Теплоизоляционный материал это: Теплоизоляционные материалы. Выбор теплоизоляционных материалов

Теплоизоляционные материалы. Основные понятия — Доктор Лом

На сегодняшний день известны 3 способа передачи тепла:

1. Конвекция

это передача тепла за счет перемещения материи, например воздуха или воды. Таким образом тепло передается в жидких и газообразных средах. Зимой воздух в наших помещениях нагревается более менее равномерно благодаря естественной конвекции, ну и когда вода течет по трубам отопления — это тоже конвекция, чаще принудительная.

2. Теплопроводность

передача тепла внутри материи, подобная передаче электрического тока в проводниках. Все пользуются электричеством, но четкой теории, объясняющей, как передается ток в проводниках, пока нет. Тоже самое можно сказать и про теплопередачу. И еще, хорошие проводники электрического тока являются хорошими проводниками тепла и, соответственно, плохими теплоизоляторами. И наоборот, чем выше электрическое сопротивление материала, тем лучше его теплоизоляционные свойства. Чтобы отопительные батареи лучше отдавали тепло их делают из металлов, а чтобы батареи выглядели лучше, их красят белой краской и тем самым ухудшают их теплопроводность, впрочем это отдельная тема.

3. Радиация

(инфракрасное излучение) — передача тепла за счет изменения формы материи из корпускулярной в волновую. Про радиацию знают все, а с объяснением природы радиации дело обстоит еще хуже, чем с природой теплопроводности или электричества. Излучать тепло могут все тела, и живые и неживые.

Возможно также, что существуют и другие способы передачи тепла, которые пока не то что не объяснены, но даже не открыты.

Для того, чтобы тепло передавалось любым из вышеперечисленных способов, нужна разница температур.

Температура 

физическая величина, которую знают даже дети, но никто просто объяснить не может. Определение температуры как «скалярной физической величины, характеризующей приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия» или «величины, обратной изменению энтропии системы при добавлении в систему единичного количества теплоты» мало что проясняет, хотя второе определение, на мой взгляд, более точно выражает физическую сущность температуры.

Другими словами если бы не было разницы температур, о температуре никто никогда не узнал. Но так как разница температур все-таки есть и часто, по человеческим меркам, немалая, то возникает потребность в теплоизоляции. А чтобы определить свойства теплоизоляции используется:

Коэффициент теплопроводности

λ

это количество тепла, проходящего через вещество толщиной 1 м и площадью 1 м2 за 1 час при разнице температур на входе и на выходе в 10оC. Например, зимой поверхность стены в помещении — это вход, а поверхность стены на улице — это выход, летом — наоборот. Измеряется коэффициент теплопроводности в Вт/(м*К) или Вт/(м*С).

Толщина теплоизоляции

самый простой и самый понятный термин. Любой существующий строительный материал обладает теплоизоляцией, даже полнотелый кирпич и бетон, поэтому толщина несущих конструкций зданий рассчитывается не только с учетом нагрузок, но и с учетом теплопроводности. Раньше считалось, что кирпичная стена толщиной в 51 см не нуждается в дополнительной теплоизоляции, но теперь это мнение во многих странах СНГ пересмотрено.

Плотность теплоизоляционного материала

чем ниже плотность материала, тем выше его теплоизолирующие свойства. Любой материал с плотностью ниже 400 кг/м3 можно считать теплоизоляционным материалом, кроме того такой материал может выполнять некоторые конструктивные функции. Самые лучшие теплоизоляторы имеют плотность 10-50 кг/м3, но такие материалы использоваться как конструктивные элементы не могут.

Количество тепла, передающегося конвекцией, теплопроводностью или радиацией, зависит от различных факторов. Так, например, чем выше температура тела, и чем более тело является черным, тем больше тепла передается радиацией. Подробности изложены в законе Стефана — Больцмана. Количество тепла, передаваемого конвекцией и теплопроводностью, зависит от количества щелей в окнах и дверях, частоты открывания окон и дверей, силы ветра за окном, влажности воздуха и еще десятков факторов. Поэтому трудно точно определить, какое именно количество тепла передается каждым из способов из нашего с таким трудом обогретого жилья бездушной холодной улице. Ну а если приблизительно, то около 20-50% тепла уходит из наших квартир с радиацией, 60-20% при конвекции. Открывание дверей для входа или выхода в дом и наличие щелей в стенах потолках, полах, окнах и дверях тоже приводит к конвекции. Около 20-40% тепла уходит из наших квартир из-за теплопроводности. Максимально снизить конвекцию помогают современные окна и двери, при минимуме щелей около 40-50% тепла уходит с радиацией около 30-40% в результате теплопроводности и около 15-25% в результате конвекции. Большинство простых теплоизоляционных материалов рассчитаны на снижение теплопотерь при передаче тепла теплопроводностью. В гражданском строительстве теплоизоляция используется для стен, полов и потолков, то есть практически для всех элементов конструкций. Также теплоизоляция используется для трубопроводов, но это не наша тема.

На сегодняшний день человечеству известны следующие

Виды теплоизоляционных материалов — веществ:

1.

Вакуум

Это самый лучший и надежный теплоизоляционный материал, точнее будет сказать, что полное отсутствие материала и даже материи гарантирует максимально возможную теплоизоляцию. Именно такая теплоизоляция часто применяется в термосах и иногда при изготовлении стеклопакетов. Тем не менее даже через вакуум тепло может передаваться. В вакууме нет материи и соответственно не возможна теплопроводность и конвекция, а вот излучение проходит даже через вакуум. С одной стороны это плохо, так как выходит, что идеальной теплоизоляции не существует, а с другой стороны хорошо, потому как солнце нас греет благодаря только этому способу теплопередачи. Главный недостаток вакуума — это цена, как ни парадоксально это звучит. Дело в том, что для получения вакуума требуется дорогостоящее оборудование.

2. Воздух

Самый лучший после вакуума теплоизолятор. Главные достоинства воздуха — самая низкая (после вакуума) теплопроводность, абсолютная доступность, абсолютная бесплатность и абсолютная простота использования. Именно поэтому воздух входит в состав всех ныне используемых теплоизоляционных материалов и чем воздуха в материале больше, тем материал лучше. Поэтому, когда Вы покупаете теплоизоляционный материал, то платите в-основном за воздух, как ни обидно это осознавать. Но ничего странного в этом нет, дело в том что у воздуха, как у теплоизолятора, есть несколько больших недостатков — слишком ненадежный элемент, нагрелся — поднялся, остыл — опустился, или говоря по-научному — конвекция. Кроме того, теплопроводность воздуха очень сильно зависит от влажности. Чем выше процент влаги в воздухе, тем хуже его теплоизоляционные свойства, а при очень высокой влажности воздух из теплоизолятора превращается в теплоноситель. Борьбе с конвекцией и насыщением воздуха влагой и посвящены разработки теплоизоляционных материалов.

3. Металл

Как уже говорилось, металлы обладают самой высокой теплопроводностью, но при этом и самым высоким коэффициентом отражения тепловой радиации, поэтому металлы никогда не используются как самостоятельный теплоизолятор, а только в качестве вспомогательной теплоизоляции, в тех же термосах и в комбинированных теплоизоляционных материалах (чаще всего алюминий).

Все. Больше никаких теплоизоляционных материалов — веществ, известных человеку, нет, а вот теплоизоляционных материалов, содержащих в той или иной форме воздух, или комбинированных материалов — огромное множество и когда речь заходит о теплоизоляционных материалах, то имеются в виду материалы — контейнеры воздуха. Теплоизоляционные материалы — вещества придуманы довольно давно, теософы утверждают, что отцом, ученые, что матерью, но как бы то ни было, патента на изобретение или на использование ни у кого нет, а потому всеми этими материалами можно свободно пользоваться. Например, когда Вы заказываете окна со стеклопакетами, то обращать внимание нужно на толщину воздушной прослойки между стеклами, а не на количество и хитроумность камер в профиле. Казалось бы, очевидный факт — чем больше расстояние между стеклами, тем лучше общая теплоизоляция окна — но девочки, занимающиеся оформлением заказов, поверить в это не могут. Или еще пример, если Вы зашиваете старую стену гипсокартоном, пластиковыми панелями, панелями МДФ или любым другим материалом, то кроме преследуемых эстетических целей Вы абсолютно бесплатно получаете дополнительную теплоизоляцию.

