Как подключить светодиодную лампу т8 к 220в: схема подключения к сети LED лампочек – Лампа светодиодная т8: разновидности, схема подключения

Содержание

Как подключить светодиодную лампу вместо люминесцентных, схема

Появление на рынке LED-ламп привело к новой индустрии освещения. Но в офисах и на производстве продолжают работать миллионы старых люминесцентных ламп. Проще всего не менять весь светильник целиком, а просто установить светодиодную лампу в уже существующий. Рассмотрим, как подключить светодиодную лампу вместо люминесцентной, используя старую арматуру.

Преимуществом светодиодной лампы является малое потребление энергии и больший рабочий ресурс. Хотя они и немного дороже, однако светят ярче и служить вам будут в 5 раз дольше чем люминесцентные.

Как подключить светодиодную лампу вместо люминесцентных

Как работает светодиодная лампа

Источником света в светодиодной лампе является светоизолирующий диод, состоящий из полупроводникового кристалла, имеющего два вывода (катод и анод) и оптической системы. Далее по тексту будет использована аббревиатура СД или LED.

При прохождении электрического тока через полупроводник в прямом направлении, носители заряда (электроны и дырки) осуществляют рекомбинацию. В результате этого происходит оптическое излучение фотонов (из-за перехода электронов на другой энергетический уровень).

Также в лампе находится драйвер (специальная микросхема), который обеспечивает питание светодиода. Радиатор (система охлаждения) собирает и выводит излишнее тепло. Рассеиватель минимизирует потери света.

Схематическое изображение светодиода

Схематическое изображение светодиода

На схемах светодиоды условно обозначаются как диоды со стрелками, которые обозначают оптическое излучение.

Выпускаемые светодиодные лампочки на 220В могут отличаться между собой внешним дизайном, но принцип внутреннего устройства сохраняется для всех моделей.

Излучение света в лампах выполняется светодиодами, число и размеры кристаллов которых может варьироваться в зависимости от мощности и возможностей охлаждения. Их цветовой спектр задается веществом, входящим в структуру каждого кристаллика.

Чтобы добраться до пускового драйвера, необходимо аккуратно снять защитную «юбочку» лампы. Под ней откроется печатная плата либо монтажная сборка из соединенных между собой радиоэлементов.

На входе драйвера расположен диодный мост, подключенный к электрическому цоколю лампы, контактирующему с патроном. Благодаря ему переменное питающее напряжение выпрямляется в постоянное, поступает на плату и через нее подается к светодиодам.

Чтобы лучше рассеять излучаемый поток и защитить кристаллы от прикосновений, а также избежать их контакта с посторонними предметами, снаружи устанавливается рассеивающее защитное стекло (прозрачная пластмассовая колба). Поэтому своим внешним видом они очень напоминают традиционные источники света.

Для вкручивания лампочки в патрон их цоколи выполняют стандартных размеров Е14, Е27, Е40 и т.д. Это позволяет использовать лед лампы в домашней сети, не прибегая к каким либо изменениям в электропроводке.

Устройство светодиодной лампы 220

    В состав лампы входят:
  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство светодиодной лампы 220

Как устроена светодиодная лампа? На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару.

