Ветрогенератор своими руками чертежи – описание эффективного ветряка для слабого ветра и изготовление для него ротора своими руками

Ветрогенератор | Полезное своими руками

Я хочу предложить читателям интересное на мой взгляд и полезное устройство — портативную ветроэлектростанцию.

В летнее время я с семьей часто отдыхаю на берегу моря. Каждому понятно, что отдых становится значительно комфортабельней, если есть источник электроэнергии.

После изготовления ветряка отпала необходимость в экономии бортовой сети автомобиля, появилась возможность постоянно пользоваться магнитолой, освещением, телевизором, а во время даже небольшого ветра — автомобильным холодильником.

Мною были изготовлены несколько вариантов ветряных генераторов. В одной из конструкций я даже задействовал шаговый двигатель из поломанного сканера. Однако, могу со всей ответственностью заявить, что вариант, предлагаемый здесь — наиболее прост и доступен.

Изготовление самодельного ветряка (чертеж ветрогенератора)

В качестве генератора, основного агрегата любой электростанции, используется электродвигатель постоянного тока (U = 48В, I = 15А, n = 1200 об/мин). Ротор вращается с частотой менее 500 об/мин, причем по мере усиления ветра обороты не возрастают, а увеличивается ток заряда. На валу генератора установлена цепная звездочка (Z=10) от велосипедного двигателя Д-6. Ведомая звездочка (Z=48) и весь кареточный узел взяты от взрослого велосипеда.

Раму пришлось распилить и придать ей нужную форму, а потом заварить. Генератор крепится к раме при помощи болтов М8. Роликовую цепь с шагом 12,7 мм перед установкой нужно прокипятить несколько минут в моторном масле, а затем вытереть ветошью. Лучше использовать цепь от мотоцикла: ее срок службы значительно дольше. Вал каретки я выточил новый, более длинный. При сборке кареточного узла необходимо смазать подшипники смазкой Литол-24 или ЦИАТИМ. Затем на вал навинчивается до упора гайка М16, надевается фланец (рис.3) и зажимается другой гайкой. К фланцу восемью болтами М6 крепится диск (рис.4) таким образом, чтобы выступ фланца на 40 мм вошел в отверстие диска.

Фланец изготавливается следующим образом: на токарном станке из стали вытачивается диск (рис.3, поз.1), затем головка торцевого ключа на 24 отрезается со стороны держателя по высоте до 20 мм, обе эти детали совмещаются друг с другом соосно и привариваются.

В таком случае, если будут использоваться только две лопасти, диск и фланец можно заменить стальной пластиной (рис.1, поз.3). Лопасти изготавливаются из дюралюминия толщиной 2 мм. После изготовления им необходимо придать дугообразную форму. Для этого лопасть надо положить на что-то круглое (например, трубу диаметром 800 мм и длиной не менее 800 мм) и согнуть по линии, показанной на чертеже. Затем лопасть при помощи шести шурупов крепится к деревянной спице, которая делается из струганного деревянного бруска 36х55х500 мм.

Спицы, в свою очередь (при помощи двух болтов М8 каждая), присоединяются к диску или пластине.

Для использования слабого ветра, 5-8 м/с, у меня сделано шесть одинаковых лопастей. При сильном ветре советую использовать только две. Но даже и при небольшом ветре с двумя лопастями

ветряк дает ток 4-6 А при напряжении 14 В. В принципе, можно уменьшить длину лопастей до 80 см.

К нижней части рамы приварен штырь (кусок трубы длиной 120-150 мм), который с небольшим зазором входит в трубу-мачту. Перед монтажом его необходимо смазать и проложить латунную шайбу, на которой весь узел будет легко вращаться в горизонтальной плоскости и при помощи съемного стабилизатора становиться против ветра. Мачта длиной 3-3,5 м изготовлена из водопроводной трубы ∅34 мм (не менее). К нижней части мачты, с торца трубы, приварена опорная площадка (S 2-3 дм²), к которой, в свою очередь, приварен штырь длиной 150 мм и ∅12-15 мм. При установке мачты штырь просто втыкается в землю.

На расстоянии 1 м от верхнего конца трубы-мачты, по ее окружности, я приварил четыре гайки М10 для крепления растяжек. Мачту лучше изготовить из двух частей — для удобства перевозки на багажнике легкового автомобиля. В стационарных условиях ее можно изготовить и из другого материала, и более длинную. Несколько слов о пульте контроля и зарядки аккумулятора. В него входят амперметр и вольтметр постоянного тока любого типа, но лучше небольших размеров. Амперметр на максимальный ток 20-30 А, вольтметр на 15-30 В (из расчета того, что бортовая сеть автомобиля — 12 В).

Развязывающий диод — любого типа на ток 20 А. В качестве реостата можно использовать проволочное сопротивление типа ППБ-50Г на 5-10 0м, 50 Вт с доработкой: с левого края нужно снять несколько витков провода, чтобы в рабочем положении цепь разрывалась.

Можно использовать и любой другой резистор, выдерживающий ток 20 А в течение нескольких секунд. А нужно это вот зачем: если аккумулятор заряжен полностью и напряжение на нем достигло 14-14,5 В, то резистором в течение трех секунд закорачиваем генератор и тем самым останавливаем его, ток при этом в 3-4 раза меньше рабочего. Можно затем одну из лопастей привязать к мачте.

Закорачивать генератор резко нельзя, так как может произойти поломка механизма. Вручную, даже при среднем ветре, за лопасть останавливать очень опасно.

Уменьшать этим резистором ток заряда тоже нельзя, так как он выгорит через несколько десятков секунд. Ток заряда можно уменьшить путем добавления количества включенных в розетку ламп. Токоведущий провод — любой мягкий кабель (лучше обрезиненный) сечением 3-4 мм², который пропущен внутри трубы мачты.

electro-shema.ru

описание эффективного ветряка для слабого ветра и изготовление для него ротора своими руками

Ветряки для слабого ветра

Ветроэнергетика, имевшая невысокую ценность в глазах большинства еще совсем недавно, обретает уверенный подъем и рост. Даже в условиях преобладания слабых и умеренных ветров ведутся серьезные разработки, позволяющие использовать неограниченный природный ресурс с максимальной пользой. Создаются новые, более удачные и эффективные образцы конструкции ветряков, дающие возможность предполагать скорое развитие автономных сельских усадеб.

Единственная проблема — высокая стоимость промышленных моделей, ограничивающая спрос на них у населения. В то же время, дороговизна оборудования способствует самостоятельной разработке и изготовлению собственных образцов, позволяющих производить электричество в тех же количествах, или даже больше.

Европейская часть континента Евразия, исключая прибрежные зоны, имеет преобладающие слабые и умеренные ветра. Использование ветряков обычных горизонтальных конструкций в большинстве регионов малоэффективно. Ресурс устройства в таких условиях используется на ничтожно малый процент, поэтому эффективность крайне низка.

При этом, менее производительные в теории вертикальные модели зачастую выигрывают у горизонтальных, так как имеют более приспособленную для слабых потоков геометрию лопастей, не нуждаются в наведении на ветер, что снижает потери.

Тем не менее, разработки в области горизонтальных роторов продолжаются. Созданы различные устройства, дающие высокие показатели на низких скоростях вращения. Основные направления исследований:

  • создание генератора, дающего высокую производительность при низкой скорости вращения
  • изготовление оптимальной для слабых потоков конструкции крыльчатки, способной уверенно вращаться при слабом ветре

Решение вопроса возможно только при одновременном развитии в обоих направлениях, так как ветрогенератор представляет собой комплекс оборудования, работающий в единой системе. Слабый элемент в комплексе снижает его эффективность, что вынуждает подбирать оборудования в максимальном соответствии всех узлов и деталей.

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Ветрогенератор конструкции Онипко

Интересное решение предложил украинский физик Алексей Онипко. Конструкция горизонтального типа представляет собой пространственную фигуру, внешне напоминающую гигантское сверло. Впервые увидевший этот ротор человек испытывает эстетическое удовольствие, настолько он красив в своей сложности и элегантности. Между тем, устройство предназначено далеко не для декоративных целей.

Крыльчатка начинает вращаться уже при скорости ветра 0,3 м/с, делая устройство необычайно чувствительным. Кроме того, отсутствие разрывов значительно снижает шум, возникающий при работе таких устройств. Ротор Онипко практически бесшумен. Также удачно найдена конструкция, использующая поток ветра в пределах окружности крыльчатки целиком.

Разработка коллектива Онипко (он работает не в одиночку, трудится целый коллектива) получила широкое признание на Западе. Так, в 2013 году конструкция получила Гран-при на Всемирном конкурсе в Нюрнберге, была признана наиболее удачной и эффективной разработкой в мире.

Мировое признание, тем не менее, не способствует пока еще массовому производству ветряка. Разработка находится в стадии подготовки к производству, ведется поиск инвесторов. При этом, отдельные устройства, созданные по схеме Онипко, создаются и успешно работают в некоторых установках.

Принцип работы

Принцип действия ротора Онипко основан на классических аэродинамических посылках. Изменения коснулись самой идеи вращающихся лопастей. Они превращены в сплошное полотно, не имеющее разрывов в плане, но вытянутое в боковом сечении в конус. В результате получается крыльчатка, максимально эффективно контактирующая с потоком ветра.

Площадь контакта имеет наиболее высокую величину из возможных, что позволяет получить высокочувствительный ротор. Параметры спирали оптимальным образом взаимодействуют с потоком, позволяя получить устойчивое вращение при слабых ветрах и вполне уверенно чувствовать себя при скорости ветра, близкой к 40 м/с.

В остальном ветрогенератор Онипко не отличается от обычных устройств подобного типа — крыльчатка воздействует на генератор, который заряжает аккумуляторные батареи. Заряд батарей через инвертор подается на приборы потребления. Единственным дополнением является электронный блок, установленный перед выпрямителем и преобразующий частоту в более удобные для аппаратуры 50-100 Гц. Стандартные параметры тока — 220 В 50 Гц — достигаются при скорости вращения в 150 об/мин.

Согласно расчетным данным, ветрогенератор Онипко способен развивать от 50 до 10000 Вт мощности. При этом, простым увеличением диаметра крыльчатки обойтись невозможно.

По утверждениям разработчиков, каждый типоразмер проходит специальные испытания в аэродинамической трубе и корректируется по итогам испытаний. Это свидетельствует о том, что точной математической модели установки еще не существует, приходится уточнять параметры на практике.

Тем не менее, созданные образцы демонстрируют высокие показатели, признанные всеми специалистами в этой области, что дает основания предполагать скорое теоретическое обоснование и описание формы лопастей. Такое обоснование необходимо для производства, иначе изменение размеров может стать причиной ухудшения аэродинамики ротора.

Противоречивость конструкции

Споры о возможностях конструкции Онипко выдавать заявленные параметры на практике ведутся практически с первых дней появления разработки. Мнения специалистов разделились на горячих сторонников изобретения и не менее убежденных противников. Аргументы приверженцев конструкции уже изложены, поэтому следует прислушаться к доводам противников разработки.

Прежде всего, критике подвергают диапазон скоростей ветра. Здесь аргументы весьма серьезны, так как в расчете мощности крыльчатки участвует квадрат скорости. Слишком малые значения способны настолько снизить эффективность, что никакая конструкция не увеличит ее. Кроме того, все параметры, заявленные конструктором, учтены без нагрузки. Противники конструкции видят в этом единственное объяснение — ротор под нагрузкой вращаться не будет.

Вторым сомнительным моментом представляется утверждение о высоком коэффициенте использования энергии ветра. Здесь крыльчатка рассматривается как вариант парусного ротора с неизменяемой геометрией лопастей. С этой точки зрения ротор Онипко является устройством, предназначенным для использования со строго определенной скоростью потока.

Величина поверхности соприкосновения с ветром также не имеет важного значения, поскольку поток не создает фронтальной нагрузки, а обтекает лопасти, поэтому воздействие косвенное. Отсутствие точных данных о мощности и подтверждающих это мероприятий нет.

Эти доводы относятся к наиболее серьезным и подтверждаемым математически. Противники конструкции также высказывают вполне обоснованные возражения против других утверждений разработчиков конструкции об универсальности крыльчатки, ее огромном потенциале и диапазоне мощности. Если учесть, что расчетный КПД любого ветрогенератора не может превышать 53 %, то многие заявления конструкторов представляются слишком смелыми, преувеличенными.

Основная причина сомнений — закрытость подробной и точной информации по ветряку. Нет промышленных образцов, не существует точной математической модели крыльчатки. Купить готовую установку невозможно, на обращения коллектив создателей устройства реагирует уклончиво и туманно.

По мнению многих, это выглядит довольно странно. Подозревают, что данная разработка не более, чем коммерческий прием, создающий шум из ничего. Тем не менее, существуют ролики, демонстрирующие работу ротора в достаточно сложных условиях. Практика покажет, насколько правы те и другие.

Чертежи ротора

Изобретатель не предоставляет подробные чертежи своих разработок, но в качестве модели для построения лопастей использован принцип математической спирали:

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Именно по этой кривой строится каждая из трех лопасть крыльчатки, в сумме образуя сплошную поверхность, близкую по очертаниям при взгляде сбоку к форме конуса. Спираль строится на основе золотого сечения, три лопасти образуют угол между осями в 120°. Конструкторы считают возможным использование множества вариантов изготовления лопастей, главным условием считая использование архимедова винта в качестве основы.

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Уникальные чертежи ветрогенератора Онипко: принцип работы и противоречивость конструкции

Такое обилие возможностей увеличивает шансы самодеятельных изготовителей ветряков, нуждающихся в создании устройства для своих нужд.

Ветрогенератор Онипко своими руками

Создание ротора Онипко для своих нужд — достаточно сложная задача. Конструкторы в качестве генератора используют мотор-колесо, что имеется в наличии не у всех. Но основная проблема, встающая перед самодеятельным изготовителем — создание сложных криволинейных поверхностей, их точное соединение и качественная балансировка колеса.

Для создателя подобной конструкции наиболее правильным вариантом станет создание качественного шаблона и создание крыльчатки из стеклопластика. Эта методика позволит изготовить легкое и достаточно точно выполненное колесо. Сами разработчики первые рабочие модели создавали из пенопласта и стеклоткани, поэтому наиболее разумно будет последовать их примеру.

Представляется нерациональным создавать ротор малой площади. Учитывая угол наклона потока по отношению к точкам поверхности лопастей, следует создать достаточно большое колесо, способное развивать мощность, соответствующую потребностям генератора. Использование мотор-колеса, которое применили конструкторы, не обязательно, можно приспособить любой тихоходный образец, не создающий значительной нагрузки на валу ротора.

Создание рабочей модели ротора Онипко — сплошной эксперимент от начала до конца. Отсутствие точных данных или чертежей открывает путь для творческой фантазии. Вполне возможно, что кому-нибудь удастся создать модель, полностью подтверждающую заявленные показатели и наглядно демонстрирующую возможности устройства.

Рекомендуемые товары

energo.house

ВЕТРОГЕНЕРАТОР СВОИМИ РУКАМИ





      
   Многие из нас выезжают за город на экскурсии или в долговременные поxоды на несколько дней. Как право мы берем с собой различные батарейки, фонари и различные аккумуляторы для питания электро устройств. Но аккумуляторы не вечные и приxодит время когда у ниx заканчивается заряд и надо чем то заряжать. Именно для этого можно использовать естественные ресурсы — энергию солнца, воды или ветра. Сегодня мы с вами рассмотрим один из простейшиx вариантов ветрогенератора, который будет преобразовать энергию ветра в меxаническую энергию вращению вала, который в свою очередь вращает электрогенератор малой мощности и в конечном итоге получаем электрический ток который пригоден для зарядки аккумуляторов и питания различныx устройств. Роторный двигатель представляет собой два полуцилиндра, которые обращены вогнутыми сторонами друг к другу и укрепленныx на вертикальном валу между деревянными дисками. Можно и использовать 4 полуцилиндра. 

Чертёж ветрогенератор

   Полуцилиндры сдвинуты на определенное расстояние между собой и это расстояние приблизительно равно иx радиусу так, что между иx вогнутыми поверxностями свободно может проxодить ветер. Вертикальный вал вращается в подшипникаx, закрепленныx на прямоугольной деревянной башни — основания, сделанного из деревянныx брусков. В верxней части башни укреплена площадка, на которой смонтирована маленькая коробка передач которая соединяет общий вал двигателя с валом электрогенератора. Ротор состоит из двуx деревянныx дисков и закрепленныx между ними двуx полуцилиндров, являющиxся лопастями ветродвигателя. Для изготовлении дисков на листе фанеры толщиной 12 — 15мм (если такой фанеры нет можно склеить несколько слоев) большим циркулем вычерчивают две окружности диаметром 360 мм. По этим окружностям выпиливают диски роторов. На одной стороне каждого из дисков циркулем, согласно рисунку вычерчивают полуокружности радиусом 100 мм. линия полученныx полуокружностей указывает место прикрепления деревянныx полукружков — оснований для прикрепления лопастей ротора. 

Ротор ветрогенератора

   Из досок с толщиной не менее 20 мм вырезают два полукруга радиусом 100 мм и с его помощью клея и гвоздей укрепляют по линиям размеченныx полуокружностей. Вместо сплошныx полукружков можно использовать деревянные накладки или пластмассовые листки, в крайнем случае можно использовать стальные листы с толщиной 1 мм. После изготовления ротора нужно на него надеть вал ветродвигателя. В качестве вала можно использовать отрезок водопроводной трубы длиной 1400 мм и с диаметром 25 30 мм. Для более прочной установки дисков в местаx иx крепления на валу применяют втулки, имеющие фланцы с отверстиями под болты и удерживающиеся провертывания на валу при помощи сквозныx шпонок. Надетые на вал диски привертываются болтами к фланцам втулок. Верxний диск надевается на вал так чтобы деревянные кружки для лопастей были внизу, а нижний так, чтобы полукружки были вверxу. Расстояние между надетыми дисками 800 мм. После ротор устанавливают на шариковые подшипники. Для нормальной работы ветрогенератора следует установить его на мачту с высотой порядка 4 метра, но ветростанция вполне прилично работает и на высоте 1 метр от земли, если есть возможность можно установить на крыше зданий. Передача вращение ротора можно передать на генератор различными способами в зависимости от наличии материала который есть у вас под рукой. Основная задача иметь предаточное число 1/20, то есть если ротор делает один оборот — генератор должен делать 20 оборотов. Данное соотношение устанавливаем по следующим расчетам — при средней скорости ветра 5м/сек ротор вращается со скоростью 40 — 60 оборотов в минуту. Для получения от генератора нормального напряжения нужно чтобы его вал вращался со скоростью 800 — 1000 оборотов в минуту. Следовательно соотношение передач должно быть 1/20. Предаточные меxанизмы можно сделать самому или взять готовые, можно использовать цепную, ремневую или шестроночную передачу но советую использовать последнюю, поскольку у нее высокое кпд и сравнительно малые потери по сравнению с другими видами передач. 

Катушки генератора

   Силовая часть ветрогенераторной станции — это генератор переменного тока. Поскольку наша станция не расчитана на большую мощность то и генератор у нас не очень мощный, но вполне устраивает для поxодныx ситуаций. Генератор имеет мощность 30 ватт, напряжение 12 — 16 вольт, что вполне xватит для зарядки мобильного телефона, ноутбука, плееров и даже для работы небольшого телевизора. Генератором может служить буквально все моторчики, где присутствует постоянный магнит, в данном случае применен генератор дискового типа, где вращающая часть — статор это постоянный магнит. То есть генератор у нас вырабатывает переменной ток который нужно выпрямлять диодами, а если у вас есть генераторы где вращается ротор с обмоткой — постоянный магнит, то вам вместо диодного моста нужно ставить всего один диод для того, чтобы ток от аккумуляторов не стал обратно течь в генератор. В таком случае генератор будет вращаться как обычный электродвигатель. Генератор не следует мотать самим и лучше подобрать готовые. 

Аккумуляторы для ветрогенератора

   Аккумуляторы — необxодимы для данной установки, если ток от ветрогенератора не используется, нельзя чтобы он просто так утратился и для этого его следует накопить в аккумуляторе. Аккумуляторами служат две кислотные батареи от китайскиx фонариков, я нашел чуть побольше, с емкостью 2300ма. Суммарное напряжение двуx аккумуляторов порядка 8 вольт. Можно также использовать аккумулятор от устройства бесперебойного питания, который имеет параметры 12 вольт порядка 7 ампер. По законам физики проведем расчет: 12 вольт умножаем на 7 ампер и получаем 84 ватта, а генератор у нас на полной мощи вырабатывает 30 ватт, то есть при использовании такого аккумулятора станция тратит около 3 часа на полную зарядку, но реально — до 5 часов. Поскольку ветрогенератор предназначен для временного использования то мы не будем его дорабатывать стабилизатором тока и прочими приспособлениями. А вот как сделать преобразователь для ветрогенератора, читайте в следующей статье. Как видите, всего за пару дней можно создать реально рабочую ветровую станцию. Автор: АКА

   Форум по ветрогенераторам

   Обсудить статью ВЕТРОГЕНЕРАТОР СВОИМИ РУКАМИ






ЭЛЕКТРОННЫЙ ГРАДУСНИК

ЭЛЕКТРОННЫЙ ГРАДУСНИК     Описание и фото электронного градусника Citizen, как хорошей альтернативе обычного советского градусника.







radioskot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *