Теплопроводность материалов таблица, СНиП |
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 840 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 300…1000 | 0.08…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем | 50…125 | 0.048…0.056 | 840 |
(ГОСТ 9573-82) | |||
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол «Пеноплекс» | 35…43 | 0.028…0.03 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем | 200 | 0.064 | 840 |
(ТУ 21-РСФСР-3-72-76) | |||
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом | 50…350 | 0.048…0.091 | 840 |
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | |||
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996 – 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 200…600 | 0.065…0.145 | 1060 |
Полистиролбетон модифицированный на | 200…500 | 0.057…0.113 | 1060 |
активированном пластифицированном шлакопортландцементе | |||
Полистиролбетон модифицированный на | 200…500 | 0.052…0.105 | 1060 |
композиционном малоклинкерном вяжущем в стеновых блоках и плитах | |||
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на | 200…500 | 0.062…0.121 | 1060 |
шлакопортландцементе в стеновых блоках и плитах | |||
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.28 | — |
Пробка техническая | 50 | 0.037 | 1800 |
Ракушечник | 1000…1800 | 0.27…0.63 | — |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) | 400…800 | 0.12…0.18 | 840 |
и аглопорита (ГОСТ 11991-83) — засыпка | |||
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
svoydom.info
Таблица теплопроводности строительных материалов и утеплителей
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.


Теплопроводность материалов влияет на толщину стен
Содержание статьи
Назначение теплопроводности
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.


На схеме представлены показатели различных вариантов
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.


Что оказывает влияние на показатель теплопроводности?
Теплопроводность определяется такими факторами:
- пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
- повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
- повышенная влажность увеличивает данный показатель.


Характеристики различных материалов
Использование значений коэффициента теплопроводности на практике
Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.


При выборе утеплителя нужно изучить характеристики каждого варианта
Показатели теплопроводности для готовых построек. Виды утеплений
При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.


Монтаж минеральной ваты
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.


Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:
- минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;


Данный материал относится к самым доступным и простым вариантам
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;


Для пеноплекса характерна пористая структура
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;


Данный вариант бывает разной толщины
- пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов: особенности показателей
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.


Утепление производится в определенных местах
Как использовать таблицу теплопроводности материалов и утеплителей?
В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.


Коэффициент разнообразных типов сырья
Значения коэффициентов теплопередачи материалов в таблице
При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.


Значения плотности и теплопроводности
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.


Теплопроводность некоторых конструкций
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
Теплопроводность строительных материалов (видео)
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ


aquatic-home.ru
Таблица теплопроводности строительных материалов
Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

Читайте в статье:
Что такое теплопроводность
Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.
То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:
- бетон –1,51 Вт/м×К;
- кирпич – 0,56;
- древесина – 0,09-0,1;
- песок – 0,35;
- керамзит – 0,1;
- сталь – 58.
Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.

Что такое коэффициент теплопроводности
Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.
В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.
Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.

Что влияет на теплопроводность строительных материалов
Есть несколько параметров, которые сильно влияют на тепловую проводимость.
- Структура самого материала.
- Его плотность и влажность.
Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.

Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.

Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.
Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица
Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.
- через стены уходит до 30% тепловой энергии общего расхода.
- Через полы – 10%.
- Через окна и двери – 20%.
- Через крышу – 30%.

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

Мнение эксперта
Андрей Павленков
Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО «АСП Северо-Запад»
Спросить у специалиста“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.
Теплопроводность кирпича: таблица по разновидностям
Фото | Вид кирпича | Теплопроводность, Вт/м*К |
---|---|---|
![]() | Керамический полнотелый | 0,5-0,8 |
![]() | Керамический щелевой | 0,34-0,43 |
![]() | Поризованный | 0,22 |
![]() | Силикатный полнотелый | 0,7-0,8 |
![]() | Силикатный щелевой | 0,4 |
![]() | Клинкерный | 0,8-0,9 |

Теплопроводность дерева: таблица по породам
Порода дерева | Береза | Дуб поперек волокон | Дуб вдоль волокон | Ель | Кедр | Клен | Лиственница |
---|---|---|---|---|---|---|---|
Теплопроводность, Вт/м С | 0,15 | 0,2 | 0,4 | 0,11 | 0,095 | 0,19 | 0,13 |
Порода дерева | Липа | Пихта | Пробковое дерево | Сосна поперек волокон | Сосна вдоль волокон | Тополь |
---|---|---|---|---|---|---|
Теплопроводность, Вт/м С | 0,15 | 0,15 | 0,045 | 0,15 | 0,4 | 0,17 |
Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.

Теплопроводность металлов: таблица
Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.
Вид металла | Сталь | Чугун | Алюминий | Медь |
---|---|---|---|---|
Теплопроводность, Вт/м С | 47 | 62 | 236 | 328 |
Теперь, что касается соотношения с температурой.
- У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
- У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

Таблица теплопроводности других материалов
В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.
Теплоизоляционный материал | Плотность, кг/м³ | Теплопроводность, Вт/м*К |
---|---|---|
Минеральная вата (базальтовая) | 50 | 0,048 |
100 | 0,056 | |
200 | 0,07 | |
Стекловата | 155 | 0,041 |
200 | 0,044 | |
Пенополистирол | 40 | 0,038 |
100 | 0,041 | |
150 | 0,05 | |
Пенополистирол экструдированный | 33 | 0,031 |
Пенополиуретан | 32 | 0,023 |
40 | 0,029 | |
60 | 0,035 | |
80 | 0,041 |
И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.
Строительный материал | Плотность, кг/м³ | Теплопроводность, Вт/м*К |
---|---|---|
Бетон | 2400 | 1,51 |
Железобетон | 2500 | 1,69 |
Керамзитобетон | 500 | 0,14 |
Керамзитобетон | 1800 | 0,66 |
Пенобетон | 300 | 0,08 |
Пеностекло | 400 | 0,11 |
Коэффициент теплопроводности воздушной прослойки
Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.

Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:
- Конвекция теплого воздуха внутри прослойки.
- Тепловое излучение от материала с плюсовой температурой.
Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.

В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.
Расчет толщины стены по теплопроводности вручную по формулам или калькулятором
Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.
Регион | Москва | Санкт-Петербург | Ростов | Сочи |
---|---|---|---|---|
Теплопроводность | 3,14 | 3,18 | 2,75 | 2,1 |
То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.
Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.
seti.guru
Стройдокс: Таблица теплопроводности строительных материалов
Материал | Коэффициент теплопроводности, Вт/(м·°C) | ||
В сухом состоянии | Условия А («обычные») | Условия Б («влажные») | |
Пенополистирол (ППС) | 0,036 — 0,041 | 0,038 — 0,044 | 0,044 — 0,050 |
Пенополистирол экструдированный (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Войлок шерстяной | 0,045 | ||
Цементно-песчаный раствор (ЦПР) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка обычная | 0,25 | ||
Минеральная вата каменная, 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Минеральная вата каменная, 140-175 кг/м3 | 0,037 | 0,043 | 0,046 |
Минеральная вата каменная, 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата каменная, 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Минеральная вата каменная, 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата стеклянная, 85 кг/м3 | 0,044 | 0,046 | 0,05 |
Минеральная вата стеклянная, 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Минеральная вата стеклянная, 60 кг/м3 | 0,038 | 0,04 | 0,045 |
Минеральная вата стеклянная, 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Минеральная вата стеклянная, 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Минеральная вата стеклянная, 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Минеральная вата стеклянная, 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Минеральная вата стеклянная, 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Минеральная вата стеклянная, 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Медь | 382 — 390 | ||
Алюминий | 202 — 236 | ||
Латунь | 97 — 111 | ||
Железо | 92 | ||
Олово | 67 | ||
Сталь | 47 | ||
Стекло оконное | 0,76 | ||
Свежий снег | 0,10 — 0,15 | ||
Вода жидкая | 0,56 | ||
Воздух (+27 °C, 1 атм) | 0,026 | ||
Вакуум | 0 | ||
Аргон | 0,0177 | ||
Ксенон | 0,0057 | ||
Арболит (подробнее здесь) | 0,07 — 0,17 | ||
Пробковое дерево | 0,035 | ||
Железобетон плотностью 2500 кг/м3 | 1,69 | 1,92 | 2,04 |
Бетон (на гравии или щебне) плотностью 2400 кг/м3 | 1,51 | 1,74 | 1,86 |
Керамзитобетон плотностью 1800 кг/м3 | 0,66 | 0,80 | 0,92 |
Керамзитобетон плотностью 1600 кг/м3 | 0,58 | 0,67 | 0,79 |
Керамзитобетон плотностью 1400 кг/м3 | 0,47 | 0,56 | 0,65 |
Керамзитобетон плотностью 1200 кг/м3 | 0,36 | 0,44 | 0,52 |
Керамзитобетон плотностью 1000 кг/м3 | 0,27 | 0,33 | 0,41 |
Керамзитобетон плотностью 800 кг/м3 | 0,21 | 0,24 | 0,31 |
Керамзитобетон плотностью 600 кг/м3 | 0,16 | 0,2 | 0,26 |
Керамзитобетон плотностью 500 кг/м3 | 0,14 | 0,17 | 0,23 |
Крупноформатный керамический блок (тёплая керамика) | 0,14 — 0,18 | ||
Кирпич керамический полнотелый, кладка на ЦПР | 0,56 | 0,7 | 0,81 |
Кирпич силикатный, кладка на ЦПР | 0,70 | 0,76 | 0,87 |
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР | 0,47 | 0,58 | 0,64 |
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР | 0,41 | 0,52 | 0,58 |
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР | 0,64 | 0,7 | 0,81 |
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР | 0,52 | 0,64 | 0,76 |
Гранит | 3,49 | 3,49 | 3,49 |
Мрамор | 2,91 | 2,91 | 2,91 |
Известняк, 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Известняк, 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк, 1600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк, 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Туф, 2000 кг/м3 | 0,76 | 0,93 | 1,05 |
Туф, 1800 кг/м3 | 0,56 | 0,7 | 0,81 |
Туф, 1600 кг/м3 | 0,41 | 0,52 | 0,64 |
Туф, 1400 кг/м3 | 0,33 | 0,43 | 0,52 |
Туф, 1200 кг/м3 | 0,27 | 0,35 | 0,41 |
Туф, 1000 кг/м3 | 0,21 | 0,24 | 0,29 |
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 | 0,35 | ||
Фанера клееная | 0,12 | 0,15 | 0,18 |
ДСП, ДВП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
ДСП, ДВП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДСП, ДВП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДСП, ДВП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДСП, ДВП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
Пакля | 0,05 | 0,06 | 0,07 |
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 | 0,38 | 0,38 | 0,38 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 | 0,33 | 0,33 | 0,33 |
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 | 0,35 | 0,35 | 0,35 |
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 | 0,29 | 0,29 | 0,29 |
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 | 0,2 | 0,23 | 0,23 |
Эковата | 0,037 — 0,042 | ||
Перлит вспученный, песок, плотность 75 кг/м3 | 0,043 — 0,047 | ||
Перлит вспученный, песок, плотность 100 кг/м3 | 0,052 | ||
Перлит вспученный, песок, плотность 150 кг/м3 | 0,052 — 0,058 | ||
Перлит вспученный, песок, плотность 200 кг/м3 | 0,07 | ||
Пеностекло, насыпное, плотность 100 — 150 кг/м3 | 0,043 — 0,06 | ||
Пеностекло, насыпное, плотность 151 — 200 кг/м3 | 0,06 — 0,063 | ||
Пеностекло, насыпное, плотность 201 — 250 кг/м3 | 0,066 — 0,073 | ||
Пеностекло, насыпное, плотность 251 — 400 кг/м3 | 0,085 — 0,1 | ||
Пеностекло, блоки, плотность 100 — 120 кг/м3 | 0,043 — 0,045 | ||
Пеностекло, блоки, плотность 121 — 170 кг/м3 | 0,05 — 0,062 | ||
Пеностекло, блоки, плотность 171 — 220 кг/м3 | 0,057 — 0,063 | ||
Пеностекло, блоки, плотность 221 — 270 кг/м3 | 0,073 | ||
Керамзит, гравий, плотность 250 кг/м3 | 0,099 — 0,1 | 0,11 | 0,12 |
Керамзит, гравий, плотность 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, плотность 350 кг/м3 | 0,115 — 0,12 | 0,125 | 0,14 |
Керамзит, гравий, плотность 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, плотность 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, плотность 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, плотность 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, плотность 800 кг/м3 | 0,18 | ||
Гипсоплиты, плотность 1350 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсоплиты, плотность 1100 кг/м3 | 0,23 | 0,35 | 0,41 |
Перлитобетон, плотность 1200 кг/м3 | 0,29 | 0,44 | 0,5 |
Перлитобетон, плотность 1000 кг/м3 | 0,22 | 0,33 | 0,38 |
Перлитобетон, плотность 800 кг/м3 | 0,16 | 0,27 | 0,33 |
Перлитобетон, плотность 600 кг/м3 | 0,12 | 0,19 | 0,23 |
Пенополиуретан (ППУ), плотность 80 кг/м3 | 0,041 | 0,042 | 0,05 |
Пенополиуретан (ППУ), плотность 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ), плотность 40 кг/м3 | 0,029 | 0,031 | 0,04 |
Пенополиэтилен сшитый | 0,031 — 0,038 |
stroydocs.ru
Теплопроводность различных материалов таблица. Сравнение теплопроводности строительных материалов по толщине
Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.
Понятие теплопроводности
Теплопроводность — процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.
Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
- При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
- Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
- Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.
Конструкционные материалы и их показатели
Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:
- Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
- Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.
Еще один популярный строительный материал — кирпич. В зависимости от состава он обладает следующими показателями:
- саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
- керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
- силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
- Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
- Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Показатели теплоизоляционных материалов
Коэффициент теплопроводности наиболее популярных в наше время:
- пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
- стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
- с показателем 0,035-0,042Вт/м*К.
Таблица показателей
Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:
Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.
Правильно подобранный снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.
Что такое теплопроводность? Знать об этой величине необходимо не только профессионалам-строителям, но и простым обывателям, решившим самостоятельно построить дом.
Каждый материал, используемый в строительстве, имеет свой показатель этой величины. Самое низкое его значение – у утеплителей, самое высокое – у металлов. Поэтому необходимо знать формулу, которая поможет рассчитать толщину как возводимых стен, так и теплоизоляции, чтобы получить в итоге уютный дом.
Сравнение проводимости тепла у самых распространённых утеплителей
Чтобы иметь представление о проводимости тепла разных материалов, предназначенных для утепления, нужно сравнить их коэффициенты (Вт/м*К), приведённые в следующей таблице:
Как видно из вышеприведённых данных, показатель проводимости тепла таких строительных материалов, как теплоизоляционные, варьируется от минимального (0,019) до максимального (0,5). Все теплоизоляционные материалы имеют определённый разброс показаний. СНиПы описывают каждый из них в нескольких видах – в сухом, нормальном и влажном. Минимальный коэффициент проводимости тепла соответствует сухому состоянию, максимальный – влажному.
stroyew.ru
Сравнение утеплителей по теплопроводности и по плотности материалов
В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.
Основные характеристики утеплителей
Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
- Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
- Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
- Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
- Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
- Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
- Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
- Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Сравнение популярных утеплителей
СРЕДНЯЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИИ ДЛЯ РАЗЛИЧНЫХ СТЕНОВЫХ КОНСТРУКЦИЙ | ||||
Теплоизоляционный материал | Кирпичная кладка (полтора кирпича) | Газобетон 30 см | Деревянный брус 30 см | Каркас из OSB |
Экотермикс | 7 см | З см | 5 см | 10 см |
Минеральная вата | 13 см | 8 см | 10 см | 15 см |
Пенополистирол | 12 см | 7 см | 8 см | 13 см |
Пеностекло | 11 см | 6,5 см | 7 см | 13 см |
Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:
- Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
- Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
- Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
- Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
- Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.
Сравнение с помощью таблицы
N | Наименование | Плотность | Теппопроводность | Цена , евро за куб.м. | Затраты энергии на | ||
кг/куб.м | мин | макс | Евросоюз | Россия | квт*ч/куб. м. | ||
1 | целлюлозная вата | 30-70 | 0,038 | 0,045 | 48-96 | 15-30 | 6 |
2 | древесноволокнистая плита | 150-230 | 0,039 | 0,052 | 150 | 800-1400 | |
3 | древесное волокно | 30-50 | 0,037 | 0,05 | 200-250 | 13-50 | |
4 | киты из льняного волокна | 30 | 0,037 | 0,04 | 150-200 | 210 | 30 |
5 | пеностекло | 100-150 | 0.05 | 0,07 | 135-168 | 1600 | |
6 | перлит | 100-150 | 0,05 | 0.062 | 200-400 | 25-30 | 230 |
7 | пробка | 100-250 | 0,039 | 0,05 | 300 | 80 | |
8 | конопля, пенька | 35-40 | 0,04 | 0.041 | 150 | 55 | |
9 | хлопковая вата | 25-30 | 0,04 | 0,041 | 200 | 50 | |
10 | овечья шерсть | 15-35 | 0,035 | 0,045 | 150 | 55 | |
11 | утиный пух | 25-35 | 0,035 | 0,045 | 150-200 | ||
12 | солома | 300-400 | 0,08 | 0,12 | 165 | ||
13 | минеральная (каменная) вата | 20-80 | 0.038 | 0,047 | 50-100 | 30-50 | 150-180 |
14 | стекповопокнистая вата | 15-65 | 0,035 | 0,05 | 50-100 | 28-45 | 180-250 |
15 | пенополистирол (безпрессовый) | 15-30 | 0.035 | 0.047 | 50 | 28-75 | 450 |
16 | пенополистирол экструзионный | 25-40 | 0,035 | 0,042 | 188 | 75-90 | 850 |
17 | пенополиуретан | 27-35 | 0,03 | 0,035 | 250 | 220-350 | 1100 |
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
jsnip.ru
Сравнение теплопроводности строительных материалов
Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении.
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.
Назначение теплопроводности
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.
Что оказывает влияние на показатель теплопроводности?
Теплопроводность определяется такими факторами:
• Пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
• Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
• Повышенная влажность увеличивает данный показатель.
Использование значений коэффициента теплопроводности на практике.
Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.
Показатели теплопроводности для готовых построек. Виды утеплений.
При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
• Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
• Влагопоглощение имеет большое значение при утеплении наружных элементов;
• Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
• Важна горючесть. Качественное сырье имеет способность к самозатуханию;
• Термоустойчивость отображает способность выдерживать температурные перепады;
• Экологичность и безопасность;
• Звукоизоляция защищает от шума.
В качестве утеплителей применяются следующие виды:
• Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
• Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
• Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
• Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
• Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
• Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
• Пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов: особенности показателей.
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.
Как использовать таблицу теплопроводности материалов и утеплителей?
В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.
Значения коэффициентов теплопередачи материалов в таблице.
При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано econet.ru
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet
econet.ru