым импульсом» или «триггером».
- Теперь таймер работает.
- По истечении заданного времени задержки выходное реле включается / отключается.
- После включения выходного реле ток нагрузки питает подключенное устройство как контактор.
Разница между электромеханическим управляющим реле и реле таймера заключается в переключении выходных контактов. Контакты электромеханического реле меняют положение, как только напряжение подается на катушку или снимается с нее. Контакты реле таймера изменят положение до или после предварительно выбранного временного интервала.
Разница между реле задержки включения и реле таймера задержки выключенияРеле таймера задержки
При подаче напряжения питания и истечении времени задержки выходной контакт меняет положение.(Например, начинает работать вентилятор) А при пропадании питающего напряжения выходной контакт возвращается в первое положение. (И вентилятор останавливается)
Реле таймера задержки выключения
Выходной контакт меняет положение при подаче напряжения питания. (Например, вентилятор начинает работать сразу) Но при пропадании напряжения питания выходной контакт возвращается в первое положение на определенное время. (Вентилятор продолжает работать определенное время)
Что такое многофункциональное реле таймера?Многофункциональное реле времени — это таймер с различными функциями отсчета времени.С помощью многофункционального таймера можно выбирать и применять различные функции управления. Он идеально подходит для многих приложений, от базовых до промышленных.
Применение реле таймера Реле с таймеромподходят для широкого спектра применений, в том числе:
- Машины: одиночная машина, пуск двигателя звезда-треугольник, промышленная автоматизация и процессы
- Здания: управление освещением, автоматические двери, барьеры для автостоянок, рольставни
- Водный сегмент: управление насосами и оросительные системы
- HVAC: вентиляторы и централизованное водные системы
Другие примеры применения:
Циклическое переключение оборудования, например, еженедельный запуск вентилятора для предотвращения их прилипания или промывка труб, чтобы они оставались чистыми.
Управление освещением, например, отложенное включение нескольких рядов ламп в производственных помещениях или теплицах.
Управляемый по времени запуск или остановка машинного оборудования, например, отсроченное отключение конвейерных лент или последующий останов завода.
Срабатывание сигнализации в случае обнаружения неисправности, например, чтобы разрешить мигание лампы в промышленных приложениях или подвижном составе.
Пуск электродвигателя со звезды на треугольник, например, для снижения пускового тока с задержкой переключения для предотвращения межфазных коротких замыканий.
Кнопка перехода на пешеходный переход, например, когда вы нажимаете кнопку сигнала ходьбы, световой сигнал меняется с «не ходить» на «идти» с задержкой.
Автомойка, Например, автомойка работает пять минут, когда вставлены деньги.
Параметры выбора реле таймераПри выборе реле таймера следует учитывать следующие параметры:
- Напряжение питания.
- Функции времени. (например, задержка выключения, задержка включения, многофункциональность и т. д..)
- Количество выходных контактов.
- Временные диапазоны. (Например: 0,05 с — 100 ч, 05 с — 10 мин)
- Индикация рабочих состояний. (Светодиодная индикация)
- Специальные функции, такие как запуск по напряжению, запуск без напряжения, подключение удаленного потенциометра.
Перечисленные нами функции являются общими. Характеристики могут отличаться от бренда к бренду. Прежде чем делать выбор, следует ознакомиться с каталогами производителей и руководствами пользователя.
Технические определенияВходное напряжение: Входное напряжение реле таймера — это управляющее напряжение, приложенное к клеммам A1-A2.Входное напряжение либо активирует реле, либо готовит его к срабатыванию, как только будет подан сигнал запуска.
Пусковой сигнал: Пусковой сигнал используется для срабатывания реле после подачи входного напряжения.
Выход: Каждое реле с выдержкой времени имеет внутреннее реле (обычно механическое) с контактами, которые размыкаются и замыкаются для управления нагрузкой.