    Каждая светодиодная лампа состоит из следующих частей:
  1. Рассеиватель – специальный полусферы, увеличивающей угол и равномерно разбрасывающей направленный пучок светодиодного излучения. В большинстве случаев элемент производится из прозрачных и полупрозрачных пластиков либо матированного поликарбоната.
  2. Светодиодные чипы – основных составляющих ламп нового поколения. Они устанавливаются как по одному, так и десятками. Их число зависит от конструктивных особенностей изделия, его размеров, мощности и наличия приспособлений для отвода тепла.
  3. Печатной платы. При их изготовлении используются анодированные алюминиевые сплавы, способные эффективно отвести тепло на радиатор, что создаст оптимальную температуру для бесперебойной работы чипов.
  4. Радиатора, который отводит тепло от печатной платы с утопленными в ней светодиодами. Для отливки радиаторов тоже выбирается алюминий и его сплавы, а также специальные формы с большим количеством отдельных пластин, помогающих увеличить теплоотводящую площадь.
  5. Конденсатора, убирающего пульсацию по напряжению, подаваемому на кристаллы светодиодов с драйверной платы.
  6. Драйвера, сглаживающего, уменьшающего и стабилизирующего входное напряжение электрической сети. Без этой миниатюрной печатной платы не обходится ни одна светодиодная матрица. Различают выносной и встраиваемый драйвер. Большинство современных ламп оснащается встраиваемыми устройствами, которые монтируются непосредственно в их корпусе.
  7. Полимерного основания, вплотную упирающегося в цокольную часть, защищая корпус от электрических пробоев, а меняющих лампочки — от случайного поражения электрическим током.
  8. Цоколя, обеспечивающего подключение к патронам. Обычно при его изготовлении используют латунь, покрытую никелем. Это гарантирует хороший контакт и долговременную коррозионную защиту.

Также существенным отличием светодиодных приборов от их обычных прототипов стало расположение зоны максимального нагрева. У остальных типов излучателей распространение тепла происходит от внешней стороны поверхности.

Светодиодные кристаллы нагревают свою печатную плату с внутренней стороны. Поэтому им требуется своевременное отведение тепла изнутри лампы, а это конструктивно решается путем установки охлаждающих радиаторов.

Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком. По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи. Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К.

Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

    Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:
  • DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  • «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  • SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  • СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками, с заменой отдельных чипов, не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Схема светодиодной лампочки на 220в

Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов.

Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла.

К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика.

В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.

В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла.

Схема светодиодной лампочки на 220в

В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают.

Схема светодиодной лампочки на 220в

Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.

Лампы светодиодные вместо люминесцентных

Зайдя практически в любое офисное помещение, школу, детский сад или контору любого предприятия, можно обратить внимание на то, что освещение практически везде состоит из так называемых ламп дневного света, т. е. люминесцентных светильников (обычно это приборы мощностью 36 Вт.).

Действительно, еще буквально 5–7 лет назад казалось, что для офиса это самый экономичный вид световых приборов. Но время идет, появляются новые варианты освещения, куда более энергосберегающие и долговечные.

Сейчас повсеместно в целях экономии внедряются LED-лампы. Конечно, если в кабинете висит обычная люстра, то все, что нужно сделать для модернизации – это поменять лампочки накаливания на LED.

А возможно ли поставить светодиодные лампы в люминесцентные светильники, если было решено перейти на более энергосберегающий вид освещения или придется их выбросить, чтобы после на их место установить светодиодные трубки?

Торопиться с этим не стоит. Ведь совершенно ясно, что покупка такого светильника в магазине обойдется в разы дороже, чем приобретение отдельного элемента. Нужно разобраться, возможно ли переделать люминесцентный светильник в светодиодный.

Остается понять, как заменить ЛДС на LED. Переделка люминесцентной лампы в ЛЕД-лампу не составляет практически никакого труда, и по своей сути это простая доработка старого светильника.

    Ведь требуется только изменение схемы, а светодиодные трубки по форме полностью повторяют лампы дневного света. Для этого требуется выполнить несколько простых действий:
  1. Сначала необходимо отключить питание старого светильника. Причем целесообразнее будет снятие напряжения в сети путем отключения вводного автомата, т. к. неизвестно, кто и как производил электромонтаж и не пущен ли через выключатель ноль вместо фазы. Обязательно после отключения нужно удостовериться в отсутствии напряжения с помощью отвертки-индикатора.
  2. Следующим шагом демонтируется старый светильник, далее снимаются трубки ЛДС, т. е. производятся те же действия, которые требуются, чтобы заменить люминесцентные лампы, с той лишь разницей, что на место их уже ставить не придется.
  3. Все провода, идущие от стартера (это алюминиевый либо пластиковый цилиндр), а также от дросселя или пускового регулирующего аппарата (прямоугольный элемент в форме удлиненной коробки из металла) отсоединяются. Эти части тоже больше не пригодятся.

Несмотря на то, что при подключении люминесцентной трубки на патрон с каждой стороны подавалась фаза на одно гнездо патрона и ноль на другое, в работе светодиодной лампы используется совершенно иная схема подключения.

Необходимо так собрать светильник, чтобы по одной стороне патронов на оба их контакта подавалось напряжение только лишь с одного, фазного провода, ну а по противоположной стороне так же на два контакта шел только нулевой, т.к. на светодиодные лампы (в том числе и Т8) подается разнополярное напряжение на противоположные стороны.

Таким образом, получится схема подключения, показанная на рисунке. На этом переделка люминесцентной лампы на светодиодную окончена. Теперь остается только повесить светильник на место и поставить в него лампы Т8 с цоколем G13, которые являются светодиодными аналогами люминесцентных, после чего подать напряжение.

Лампы светодиодные вместо люминесцентных

Преимущества светодиодных ламп перед люминесцентными

    Обычно заявленное производителем рабочее время LED-лампы составляет не менее 30 000 часов, и все же многое будет зависеть от производителя драйвера, т. е. электронного балласта, и самих светоэлементов. Но в любом случае установка Т8 вместо люминесцентных ламп выгодна по нескольким причинам:
  • Переделка люминесцентного светильника, т. е. изменение схемы старой лампы, не представляет никаких проблем и занимает минимум времени. И с каждым переделанным прибором, с пришедшим опытом это будет делаться все быстрее.
  • LED-светильники не нужно обслуживать и ревизировать, достаточно иногда вытирать с них пыль и очень редко менять трубки.
  • До 60% электричества экономится при их работе, если сравнивать с энергозатратами люминесцентных ламп.
  • Они более долговечны в работе, средний показатель срока службы – 40 000 часов.
  • Светодиодные трубки не мерцают, как это происходило с их предшественниками, а значит, их вполне целесообразно монтировать в детских садах и школах.
  • Они не содержат вредных отравляющих веществ, следовательно, не требуют особой утилизации после выхода из строя.

Даже если напряжение в сети упадет до 110 В, светодиодные аналоги люминесцентных ламп продолжат работать так же, как и при 220 В. И еще одно важное преимущество – это то, что у светодиодных светильников отсутствуют недостатки, за исключением, может быть, высокой цены в их премиум-вариантах.

Одним словом, переделка люминесцентного светильника в светодиодный своими руками – дело выгодное, и пренебрегать им по возможности не стоит. Ну а вопросов, как переделать лампу, теперь остаться не должно.

Схема подключения светодиодной лампы вместо люминесцентных

Тип колбы Т8 (диаметр трубки 25,76 мм, цоколь G13), единственный типоразмер, который позволяет использовать один и тот же светильник для установки в него ламп разной конструкции, но одинаковой длины. Правда, потребуется небольшая модернизация, отключение пуско – регулирующей арматуры, но это дело нетрудное и не займёт много времени.

Схема подключения светодиодной лампы вместо люминесцентных

Как видите, схема простая. Стартёры нужно вынуть из разъёмов. В разъём дросселя можно поставить перемычку, но если на входе стоит УЗО то велика вероятность ложных срабатываний, поэтому просто демонтируйте балласт.

В принципе, дроссель и компенсационный конденсатор можно оставить, всё будет работать, но образуемые при включении кратковременные импульсы ЭДС (700-1000 В) вряд ли будут способствовать долгой работе LED прибора.

Трубки Т8 с цоколем G13 имеют четыре вывода (штырька), но для подключения LED сборки понадобится только два, по одному с каждого торца колбы. Так, должно быть, но китайские производители, как всегда, не строго придерживаются стандартов, поэтому встречаются LED трубки с выводами на один из торцов.

Как подключить светодиодный светильник к 220в

    Главное преимущество таких светильников перед моделями, работающими от 12 вольт, заключается в том, что питание подается напрямую от выключателя. В результате затрачивается меньше средств и усилий на монтаж ламп. В настоящее время существуют три способа подключить светильник:
  1. последовательный;
  2. параллельный;
  3. лучевой.