Правда, если на старой стене есть трещины и щели, пропускающие воздух, то их нужно предварительно заделать, иначе толку от такой теплоизоляции будет не много, конвекция и изменяющаяся влажность воздуха сведут на нет такое утепление. Впрочем и при использовании платных теплоизоляционных материалов дефекты стены заделывать все равно придется.

Виды теплоизоляционных материалов — контейнеров воздуха:

1. Теплоизоляция из минерального сырья.

Минеральная вата

называется так потому, что по структуре напоминает обычную целлюлозную вату. Видов минеральной ваты несколько: стекловата — производится из песка, каменная вата — производится из горных минералов (базальты, мергели, доломиты и др.), шлаковата — производится из расплавов доменного шлака. Главные достоинства таких утеплителей — высокая огнестойкость плюс относительно низкая цена (минералов в Земле много, а песка и подавно). Главные недостатки — возможная опасность для здоровья и низкая влагостойкость.

При работе с такими утеплителями необходимо использовать перчатки, очки и даже респиратор. Тот, кто работал с советской стекловатой, знает, какая это гадость, и хотя современная стекловата не такая «колючая», но пользы для здоровья от нее по-прежнему не много, в Германии, например, минеральная вата уже не используется. При использовании таких утеплителей следует дополнительно защищать их поверхность полиэтиленовой пленкой для пароизоляции.

Пеностекло

также изготавливается из песка, но по структуре ближе к пенопласту. Главные достоинства — прочность, высокая огнестойкость, высокая влагостойкость (паронепроницаемость), высокая экологичность. Главный недостаток высокая цена.

Газонаполненные бетоны (пенобетон, газобетон, ячеистый бетон) и бетоны с легкими наполнителями

(шлакобетон, керамзитобетон, перлитобетон и др.). Главные достоинства таких материалов — высокая огнестойкость и то, что они могут использоваться как конструктивные материалы для стен. Главный недостаток — низкая водостойкость.

Для утепления полов часто используется насыпная теплоизоляция из керамзита, получаемого обжигом легкоплавкой глины, вспученного перлита, вспученного вермикулита и др., а также газонаполненные шлаки, остающиеся после выплавки металлов. Главное достоинство таких материалов — низкая цена. Главные недостатки — низкая водостойкость и возможность усадки.

2. Теплоизоляция из полимеров

Производятся такие материалы в-основном из газа или нефти. Наиболее известные представители таких теплоизоляционных материалов — пенопласт, экструдированный пенополистирол (более плотный пенопласт), пенополиэтилен, и пенополиуретан (большинство потребителей знают этот материал, как монтажную пену, или как поролон, который, действительно, является одним из видов пенополиуретана, но в качестве строительной теплоизоляции не используется из-за короткого срока службы). Главное достоинство таких теплоизоляционных материалов — высокая влагостойкость.

3. Теплоизоляция из натуральных растительных материалов

Самый древний, самый экологически чистый и на сегодняшний день самый дорогой вид теплоизоляции. Деревянные стены, полы, потолки, пробковое или бамбуковое покрытие и даже обычная вата, которую бабушки засовывают на зиму между оконными рамами — основные представители теплоизоляции из натуральных растительных материалов. Главные недостатки — подверженность горению и гниению, а также низкая влагостойкость. Чтобы повысить влагостойкость, такие материалы подвергаются обработке водостойкими пропитками или финишной обработке лаками или красками. А еще выпускают пробковую подложку под ламинат и паркетную доску, пропитанную битумом или прорезиненную.

4. Теплоизоляция с использованием натуральных растительных материалов

Древесно-волокнистные и древесно-стружечные плиты низкой плотности используются в-основном как теплоизоляционные материалы. Недостатки у плит такие же как и у теплоизоляции из натуральных растительных материалов плюс сомнительная экологичность (при изготовлении плит используются клеи и смолы). Для повышения влагостойкости такие материалы также подвергаются обработке водостойкими пропитками.

А чтобы было еще веселее, производители выпускают теплоизоляционные материалы под своими торговыми марками, описать которые практически невозможно, упомяну наиболее популярные.

Таблица 1. Виды теплоизоляции.