Есть три типа выходных контактов
CO: Когда катушка обесточена, она замыкает цепь между общей точкой C и контактом NC.Когда катушка находится под напряжением, она замыкает цепь между общей точкой C и замыкающим контактом.
NC: Контакт, который замыкается без срабатывания, называется нормально закрытым контактом.
NO: Контакт, который замыкается при срабатывании, называется нормально разомкнутым контактом.
Продолжить чтение
Длинная петельная антенна
Намотанная на трубку из ПВХ длиной 3 фута, длинная петельная антенна представляла собой эксперимент, чтобы попытаться улучшить радиоприем AM без использования длинного провода или земля. 2) / ((9 * радиус) + (10 * длина))
, где размеры указаны в дюймах, а индуктивность — в микрогенри. Индуктивность
должно быть около 230 микрогенри для работы со стандартной настройкой AM-радио
конденсатор (33-330 пФ). 3-футовая ПВХ-труба наматывается примерно 500
равномерно расположенные витки медного провода № 24, который образует индуктивность примерно 170
microhenrys, но у меня получилось немного больше (213uH), потому что обмотка
интервал был не совсем ровным. Вторичная обмотка примерно на 50 витков намотана по длине
труба наверху первичной, а затем подключенная к 4 виткам проволоки, намотанной
прямо вокруг радио.Обмотки вокруг магнитолы ориентированы так, чтобы
стержень внутренней антенны радиостанции проходит через внешние обмотки. Лучше
метод соединения будет заключаться в том, чтобы намотать несколько витков непосредственно вокруг внутреннего
стержневая антенна внутри самого радио, но вам придется открыть радио, чтобы сделать
тот. Во время работы антенна должна располагаться горизонтально к земле и справа. углы к направлению интересующей радиостанции. Настройте радио на
слабую станцию, чтобы вы могли слышать определенный шум, а затем настройте
конденсатор антенны и поверните антенну для лучшего отклика.Антенна
также следует располагать вдали от диммеров ламп, компьютерных мониторов и других
устройства, вызывающие электрические помехи.
Цепь зажигания разряда конденсатора (CDI)
Цепь зажигания CDI создает искру от катушки зажигания. разряд конденсатора через первичную обмотку. Конденсатор емкостью 2 мкФ заряжен примерно до 340 вольт, а разряд контролируется тиристором. Генератор триггера Шмитта (74C14) и MOSFET (IRF510) используются для управления сторона низкого напряжения небольшого (120/12 В) силового трансформатора и напряжение Устройство удвоения используется на стороне высокого напряжения для увеличения емкости конденсатора напряжение примерно до 340 вольт.Аналогичный генератор триггера Шмитта используется для запускайте SCR примерно 4 раза в секунду. Электропитание отключено во время время разряда, так что SCR перестанет проводить и вернется к своему состояние блокировки. Диод, подключенный от 3904 к выводу 9 74C14, вызывает генератор источника питания остановится во время разряда. Схема рисует всего около 200 миллиампер от источника 12 вольт и обеспечивает почти вдвое больше нормальная энергия обычной цепи зажигания.Высокое напряжение с катушки около 10 кВ при использовании искрового разрядника 3/8 дюйма при нормальной температуре и давлении воздуха. Частота искры может быть увеличена до 10 Гц без потери искры. интенсивность, но ограничена низкочастотным силовым трансформатором и рабочим циклом осциллятора. Для более высокой скорости искры, более высокой частоты и меньшего потребуется источник импеданса. Учтите, что катушка зажигания не заземлена. и представляет опасность поражения электрическим током на всех своих клеммах. Используйте ВНИМАНИЕ, когда управляя схемой.Альтернативный способ подключения катушки — заземление. клемму (-) и переместите конденсатор между катодом выпрямительный диод и положительный вывод катушки. Затем SCR помещается между землей и стороной конденсатора +340 В. Это снижает опасность поражения электрическим током и является обычной конфигурацией в автомобильных приложениях. Меню
Низкое напряжение, сильноточная цепь задержки времени