Как подключить светодиодный светильник к 220в

Каждый имеет свои достоинства и недостатки, применяется в разных ситуациях. Обсудим схемы более подробно.

  • Последовательный

Как подключить светодиодный светильник к 220в

Если возникает необходимость экономии провода, а к помещению нет особых требований, тогда последовательное подключение подойдет лучше других. Тут потребуется небольшое количество двойных или тройных проводов.

При этом разрешается ставить в одну цепь не больше шести ламп, иначе яркость всех устройств будет низкой. А также если один из светильников выйдет из строя, подача питания прекратится, и придется проверять каждое устройство отдельно, чтобы найти дефект.

Сам процесс подключения прост: от выключателя прокладывается фаза к первому светильнику, далее от него подается провод к следующему и так до тех пор, пока не будет произведено подсоединение в одну цепь всех устройств.

К последнему прокладывается ноль, идущий от распределительной коробки. Если перепутать провода местами и вместо питания пустить ноль, то лампы будут всегда оставаться под напряжением, что небезопасно.

Все современные светильники выпускаются с расчетом на подключение провода «земля». Если в вашем случае в квартире есть заземление, тогда придется протягивать кабель напрямую от розетки к каждой лампе.

Для экономии средств, реализуя последовательную схему, применяют провод, так как в кабеле вторая жила будет просто обрываться и никак не использоваться.

Как подключить светодиодный светильник к 220в

Подключение светильников параллельным способом более практично и применяется чаще, чем последовательное. При реализации этого метода все источники света будут выдавать яркость, заявленную производителем. Единственным недостатком можно считать повышенный расход проводника по отношению к предыдущему варианту.

Рекомендуется применять кабель ВВГ нг 2х1,5 или 3х1,5. Эта маркировка означает, что два или три провода сечением 1,5 мм и кабель в целом имеют ПВХ-оболочку. Отметка «нг» в маркировке свидетельствует о том, что кабель негорючий.

В некоторых случаях применяют кабель с дополнительной маркировкой «Is», означающей отсутствие сильного выделения дыма при воспламенении. Большинство пожаров возникает из-за некачественной проводки, поэтому на ней не стоит экономить, особенно если дом деревянный.

Для подключения от распределительной коробки через выключатель тянут кабель, который по очереди соединяется к каждому светильнику. После первой лампы провод обрезается и подается к следующей, пока не закончатся все устройства. Такая схема гарантирует работоспособность цепи даже в том случае, если одна из ламп перегорит.

В помещениях, разделенных на несколько функциональных зон, устанавливают две группы светильников. Обычно их подключают к двухклавишному выключателю. Так появляется возможность управлять включением света, давая его там, где планируется активность.

В таком случае придется прокладывать кабель отдельно от каждой клавиши на определенную группу ламп. В целом принцип такой схемы ничем не отличается от описания в абзаце выше.

Как подключить светодиодный светильник к 220в

Лучевая схема по своей природе относится к параллельному методу подключения и часто встречается в люстрах. Он подразумевает прокладку питания к каждому светильнику индивидуально.

Такой вариант более затратный, так как требует наибольшего количества провода. Чтобы сэкономить, прокладывают кабель в центр комнаты, откуда до каждого светильника будет равное расстояние. Далее к нулю и фазе подключаются одножильные провода, которые тянутся к осветительным приборам.

Важно решить, как будут соединены жилы кабеля с отдельным проводом. Если ламп немного, то можно довольствоваться обычно скруткой. Важно ее надежно обжать пассатижами и сварить воедино.

В таком случае соединение выходит неразъемным и требует много времени для реализации. Для более безопасного варианта понадобится приобрести клеммы с нужным количеством выходов. На каждую жилу одевается разъем, и уже от него тянут провода к лампам.

При желании в цепь можно подключить диммеры — устройства, позволяющие управлять яркостью светильников.

AuthorsАвтор:
Сергей Владимирович, инженер-электрик.
Подробнее об авторе.

основные правила и технические рекомендации

За последние годы многие люди стали гораздо охотнее переходить с обычных ламп накаливания и улучшенных галогенок на экономичные и качественные светодиоды. Такие источники света позволяют существенно сократить расходы на электроэнергию. И это неудивительно, ведь при одинаковой интенсивности свечения лампа накаливания в 8-10 раз мощнее светодиодной. Аналогичная ситуация наблюдается при сравнении led-диодов и галогенок.

В процессе монтажа могут возникнуть определенные трудности. Далеко не все люди понимают, как подключить светодиодный светильник к 220 В своими руками.

Особенности подключения светодиодных светильниковОсобенности подключения светодиодных светильников

к содержанию ↑

Основы подключения к 220 В

Светодиод – полупроводник, пропускающий электрический ток исключительно в одном направлении. Большинство светильников оснащаются специальными драйверами, преобразующими переменное электричество в постоянное 12, 24, 36 или 48 В. Что касается промышленной сети, то она выдает синусоидальное напряжение 220 В (среднее значение, всегда имеются небольшие перепады) с частотой 50 Гц.

При таком раскладе светодиод будет работать на определенных полуволнах – мигать с частотой 50 Гц. Впрочем, человек не способен заметить мерцание. При подаче электричества в обратном направлении элемент прекратит светиться, но без должной защиты может выйти из строя.

к содержанию ↑

Методы подключения

Простейшим методом подключения светильника к сети на 220 В является использование гасящего сопротивления, расположенного последовательно светодиоду. Напряжение постоянно изменяется, амплитудное значение может достигать 310 В. Данная величина должна обязательно учитываться при расчетах сопротивления.

Также следует обеспечить защиту диода от обратного напряжения, равного прямому. Рассмотрим основные способы.

к содержанию ↑

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

В данном случае правильно подключить к схеме выпрямительный диод 1N4007, обратное напряжение которого составляет 1000 В. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя.

Подключение светодиодного источника света через выпрямительный диодПодключение светодиодного источника света через выпрямительный диод

к содержанию ↑

Шунтирование светодиода обычным диодом

Этот способ подразумевает использование простого маломощного полупроводника, подключаемого по встречно-параллельному курсу со светодиодом. Обратное напряжение будет воздействовать на гасящее сопротивление, поскольку диод включен в прямом направлении.

Встречно-параллельное подключение двух светодиодов

Способ схож с предыдущим методом, за исключением того, что светодиоды будут гореть только на своем отрезке синусоиды, обеспечивая друг для друга защиту от пробоя.

Существенным недостатком подключения светодиодов к сети 220 В через гасящий резистор является то, что на сопротивлении выделяется огромная мощность.

Рассмотрим пример. Предположим, что используется гасящий резистор сопротивлением 24 кОм при подключении светодиодов к сети 220 В с выходящим током 9 мА. Рассчитаем мощность на гасящем сопротивлении: 9*9*24=1944 мВт (около 2 Вт). Таким образом, чтобы обеспечить оптимальную эксплуатацию, нужно взять резистор мощностью не ниже 3 Вт.

Когда используется несколько led-диодов, потребляющих ток большего значения, то мощность будет расти пропорционально квадрату выходного тока, из-за чего использовать гасящий резистор будет просто нецелесообразно. В случае применения сопротивления меньшей мощности, чем требуется по регламенту, резистор быстро выйдет из строя и произойдет короткое замыкание.

Встречно-параллельное включение светодиодовВстречно-параллельное включение светодиодов

Поэтому роль токоограничивающего элемента должен играть конденсатор, на котором не рассеивается мощность, поскольку сопротивление является реактивным.

В простейшей схеме подключения светодиодного осветительного прибора через конденсатор наблюдается следующая картина: после прекращения питания в конденсаторе сохраняется остаточный заряд – источник угрозы для безопасности человека, который должен разряжаться с помощью сопротивления. Второй резистор требуется при включении питания для защиты схемы от тока, идущего через конденсатор. Выпрямительный диод служит для защиты led-диода от обратного напряжения. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже 400 В.

Категорически запрещено использовать полярные конденсаторы в сети переменного тока, поскольку проходящий в обратном направлении ток приведет к разрушению конструкции.

Для расчета нужной емкости конденсатора используют эмпирическую формулу, где производное 4,45 и тока, проходящего через светодиоды, нужно разделить на разницу между амплитудной величиной тока (указана выше – 310 В) и падением напряжения на светодиоде после прямого прохождения.

Схема подключения светодиода к 220 В через балластный конденсаторСхема подключения светодиода к 220 В через балластный конденсатор

Например, если нужно подключить led-диод с падением напряжения 3 В и током 9 мА, то по формуле выше емкость конденсатора будет равна 0,13 мкФ. На данную величину в большей степени влияет сила тока, меньшей – падение напряжения.

Эмпирическая формула может использоваться при расчетах емкости конденсатора для сети частотой 50 Гц, поскольку в остальных случаях коэффициент 4,45 требует перерасчета.

к содержанию ↑

Нюансы подключения

Есть некоторые нюансы, связанные со значением проходящего тока при подключении светодиодов к сети 220 В. Рассмотрим простейшую схему подключения светодиодной подсветки в выключателе.

Параллельно выключателю подсоединяются сопротивление (гасящий резистор) и светодиод, после чего размещается лампочка. Схема работает без защитных диодов, а значение гасящего резистора подбирается таким образом, чтобы ограничить ток на величине около 1 мА. Лампочка выполняет функцию нагрузки, также ограничивающей ток. Led-диод будет светиться блекло, но этого достаточно для того, чтобы ночью найти выключатель и включить свет. При смене полярности напряжение станет падать на сопротивление, поэтому светодиод будет полностью защищен от потенциального пробоя.

При необходимости подключения ряда светодиодов можно использовать последовательную схему с одним гасящим конденсатором, которая была описана выше. Важным условием такого подхода является выбор светодиодов, рассчитанных на одинаковое значение ограниченного тока.

Вариант подсоединения LED-ленты к сети 220 вольтВариант подсоединения LED-ленты к сети 220 вольт

При встречно-параллельном подключении используется шунтирующий диод. Параллельное подключение применять нельзя, поскольку если выйдет из строя одна цепь, то весь ток потечет через вторую, из-за чего полупроводники перегорят и произойдет короткое замыкание.

к содержанию ↑

Безопасность при подключении

В случае подключения светодиодов к сети 220 В нужно учитывать тот факт, что выключатель светильника полностью размыкает фазный провод. Ноль прокладывается общий на комнату. Часто в электрической сети нет заземления, поэтому угрозу представляет нулевой провод, имеющий определенное напряжение относительно земли.

Иногда заземляющий провод соединяется с батареями отопления или трубами, поэтому, если человек прикоснется одновременно к батарее и фазе, то может попасть под напряжением.

По данной причине при монтаже к сети желательно отключать и нулевой, и фазный провода, используя специальную автоматику, что позволяет избежать поражения током.

Главные нюансы при построении цепи с подключением светодиодных осветительных приборов к сети 220 В связаны с выбором подходящего по параметрам гасящего резистора или конденсатора. Переменный ток в розетке может оказывать разрушительное действие на все полупроводники, пропускающие электричество исключительно в одном направлении. При грамотном ограничении амплитуды тока и расчете нужного амортизационного запаса цепь будет полностью защищена от выгорания и короткого замыкания, что обеспечит долговечность и надежность.

Как подключить светодиодный светильник к 220 В: основные правила и технические рекомендации

Схема драйвера светодиодов 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

Схема импульсного блока питания

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.


Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Схема светодиодного драйвера без стабилизатора

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма без стабилизатора

Диаграмма в схеме со стабилизатором

Диаграмма при подключении через стабилизатор тока

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
За час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
По моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт .
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Эта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Отправить ответ

avatar
  Подписаться  
Уведомление о