Тепло- изоляция

Виды

Торговые марки

Применение

Ориентиро- вочная цена, $/м2

Огне стойкость

Водопогло-щение, % от объема

Плотность, кг/м3

Тепло- проводность, Вт/м·К

1. Из минераль-ного сырья

Стекловата

Isover
Ursa
Knauf
Утеплит

Внутренняя теплоизоляция
стен, потолков,
кровли, вентилируемых фасадов, возможно использование
для утепления
полов по лагам

1.2 — 1.5
1.2 — 1.5
1.2 — 1.5
0.9 — 1.2

НГ

20-30

11
11
11
10 и 12
0.038 — 0.047

Базальтовая вата

Rockwool
Izobox Light
Izovol
Термобазальт 

Внутренняя теплоизоляция
стен, потолков,
кровли, полов, вентилируемых фасадов

2.5 — 10
2. 0 — 2.3
2.3 — 2.6
2.3 — 8

НГ

30 — 20
30
25
30 — 12

20 — 60
25
35
30 — 180

0.038 — 0.05

Пеностекло

Foamglass
Нео Тим
и др.

Теплоизоляция
стен, потолков
кровли

27-33

НГ

2

180-200

0.037 — 0.044

2. Из полимеров

Пенопласт

ПСБ-15
ПСБ -25
ПСБ-35
ПСБ-50
Пеноплекс 

Теплоизоляция
стен, потолков,
кровли, возможно использование
для утепления
полов по лагам

0. 9 — 1.1
1.4 — 1.7
2.1 — 2.3
2.7 — 3
2.1 — 2.3

Г1-Г2

3
2
2
2
2

10-11
20-25
30-35
45-50
30-35
~0.042
~0.039
~0.037
~0.035
~0.037

Пенополи-этилен

Изолон, Izoflex, Izopor, Verdani и др.

В качестве подложки под ламинат и паркетную доску

0.5 — 3

Г1-Г2

<1

25 — 200

0.038 — 0.045

Пенополи-уретан (ППУ)

Промышлен-ный

бытовой (баллончики)

Наносится напылением на любые поверхности

15-30

Г1-Г2

1-3

до 30

25-80

15-25

0. 027-0.035

3. Из расти-тельных материалов

пробка

Parkolag
Kraiburg
Maestro и др.   
Внутренняя теплоизоляция
стен, потолков, кровли, полов

3-11

Г3-Г4

<1

110-320 0.035-0.045

3. С использо-ванием расти-тельных материалов

целлюлозная вата

Эковата

Теплоизоляция стен выдуванием или вручную

~0.5$ /кг

Г1-Г2

до 50

35-65 0. 032-0.041

Мягкие ДВП

М-1, М-2, М-3, М-4, М-12, М-20 и др. Теплоизоляция
стен, потолков, кровли, полов

2-5

Г3-Г4

до 50

100-400 0.06 — 0.08

Примечания:

1. Теплоизоляционные материалы выпускаются разной толщины. Необходимая толщина теплоизоляции определяется теплотехническим расчетом. 

2. Теплоизоляционные материалы, которые чаще используются как конструктивные элементы, в таблице не даны. Для таких материалов первостепенным является расчет на нагрузки.

3. Для основных теплоизоляционных материалов Цена за 1 м2 дана для толщины 50 мм.

4. Большинство теплоизоляционных материалов могут выпускаться как в простом виде, так и в комбинированном — с алюминиевой пленкой.  

Теплоизоляционные материалы — характеристики, свойства, применение | Строительный справочник | материалы — конструкции

В решении проблем энергосбережения, а также для повышения комфортности помещений немаловажную роль играет утепление ограждающих конструкций зданий: наружных стен, перекрытий, покрытия и т.д.

Применительно к существующим зданиям, проще снизить их энергопотребление за счёт утепления покрытия (кровли) при ремонте. Новые нормы значительно повысили требования к величине термического сопротивления покрытий и перекрытий, в соответствии с которыми новое строительство, модернизация и капитальный ремонт зданий не могут осуществляться без применения эффективных теплоизоляционных материалов.

Применение тепловой изоляции при устройстве мастичных и рулонных кровель для плоских покрытий снаружи здания в какой-то мере позволяет снизить затраты на отопление помещений за счёт снижения теплового потока вследствие увеличения термического сопротивления одного из ограждающих конструкций — покрытия. Кроме того, тепловая изоляция для плоских железобетонных покрытий:

• защищает покрытие от воздействий переменных температур наружного воздуха;
• выравнивает температурные колебания основного массива покрытия, благодаря чему исключается появление трещин, вследствие неравномерных температурных колебаний;
• сдвигает точку росы во внешний теплоизоляционный слой, что исключает отсыревание бетонного или железобетонного массива покрытия;
• формируется более благоприятный микроклимат помещения за счёт повышения температуры внутренней поверхности покрытия (потолка) и уменьшения перепада температур внутреннего воздуха и поверхности потолка, в том числе и чердачных помещений.

Применение утепления для скатных крыш позволяет превратить чердачное помещение в жилое, что увеличивает полезную площадь жилья. А утепление кровли из металлического профилированного листа предотвращает появление конденсата на его поверхности в холодное время года, что очень важно, например, для складских помещений.

Следует отметить, что физико-технические свойства используемых теплоизоляционных материалов оказывают определяющее влияние на теплотехническую эффективность и эксплуатационную надёжность конструкций.

При выборе теплоизоляционных материалов следует учитывать, что на долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов, входящих в конструкцию ограждения, оказывают существенное влияние многие эксплуатационные факторы. Это, в первую очередь, знакопеременный (зима-лето) температурно-влажностный режим «работы» конструкции и возможность капиллярного и диффузионного увлажнения теплоизоляционного материала, а также воздействие ветровых, снеговых нагрузок, механические нагрузки от хождения людей, перемещения транспорта и механизмов по поверхности кровли производственных зданий.

Поскольку теплоизоляционные материалы, применяемые в строительстве, «работают» в достаточно жёстких условиях, к ним предъявляются повышенные требования.

Прежде всего, обратите внимание на коэффициент теплопроводности, Вт/(м*К), материала. Он должен быть таков, чтобы материал в условиях эксплуатации мог обеспечить требуемое сопротивление теплопередачи в конструкции, при минимально возможной толщине теплоизоляционного слоя. Следовательно, предпочтение надо отдавать высокоэффективным материалам.

Кроме того, теплоизоляционные материалы должны обладать морозостойкостью (не менее 20—25 циклов), чтобы сохранять свои свойства без существенного снижения прочностных и теплоизоляционных характеристик до капитального ремонта здания, а так же быть водостойкими, биостойкими, не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ.

Плотность материала, применяемого для утепления, должна быть не более 250 кг/м3 , иначе существенно возрастают нагрузки на конструкции, что нужно учитывать при выборе материалов для ремонта ветхих строений.

 

Характеристики теплоизоляционных материалов

Теплоизоляционные материалы обладают рядом теплотехнических свойств, знание которых необходимо для правильного выбора материала конструкции и проведения теплотехнических расчётов. Точность последних в значительной степени зависит от правильного выбора значений теплотехнических показателей. Какие же это показатели?

 

Плотность теплоизоляционных материалов

1. Средняя плотность — величина, равная отношению массы вещества ко всему занимаемому им объёму. Средняя плотность измеряется в кг/м3.

Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объём занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м3, в зависимости от их назначения.

Известно, что чем меньше средняя плотность сухого материала, тем лучше его теплоизоляционные свойства при температурных условиях, в которых находятся ограждающие конструкции зданий.

Чем меньше средняя плотность материала, тем больше его пористость. От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределёнными мелкими замкнутыми порами.

 

Теплопроводность теплоизоляционных материалов

2. Теплопроводность — передача тепла внутри материала вследствие взаимодействия его структурных единиц (молекул, атомов, ионов и т.д.) и при соприкосновении твёрдых тел.

Количество теплоты, которое передаётся за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице, называется теплопроводностью (коэффициентом теплопроводности). Теплопроводность измеряют в Вт/(м*К). Методики и условия испытаний теплопроводности материалов в различных странах могут значительно отличаться, поэтому при сравнении теплопроводности различных материалов необходимо указывать, при каких условиях, в частности температуре, проводились измерения.