В этой схеме счетверенный компаратор напряжения LM339 используется для генерации выдержка времени и управление сильнотоковым выходом при низком напряжении.Приблизительно Силу в 5 ампер можно получить, используя пару свежих щелочных батареек D. Три компаратора подключены параллельно для управления PNP средней мощности. транзистор (2N2905 или аналогичный), который, в свою очередь, управляет сильноточным NPN транзистор (TIP35 или аналогичный). 4-й компаратор используется для генерации времени задержка после размыкания нормально замкнутого переключателя. Два резистора (36К и 62К) используются как делитель напряжения, на который приходится около двух третей батареи напряжение на входе (+) компаратора, или около 2 вольт. Время задержки после переключатель открыт, будет примерно одна постоянная времени с использованием конденсатора 50 мкФ и переменный резистор 100 кОм, или примерно (50u * 100 кОм) = 5 секунд. Время может можно уменьшить, установив резистор на меньшее значение или используя меньшее конденсатор. Более продолжительное время можно получить с помощью резистора или конденсатора большего размера. Для работы схемы при более высоких напряжениях резистор 10 Ом должен быть увеличивается пропорционально (4,5 В = 15 Ом).
МенюРеле задержки времени включения
Вот схема реле задержки времени включения, которая использует преимущества напряжение пробоя эмиттер / база обычного биполярного транзистора.В используется обратный переход эмиттер / база транзистора 2N3904 как стабилитрон на 8 В, который создает более высокое напряжение включения для Дарлингтон подключил пару транзисторов. Практически любой биполярный транзистор может быть используется, но напряжение стабилитрона будет варьироваться от 6 до 9 вольт в зависимости от конкретный используемый транзистор. Задержка времени составляет примерно 7 секунд при использовании Резистор 47 кОм и конденсатор 100 мкФ и может быть уменьшен за счет уменьшения сопротивления R или Ценности C. Более длинные задержки могут быть получены с большим конденсатором, резистор синхронизации, вероятно, не следует увеличивать выше 47 кОм.Схема должен работать с большинством любых реле постоянного тока на 12 В с сопротивлением катушки 75 Ом или больше. Резистор 10 кОм, подключенный к источнику питания, обеспечивает путь разряда конденсатора при выключенном питании и не необходимо, если в блоке питания уже есть спускной резистор.
Меню
Реле задержки отключения питания
Две схемы ниже иллюстрируют размыкание контакта реле на короткое замыкание. время после выключения зажигания или выключателя света.Конденсатор заряжается и реле замыкается, когда напряжение на аноде диода поднимается до +12 вольт. Схема слева — это обычный коллектор или эмиттер-повторитель и имеет преимущество на одну часть меньше, так как резистор не нужен последовательно с базой транзистора. Тем не менее напряжение на катушке реле будет на два диода меньше, чем напряжение питания напряжение, или около 11 вольт для входа 12,5 вольт. Общий эмиттер конфигурация справа предлагает преимущество полного напряжения питания через нагрузку в течение большей части времени задержки, что приводит к срабатыванию реле и выпадающее напряжение меньше беспокоит, но требует дополнительного резистора в серия с транзисторной базой.Общий эмиттер (схема справа) — это лучшая схема, поскольку можно выбрать последовательный базовый резистор чтобы получить желаемое время задержки, тогда как конденсатор должен быть выбран для общего коллектора (или дополнительного резистора, используемого параллельно с конденсатор). Временная задержка для общего эмиттера будет примерно 3 постоянные времени или 3 * R * C. Значения конденсатора / резистора можно определить. от тока катушки реле и усиления транзистора. Например 120 Ом катушка реле потребляет 100 мА при 12 вольт и при условии, что коэффициент усиления транзистора составляет 30, базовый ток будет 100/30 = 3 мА. Напряжение на резисторе будет напряжение питания минус два диодных падения или 12-1,4 = 10,6. Резистор значение будет напряжение / ток = 10,6 / 0,003 = 3533 или около 3,6 К. В Емкость конденсатора для 15-секундной задержки будет 15 / 3R = 1327 мкФ. Мы можем используйте стандартный конденсатор емкостью 1000 мкФ и пропорционально увеличивайте резистор чтобы получить 15 секунд. МенюЦепь таймера и реле 9 секунд светодиодов
Эта схема обеспечивает визуальную 9-секундную задержку с использованием 10 светодиодов перед замыкание реле на 12 вольт.Когда переключатель сброса замкнут, 4017 Десятилетний счетчик будет сброшен на счет 0, который загорится Светодиод подключен к контакту 3. Выход таймера 555 на контакте 3 будет высоким и напряжение на выводах 6 и 2 таймера будет чуть меньше нижняя точка срабатывания, или около 3 вольт. Когда переключатель открыт, транзистор включен параллельно конденсатору выдержки времени (22 мкФ) выключается, позволяя конденсатору начать зарядку, и 555 схема таймера для создания примерно 1-секундного тактового сигнала до декады прилавок. Счетчик продвигается при каждом положительном изменении на выводе 14 и включен, когда на выводе 13 установлен низкий уровень. Когда будет достигнут 9-й счет, закрепите 11 и 13 будут иметь высокий уровень, остановив счетчик и включив реле. Более длительное время задержки может быть получено с конденсатором большего или большего размера. резистор на выводах 2 и 6 таймера 555.
Меню
Таймер обратного отсчета 9 секунд цифрового отсчета
Эта схема обеспечивает визуальную 9-секундную задержку с использованием 7-сегментного цифрового светодиод индикации.Когда переключатель замкнут, счетчик обратного / обратного отсчета CD4010 предварительно установлено значение 9, и таймер 555 отключается с высоким выходом. Когда переключатель разомкнут, таймер показывает примерно 1 секунду. тактовый сигнал, уменьшающий счетчик до тех пор, пока не будет достигнут нулевой счет. Когда достигается нулевой счетчик, сигнал выполнения на выводе 7 счетчик движется вниз, запитывая реле 12 вольт и останавливая часы при низком уровне сигнала на линии сброса (вывод 4). Реле останется под напряжением. до тех пор, пока переключатель снова не замкнется, сбрасывая счетчик на 9.1 секунда тактовый сигнал от таймера 555 можно отрегулировать немного длиннее или короче путем увеличения или уменьшения значения резистора на выводе 3 таймера.
CD4510 — это предварительно настраиваемый КМОП счетчик вверх / вниз BCD, который может быть предварительно установленным на любое число от 0 до 9 с высоким уровнем на PRESET ENABLE line, (контакт 1) или сбросить на 0 с высоким уровнем на Линия RESET (вывод 9). Входы для предварительной настройки счетчика (P1, P2, P3, P4) находятся на контактах (4, 12, 13, 3) соответственно.Счетчик продвигается вверх или вниз на каждом положительном тактовом переходе (вывод 15) и направление счета (вверх или вниз) контролируется логическим уровнем на входе UP / DOWN (контакт 10, высокий = вверх, низкий = вниз). Сигнал CARRY-IN (вывод 5) отключает счетчик с высоким логическим уровнем.
CD4511 — это 7-сегментный CMOS BCD-декодер с защелкой,
до 25 мА, что позволяет напрямую управлять светодиодами и другими дисплеями. Линия LATCH-ENABLE (контакт 5, активный низкий уровень) хранит данные с входа BCD.
линий.Вход LAMP-TEST (контакт 3, активный низкий уровень) может использоваться для освещения
все 7 сегментов, а вход BLANKING (контакт 4, активный низкий уровень) может использоваться для
выключить все сегменты. Светодиодный дисплей должен быть с обычным катодом, чтобы
что сегменты освещены положительным напряжением на их
соответствующие подключения. Полные спецификации для CD4510 и CD4511 можно получить по адресу
ответ на факс от
Harris Semiconductors (поиск)
Электронный термостат и цепь реле
Вот простая схема термостата, которую можно использовать для управления реле и подавать питание на небольшой обогреватель через контакты реле.Контакты реле должны иметь номинал выше текущие требования к обогревателю.
Температурные изменения регистрируются термистором (1,7K при 70F), установленном последовательно с потенциометром 5K, который дает около 50 милливольт на градус F на входе компаратора напряжения LM339. Два 1К резисторы, подключенные к выводу 7, устанавливают опорное напряжение на половину напряжение питания и диапазон гистерезиса примерно до 3 градусов или 150 милливольт. Диапазон гистерезиса (диапазон температур, в котором реле включения и выключения) можно регулировать с помощью резистора 10 кОм между контакты 1 и 7.Более высокое значение сузит диапазон.
В процессе работы резистор регулируется таким образом, чтобы реле просто
выключается при желаемой температуре. Падение на три градуса
температура должна привести к тому, что реле снова включится и останется
до тех пор, пока температура снова не поднимется до заданного уровня.
Действие реле можно изменить на противоположное, чтобы оно отключалось на нижнем конце.
диапазона, поменяв местами потенциометр 5K и термистор.
5.Стабилитрон на 1 вольт регулирует напряжение цепи так, чтобы небольшой
изменения напряжения питания 12 В не повлияют на работу. Напряжение на
термистор должен быть наполовину ниже напряжения питания или около 2,6 вольт, когда
температура находится в пределах диапазона 3 градусов, установленного потенциометром. Можно использовать практически любой термистор, но сопротивление должно быть выше
1 кОм при интересующей температуре. Выбранный резистор серии
должно быть примерно в два раза больше сопротивления термистора, поэтому регулировка
заканчивается около центра элемента управления.
Термостат для обогревателя помещения мощностью 1 кВт (управление SCR)
Ниже представлена схема термостата, которую я недавно построил для управления обогревателем на 1300 Вт. Нагревательный элемент (не показан) подключен последовательно двумя спина к спине на 16 ампер. SCR (не показаны), которые управляются небольшим импульсным трансформатором. Пульс трансформатор имеет 3 одинаковые обмотки, две из которых используются для питания триггера. импульсы на тиристоры, а третья обмотка подключена к паре транзисторов PNP которые поочередно подают импульсы на трансформатор в начале каждого переменного тока. полупериод.Импульсы триггера подаются на оба тиристора ближе к началу каждый полупериод переменного тока, но только один работает в зависимости от полярности переменного тока.
Питание постоянного тока для схемы показано в нижнем левом разделе чертежа. и использует неполяризованный конденсатор 1,25 мкФ, 400 В, чтобы получить около 50 мА. тока от сети переменного тока. Ток выпрямляется двумя диодами и используется для зарядите пару более крупных низковольтных конденсаторов (3300 мкФ), которые обеспечивают около 6 вольт постоянного тока для цепи.Напряжение постоянного тока регулируется стабилитроном на 6,2 вольт. и резистор 150 Ом, включенный последовательно с линией, ограничивает импульсный ток, когда сначала подается питание.
Нижний компаратор (вывод 13) служит детектором пересечения нуля. и генерирует прямоугольный сигнал частотой 60 Гц в фазе с линией переменного тока. Фаза немного сдвинут на 0,33 мкФ, 220К и 1К, так что тиристор триггерный импульс поступает, когда линейное напряжение на несколько вольт выше или ниже нуль.SCR не сработает точно при нуле, так как не будет напряжение для поддержания проводимости.
Два верхних компаратора работают так же, как описано в Схема «Электронный термостат и реле». Низкий уровень на контакте 2 производится, когда температура выше желаемого уровня, и препятствует прямоугольная волна на выводе 13 и предотвращает срабатывание SCR. Когда температура упадет ниже желаемого уровня, контакт 2 перейдет в состояние разомкнутой цепи, позволяющее срабатывать меандр на выводе 13 SCR.
Используется компаратор в центре рисунка (контакты 8,9,14). чтобы обогреватель включился вручную в течение нескольких минут и автоматически Заткнись. Тумблер мгновенного действия (показан подключенным к резистору 51 Ом) используется для разряда конденсатора 1000 мкФ, так что контакт 2 верхнего компаратор переходит в состояние разомкнутой цепи, позволяя использовать меандр 60 Гц. для срабатывания тиристоров и питания нагревателя. Когда конденсатор достигает около 4 вольт цепь возвращается в нормальный режим работы, когда термистор управляет работой.Мгновенный переключатель также может быть переключается так, что конденсатор заряжается выше 4 вольт и отключает нагреватель, если температура выше установленной для кастрюли.
МенюЗадержка выключения — базовое управление двигателем
Задержка выключения управления с определенной последовательностьюНа приведенной выше схеме показана стандартная трехпроводная схема для однодвигательного пускателя M1. В параллельно с M1 находится реле задержки времени (TR) , которое нормально разомкнутые, с синхронизацией на открытие (NOTO) контакты идентифицируют его как таймер задержки выключения.Эти синхронизированные контакты относятся к серии с пускателем двигателя M2.
Вышеупомянутая схема переключения позволяет управлять двумя двигателями с одной кнопочной станции . Если нажать кнопку пуска, оба двигателя M1 и M2 запустятся немедленно. Это связано с тем, что нормально разомкнутые контакты , связанные с катушкой задержки выключения, мгновенно изменят свое состояние, когда катушка находится под напряжением.
После включения обоих пускателей электродвигатели будут продолжать работать, пока не будет нажата кнопка останова. После нажатия контактор M1 и таймер задержки выключения будут обесточены, а их контакты вернутся в исходное состояние.
Для пускателя двигателя , это произойдет мгновенно, но синхронизированные контакты, связанные с катушкой таймера, будут иметь задержку в пять секунд перед тем, как они откроются, в течение которого двигатель M2 будет продолжать работать. Важно отметить, что даже несмотря на то, что катушка таймера была отключена от источника питания, она по-прежнему выполняет свою функцию синхронизации.Ему не требуется внешняя энергия для задержки его контактов, эта энергия сохраняется в таймере, обычно в виде сжатого воздуха или напряжения пружины.
Если на двигателе M2 возникнет перегрузка , остановится только этот двигатель, но если в двигателе M1 возникнет перегрузка и его контакты OLR разомкнутся, то катушка обесточится, и ее удерживающие контакты 2-3 разомкнутся, отключив катушка таймера от источника питания. Как только катушка задержки выключения обесточивается, ее контакты задерживаются на пять секунд, а затем возвращаются в исходное состояние, поэтому двигатель M2 будет продолжать работать в течение пяти секунд после остановки двигателя M1 из-за перегрузки.
Если более двух двигателей должны быть подключены таким образом, мы просто увеличим эту схему переключения, подключив дополнительные реле таймера параллельно каждому пускателю двигателя, чтобы каждый двигатель останавливался один за другим в предписанной последовательности.
Цепь задержки отключения | Timers.Shop
Ниже приведены примеры реальных приложений таймера: 1. Схема с самоблокировкой предназначена для использования кнопки для включения питания нагрузки. Когда кнопка нажата, мощность поступает на нагрузку и на реле.Реле замыкает клеммы 30 и 87, обеспечивая непрерывную подачу питания на ток, даже если кнопка отпущена (самоблокировка). По истечении тайм-аута таймер отключает питание реле, что отключает питание таймера. Эта схема не потребляет энергию в выключенном состоянии. Отлично подходит для приложений с батарейным питанием. Таймер установлен на функцию №2 и триггер №1 (отключен).
Триггер также можно изменить так, чтобы он был подключен к + 12В вместо заземления. В этом случае измените программирование триггера на # 2.