СОСТАВЛЯЮЩИЕ  ТЕПЛОПОТЕРЬ (для пустого здания без внутренних перегородок)

На величину теплопроводности пористых материалов, каковыми являются теплоизоляционные материалы, оказывают влияние плотность материала, вид, размеры и расположение пор, химический состав и молекулярная структура твёрдых составных частей, коэффициент излучения поверхностей, ограничивающих поры, вид и давление газа, заполняющего поры. Однако преобладающее влияние на величину теплопроводности имеют его температура и влажность.

Теплопроводность материалов возрастает с повышением температуры, однако, гораздо большее влияние в условиях эксплуатации оказывает влажность.

Влажность теплоизоляционных материалов

3. Влажность — содержание влаги в материале. С повышением влажности теплоизоляционных (и строительных) материалов резко повышается их теплопроводность.

Очень важной характеристикой теплоизоляционного материала, от которой зависит теплопроводность, является и сорбционная влажность, представляющая собой равновесную гигроскопическую влажность материала, при различной температуре и относительной влажности воздуха.

 

Водопоглощение теплоизоляционных материалов

4. Водопоглощение — способность материала впитывать и удерживать в порах влагу при непосредственном соприкосновении с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое поглощает сухой материал при выдерживании в воде, отнесённым к массе сухого материала.

Следует обратить внимание, что водопоглощение теплоизоляционных материалов отечественного производства и инофирм определяется по разным методикам.

При выборе материала для конструкции рекомендуется обращать внимание на показатели, приведенные в ТУ, ГОСТ или рекламных проспектах (для материалов инофирм), и сравнивать их с требуемыми по условиям эксплуатации А и Б (приложения 3 СНиП II-3-79* «Строительная теплотехника»). Как правило, теплопроводность теплоизоляционных материалов в условиях А и Б процентов на 15—25 выше, чем указано в стандартах для сухих материалов при температуре 25оС.

Значительно снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путём введения кремнийорганических добавок.

Продукция иностранных производителей, поставляемая на наш рынок, является гидрофобизированной, а отечественная, за небольшим исключением, является негидрофобизированной.

 

Морозостойкость теплоизоляционных материалов

5. Морозостойкость — способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ.

 

Механические свойства теплоизоляционных материалов

6. К механическим свойствам теплоизоляционных материалов относят прочность (на сжатие, изгиб, растяжение, сопротивление трещинообразованию).

Прочность — способность материалов сопротивляться разрушению под действием внешних сил, вызывающих деформации и внутренние напряжения в материале. Прочность теплоизоляционных материалов зависит от структуры, прочности его твёрдой составляющей (остова) и пористости. Жёсткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами.

В соответствии со СНиП II-26-99 «Кровли» (проект, действующий СНиП II-26-76) прочность на сжатие для теплоизоляционных материалов, применяемых в качестве основания под рулонные и мастичные кровли, является нормируемым показателем.
Прочность теплоизоляционных материалов, которые могут применяться для утепления скатных крыш, не нормируется, поскольку теплоизоляция укладывается в обрешётку и не несёт нагрузки от кровли.

 

Химическая стойкость теплоизоляционных материалов

7. На долговечность конструкции покрытия влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий) и его биологическая стойкость.

 

Горючесть теплоизоляционных материалов

8. Теплоизоляционный материал для применения в покрытиях выбирается с учетом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении. Выбор теплоизоляционного материала в зависимости от типа кровельного покрытия определяется с учётом требований СНиП на кровли, пожарную безопасность и др.

Утепление скатных крыш и перекрытий

Для утепления скатных крыш и перекрытий могут применяться материалы с плотностью 35—125 кг/м3. Номенклатура отечественных изделий ограничивается плитами мягкими марок 50 и 75, полужёсткими 125 (ГОСТ 9573-96, ТУ 5762-010-04001485-96), матами минераловатными прошивными марки 100 (ГОСТ 21880-94). Изделия негорючие. Однако рекомендуется применять гидрофобизированные изделия из минеральной ваты из горных пород или, в крайнем случае, из горных пород с добавлением доменных шлаков.

Долговечность конструкций с применением негидрофобизированных изделий из шлаковой ваты зависит от конструктивных решений, условий и качества выполнения работ, условий эксплуатации, и не может быть гарантирована.

Необходимо также остановиться и на таком материале, как экструдированный пенополистирол. Это материал с практически нулевым водопоглощением, он прекрасно подходит для теплоизоляции скатных крыш. Обратите внимание, что, несмотря на высокую цену самих изделий из экструдированного пенополистирола, конструкция кровли с их применением в целом получается ненамного дороже, чем, если бы использовались традиционные теплоизоляционные материалы. Так как в этом случае отпадает необходимость в устройстве дорогостоящей теплоизоляции и упрощается система вентиляции кровли.

Однако при применении экструдированного пенополистирола в конструкциях скатных крыш необходимо учитывать тот факт, что несущие конструкции скатных кровель в большинстве своём деревянные. Это, в сочетании с горючестью пенополистирола, предъявляет повышенные требования к противопожарным мероприятиям, включающим антипиреновую пропитку деревянных конструкций, устройство огнезащитных слоёв и т.д. 

теплоизолятор для стен, сравнение утеплителей, теплоизолирующие, виды теплоизоляции, жесткая изоляция

Выбор теплоизоляционного материала – ответственный процесс. Сегодня многие производители стали изготовлять утеплитель, который способен выполнять сразу несколько функций. Он не только делает поверхность теплой, но и создает надежную защиту от ветра, влаги, пара и коррозии.

Виды

Если вы решили утеплить стены, то отправившись в строительный магазин, можно увидеть, что ассортимент теплоизоляционных материалов для стен внутри и снаружи достаточно широк. Каждый из имеющихся утеплителей отличается не только своими теплоизоляционными качествами. Рассмотрим основные виды утеплителей.

Жидкие материалы

Несколько лет назад строители активно применяли для утепления стен твердые теплоизоляционные материалы. Но не так давно на строительном рынке стали появляться новые наружные утеплители для дома, имеющие жидкую консистенцию. По виду и консистенцию такие продукты похожи на краску, поэтому их часто называют утепляющая краска.

На фото-жидкие теплоизоляционные материалы для стен

По составу жидкая теплоизоляция представлена в виде мелких капсул из керамики и стекла. Они заполнены воздухом или инертным газом. Роль связующего компонента материала теплоизоляции стен снаружи выполняют акриловые полимеры. Готовый продукт представляет собой густое тесто.

Жесткие материалы

Для утепления стен могут применять жесткие утеплители, монтаж которых происходит намного проще. Они представляют собой геометрически правильные плиты, благодаря которым можно получить идеально ровную поверхность. Ее затем просто штукатурить или облицовывать различными материалами. В большинстве своем подходят, как утеплители для фасада под сайдинг.

На фото-жёсткие теплоизоляционные материалы для стен:

Твердые утеплители не подвергаются усадке и не мнутся. Монтаж твердых утеплителей не нуждается в обрешетке, каркасах и прочих конструкций. Материалы обладают высокой прочностью, а срок их службы более 50 лет.

Какова цена дюбеля для теплоизоляции, поможет понять информация из статьи.

А вот каковы технические характеристики теплоизоляции изовер, поможет понять информация из статьи.

Какими материалами осуществляется теплоизоляция деревянных стен снаружи, можно увидеть здесь: https://resforbuild.ru/paneli/utepliteli/teploizolyaciya-sten-iznutri-materialy.html

Какой утеплитель для вентилируемых фасадов лучше всего использовать, рассказывается в данной статье.

Сравнение

Если происходит наружное утепление стен, то делать это необходимо на стадии строительства и во многом поможет определиться таблица теплопроводности утеплителей. Как известно, теплоизоляционные материалы достаточно разнообразны. Для каждого из них свойственны свои характеристики. Проведем сравнительный анализ самых популярных утеплителей, учитывая их технические характеристики.

Пенопласт или полистирол

Этот утеплитель активно задействуют при утеплении наружных стен. Пенопласт – самый распространенный теплоизолятор. И это не удивительно, ведь с его помощью можно получить полноценную теплоизоляцию дома с последующей облицовкой декоративной плиткой. Для теплоизоляции стен жидкого дома необходимо применять пенопласт толщиной 50 мм. По показателям теплопроводности такой материал может сравниться с кирпичной кладкой в 1, 5 кирпича.

На видео – сравнение теплоизоляционных материалов для стен: