Ветрогенератор своими руками чертежи: Ветрогенератор своими руками. Самодельный ветрогенератор для дома. Чертежи ветрогенератора.

Ветрогенератор своими руками. Самодельный ветрогенератор для дома. Чертежи ветрогенератора.

В ветрогенераторах промышленного производства обычно используют винтовые пропеллерные двигатели. В отличие от роторных, они имеют весомое преимущество – более высокий КПД. Но винтовые двигатели значительно сложнее изготовить, поэтому если вы хотите сделать ветрогенератор своими руками, а попросту – самодельный ветрогенератор, рекомендуют применять именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектроустановки:
1 — лопасти, 2 — крестовина, 3 —вал, 4 —подшипники с корпусами, 5 — соединительная муфта, 6 — силовая стойка (швеллер № 20), 7 — коробка передач, 8 — генератор, 9 — растяжки (4 шт.), 10 — ступени лестницы.


Важная деталь: ротор необходимо поднять достаточно высоко – на 3-4 метра над уровнем земли. Тогда ротор окажется в зоне свободного ветра, а зона завихрений от обтекаемых ветром строений останется ниже его. ВЭУ, высоко поднятая над землей к тому же будет выполнять функцию молниеотвода, а это для сельской местности немаловажно.

Рис. 2. Крепление лопастей ротора на крестовине:
1 — лопасти, 2 — крестовина, 3 — вал, 4 — болты крепления (М12—М14).


В конструкции, предложенной В. Самойловым, ротор имеет 4 лопасти, что обеспечивает ему более равномерное вращение. Ротор – важнейшая часть ветряка. Его форма и размеры лопастей играют особую роль – от них зависит мощность, а также скорость вращения вала ветрового двигателя. Чем больше будет общая поверхность лопастей, которые образуют ометаемую поверхность, тем меньшим будет число оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:
1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.


Ротор вращается благодаря аэродинамической несимметричности. Поток ветра, набегающий поперек оси ротора, соскальзывает с округлой стороны лопасти и затем попадает на ее противоположный карман. Разность давлений на округлую и вогнутую поверхности создает тягу, которая, раскручивая ротор, приводит его в движение. Такой ротор имеет большой крутящий момент. Мощность ротора диаметром 1 м соответствует пропеллеру с тремя лопастями диаметром 2,5 м.
При резких колебаниях ветра роторные ветродвигатели обеспечивают более стабильную работу, чем винтовые. К тому же, роторы имеют тихий ход, работают при любом направлении ветра, но при этом могут развивать лишь от 200 до 500 об/мин. При сильных порывах ветра роторные ветроколеса в разнос не идут. Повышение количества оборотов асинхронного генератора не дает рост напряжения на выходе. Поэтому мы не рассматриваем автоматическое изменение угла лопастей ротора при разных скоростях ветра.
Существуют разные виды роторных ветрогенераторов на вертикальном валу. Вот некоторые из них:
1. Четырехлопастое роторное ветряное колесо тихоходное, имеет КПД до 15%.
2. Двухъярусное роторное колесо немного проще, и имеет более высокое КПД (до 19%), а также развивает большее по сравнению с четырехлопастным, число оборотов. Но, чтобы сохранить прочность и жесткость установки, целесообразно увеличивать диаметр вала.
3. Ротор Савониуса развивает меньшее количество оборотов по сравнению с двухлопастным. Коэффициент применения ветровой энергии не выше 12%. В основном используется для привода поршневых насосов.
4. Карусельное ветряное колесо — простейшая конструкция. Колесо развивает малые обороты, а также, имея низкую удельную мощность, обладает КПД — до 10%
Ниже рассмотрим самодельный ветрогенератор, разработанный на основе четырехлопастного ветроколеса.
Лопасти ротора можно сделать из железной бочки на 100, 200 или 500 литров. Бочку нужно разрезать шлифмашиной, а вот резать сваркой в этом случае недопустимо, т.к. металл покоробится от высокой температуры. Усилить борта вырезанной лопасти можно, приварив к ним прутья арматуры или катанки диаметром от 6 до 8 мм.
Лопасти первого ротора нужно прикрепить к 2 крестовинам 2 болтами М12…М14. Верхняя крестовина вырезается и листа стали толщиной 6…8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижняя крестовина должна быть более прочной, ведь на нее приходится общий вес лопастей. Чтобы ее изготовить, нужно взять швеллер длиной не меньше 1 м ( что будет зависеть от применяемой бочки), и с высотой стенки 50-60 мм

Строительная часть и главный вал.


В рассматриваемой ВЭУ рама из уголков для закрепления генератора приварена к стойке, изготовленной из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал 3 ротора целесообразней сделать из двух частей, тогда будет удобней растачивать его концы под подшипники. Подшипники в корпусах (буксах), соответствующих по размерам валу, закрепляются на стенке швеллера болтами. Части вала ротора сваривают между собой или соединяют на шпонке. Диаметр вала составляет 35—50 мм.
К одной из полок швеллера рассматриваемого ВЭУ приварены куски труб длиной 500 мм м диаметром 20 мм, выполняющие роль лестницы. Стойка погружена в землю не менее, чем на 1200 мм в глубину, а также для предотвращения качки и дополнительной устойчивости закреплена 4-мя растяжками. Для защиты от ржавчины ветровую энергоустановку можно покрасить алюминиевой пудрой, замешанной на основе олифы.

Рис. 4. Возможные схемы укрепления роторных ветроколес на вертикальном валу:
а, б — карусельные ветроколеса; в — ветроколесо Савониуса.



Рис. 5. Лопасть ветряка, изготовленная из 1/4 бочки и схема раскроя:
1 — отверстие крепления к крестовине, 2 — усиление борта, 3 — контур лопастей.

Электросхема.


Изготавливая своими руками ветрогенератор для дома, проще всего использовать электросистему автомобиля или трактора. Исходя из ее мощности, определяются эксплуатационные возможности ВЭУ. Поэтому необходимо применять электроузлы таких достаточно мощных автомашин, как автобус или трактор. Важно помнить, что использовать подобные узлы необходимо комплектно: аккумулятор, реле-генератор, генератор. Например, для генератора Г 250-Г 1 вполне подойдут реле-регулятор РР 362, а также аккумулятор 6 СТ 75.

Рис. 6. Схема электрооборудования ВЭУ, взятое от автомобильного генератора на 12 В:
1 — генератор, 2 — реле-регулятор, 3 — аккумулятор, 4 — амперметр, 5 — выключатель генератора от разряда аккумулятора в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
В случае, если ветряк укомплектован автогенератором на 24 В, лучше использовать марку Г-228 с мощностью 1000 Вт. Подобные генераторы имеют более надежное реле напряжения, особенно в сравнении с интегральными регуляторами напряжения марки Я-120. Вместе с тем, постоянное напряжение 12 В, получаемое с автогенератора, не очень удобно для освещения, т.к. необходимо учитывать специфику цоколей автолампы и патронов. Хоть лампочки на 12 В бывают и с обычным цоколем Ц-27, их трудно найти в продаже.

Рис. 7. Схема электрооборудования ВЭУ от автомобильного генератора на 24 В:
1 — генератор Г-288, 2 — регулятор напряжения 11.3702, 3 — аккумуляторы 6СТ75, амперметр АП-170, 4 — амперметр, 5 — выключатель генератора от разряда аккумуляторов в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
Чтобы перейти от постоянного тока к переменному, нужно изготовить преобразователь напряжения. При необходимости переменный ток без проблем можно превращать в постоянный, используя мостовой выпрямитель.

Преобразователь мощностью 100 Вт позволяет включать две лампочки накала или дневного света по 40 Вт на 220 В. Схема преобразователя довольно проста. Он не требует настройки, достаточно надежен в работе и имеет внушительный КПД (более 80%).
Вы можете ознакомиться с видео, на котором показан пример самодельного ветрогенератора. Так же, Вы можете воспользоваться специальным калькулятором для расчета ветрогенератора.

описание эффективного ветряка для слабого ветра и изготовление для него ротора своими руками

Ветряки для слабого ветра

Ветроэнергетика, имевшая невысокую ценность в глазах большинства еще совсем недавно, обретает уверенный подъем и рост. Даже в условиях преобладания слабых и умеренных ветров ведутся серьезные разработки, позволяющие использовать неограниченный природный ресурс с максимальной пользой. Создаются новые, более удачные и эффективные образцы конструкции ветряков, дающие возможность предполагать скорое развитие автономных сельских усадеб.

Единственная проблема — высокая стоимость промышленных моделей, ограничивающая спрос на них у населения. В то же время, дороговизна оборудования способствует самостоятельной разработке и изготовлению собственных образцов, позволяющих производить электричество в тех же количествах, или даже больше.

Европейская часть континента Евразия, исключая прибрежные зоны, имеет преобладающие слабые и умеренные ветра. Использование ветряков обычных горизонтальных конструкций в большинстве регионов малоэффективно. Ресурс устройства в таких условиях используется на ничтожно малый процент, поэтому эффективность крайне низка.

При этом, менее производительные в теории вертикальные модели зачастую выигрывают у горизонтальных, так как имеют более приспособленную для слабых потоков геометрию лопастей, не нуждаются в наведении на ветер, что снижает потери.

Тем не менее, разработки в области горизонтальных роторов продолжаются. Созданы различные устройства, дающие высокие показатели на низких скоростях вращения. Основные направления исследований:

  • создание генератора, дающего высокую производительность при низкой скорости вращения
  • изготовление оптимальной для слабых потоков конструкции крыльчатки, способной уверенно вращаться при слабом ветре

Решение вопроса возможно только при одновременном развитии в обоих направлениях, так как ветрогенератор представляет собой комплекс оборудования, работающий в единой системе. Слабый элемент в комплексе снижает его эффективность, что вынуждает подбирать оборудования в максимальном соответствии всех узлов и деталей.

Ветрогенератор конструкции Онипко

Интересное решение предложил украинский физик Алексей Онипко. Конструкция горизонтального типа представляет собой пространственную фигуру, внешне напоминающую гигантское сверло. Впервые увидевший этот ротор человек испытывает эстетическое удовольствие, настолько он красив в своей сложности и элегантности. Между тем, устройство предназначено далеко не для декоративных целей.

Крыльчатка начинает вращаться уже при скорости ветра 0,3 м/с, делая устройство необычайно чувствительным. Кроме того, отсутствие разрывов значительно снижает шум, возникающий при работе таких устройств. Ротор Онипко практически бесшумен. Также удачно найдена конструкция, использующая поток ветра в пределах окружности крыльчатки целиком.

Разработка коллектива Онипко (он работает не в одиночку, трудится целый коллектива) получила широкое признание на Западе. Так, в 2013 году конструкция получила Гран-при на Всемирном конкурсе в Нюрнберге, была признана наиболее удачной и эффективной разработкой в мире.

Мировое признание, тем не менее, не способствует пока еще массовому производству ветряка. Разработка находится в стадии подготовки к производству, ведется поиск инвесторов. При этом, отдельные устройства, созданные по схеме Онипко, создаются и успешно работают в некоторых установках.

Принцип работы

Принцип действия ротора Онипко основан на классических аэродинамических посылках. Изменения коснулись самой идеи вращающихся лопастей. Они превращены в сплошное полотно, не имеющее разрывов в плане, но вытянутое в боковом сечении в конус. В результате получается крыльчатка, максимально эффективно контактирующая с потоком ветра.

Площадь контакта имеет наиболее высокую величину из возможных, что позволяет получить высокочувствительный ротор. Параметры спирали оптимальным образом взаимодействуют с потоком, позволяя получить устойчивое вращение при слабых ветрах и вполне уверенно чувствовать себя при скорости ветра, близкой к 40 м/с.

В остальном ветрогенератор Онипко не отличается от обычных устройств подобного типа — крыльчатка воздействует на генератор, который заряжает аккумуляторные батареи. Заряд батарей через инвертор подается на приборы потребления. Единственным дополнением является электронный блок, установленный перед выпрямителем и преобразующий частоту в более удобные для аппаратуры 50-100 Гц. Стандартные параметры тока — 220 В 50 Гц — достигаются при скорости вращения в 150 об/мин.

Согласно расчетным данным, ветрогенератор Онипко способен развивать от 50 до 10000 Вт мощности. При этом, простым увеличением диаметра крыльчатки обойтись невозможно.

По утверждениям разработчиков, каждый типоразмер проходит специальные испытания в аэродинамической трубе и корректируется по итогам испытаний. Это свидетельствует о том, что точной математической модели установки еще не существует, приходится уточнять параметры на практике.

Тем не менее, созданные образцы демонстрируют высокие показатели, признанные всеми специалистами в этой области, что дает основания предполагать скорое теоретическое обоснование и описание формы лопастей. Такое обоснование необходимо для производства, иначе изменение размеров может стать причиной ухудшения аэродинамики ротора.

Противоречивость конструкции

Споры о возможностях конструкции Онипко выдавать заявленные параметры на практике ведутся практически с первых дней появления разработки. Мнения специалистов разделились на горячих сторонников изобретения и не менее убежденных противников. Аргументы приверженцев конструкции уже изложены, поэтому следует прислушаться к доводам противников разработки.

Прежде всего, критике подвергают диапазон скоростей ветра. Здесь аргументы весьма серьезны, так как в расчете мощности крыльчатки участвует квадрат скорости. Слишком малые значения способны настолько снизить эффективность, что никакая конструкция не увеличит ее. Кроме того, все параметры, заявленные конструктором, учтены без нагрузки. Противники конструкции видят в этом единственное объяснение — ротор под нагрузкой вращаться не будет.

Вторым сомнительным моментом представляется утверждение о высоком коэффициенте использования энергии ветра. Здесь крыльчатка рассматривается как вариант парусного ротора с неизменяемой геометрией лопастей. С этой точки зрения ротор Онипко является устройством, предназначенным для использования со строго определенной скоростью потока.

Величина поверхности соприкосновения с ветром также не имеет важного значения, поскольку поток не создает фронтальной нагрузки, а обтекает лопасти, поэтому воздействие косвенное. Отсутствие точных данных о мощности и подтверждающих это мероприятий нет.

Эти доводы относятся к наиболее серьезным и подтверждаемым математически. Противники конструкции также высказывают вполне обоснованные возражения против других утверждений разработчиков конструкции об универсальности крыльчатки, ее огромном потенциале и диапазоне мощности. Если учесть, что расчетный КПД любого ветрогенератора не может превышать 53 %, то многие заявления конструкторов представляются слишком смелыми, преувеличенными.

Основная причина сомнений — закрытость подробной и точной информации по ветряку. Нет промышленных образцов, не существует точной математической модели крыльчатки. Купить готовую установку невозможно, на обращения коллектив создателей устройства реагирует уклончиво и туманно.

По мнению многих, это выглядит довольно странно. Подозревают, что данная разработка не более, чем коммерческий прием, создающий шум из ничего. Тем не менее, существуют ролики, демонстрирующие работу ротора в достаточно сложных условиях. Практика покажет, насколько правы те и другие.

Чертежи ротора

Изобретатель не предоставляет подробные чертежи своих разработок, но в качестве модели для построения лопастей использован принцип математической спирали:

Именно по этой кривой строится каждая из трех лопасть крыльчатки, в сумме образуя сплошную поверхность, близкую по очертаниям при взгляде сбоку к форме конуса. Спираль строится на основе золотого сечения, три лопасти образуют угол между осями в 120°. Конструкторы считают возможным использование множества вариантов изготовления лопастей, главным условием считая использование архимедова винта в качестве основы.

Такое обилие возможностей увеличивает шансы самодеятельных изготовителей ветряков, нуждающихся в создании устройства для своих нужд.

Ветрогенератор Онипко своими руками

Создание ротора Онипко для своих нужд — достаточно сложная задача. Конструкторы в качестве генератора используют мотор-колесо, что имеется в наличии не у всех. Но основная проблема, встающая перед самодеятельным изготовителем — создание сложных криволинейных поверхностей, их точное соединение и качественная балансировка колеса.

Для создателя подобной конструкции наиболее правильным вариантом станет создание качественного шаблона и создание крыльчатки из стеклопластика. Эта методика позволит изготовить легкое и достаточно точно выполненное колесо. Сами разработчики первые рабочие модели создавали из пенопласта и стеклоткани, поэтому наиболее разумно будет последовать их примеру.

Представляется нерациональным создавать ротор малой площади. Учитывая угол наклона потока по отношению к точкам поверхности лопастей, следует создать достаточно большое колесо, способное развивать мощность, соответствующую потребностям генератора. Использование мотор-колеса, которое применили конструкторы, не обязательно, можно приспособить любой тихоходный образец, не создающий значительной нагрузки на валу ротора.

Создание рабочей модели ротора Онипко — сплошной эксперимент от начала до конца. Отсутствие точных данных или чертежей открывает путь для творческой фантазии. Вполне возможно, что кому-нибудь удастся создать модель, полностью подтверждающую заявленные показатели и наглядно демонстрирующую возможности устройства.

Рекомендуемые товары

Ветрогенератор своими руками — расчеты, чертежи, изготовление


Человек использует ветер уже несколько тысяч лет. Скорей всего, это началось с изобретения паруса. Несколько позже ветер стали использовать для привода ветряных мельниц, а с прошлого века — для выработки электричества. Получение энергии от ветросиловых установок является чрезвычайно заманчивой, но и весьма сложной технической задачей. В настоящее время имеется несколько вариантов технических конструкций ветрогенератора своими руками, хорошо зарекомендовавших себя на практике.
Ветер — поток воздушных масс над земной поверхностью. Он возникает из-за неравномерного нагрева этой поверхности солнечными лучами. Воздух из областей повышенного давления перемещается в направлении областей низкого давления. На скорость ветра влияют характер земной поверхности, протяжённость воздушного потока над этой поверхностью и различные природные и искусственные препятствия, такие как холмы, высокие деревья, здания. Среднегодовая скорость ветра для конкретной местности характеризует энергетический ветровой потенциал района. Эту скорость определяет среднеарифметическое значение скоростей за периоды, например, за месяц, сезон и год. Россия располагает значительными ветровыми ресурсами. Особенно они велики по всему морскому побережью и на территории юга нашей страны
(рис. 1)
. Регионы со среднегодовой скоростью ветра 3,5-6 м/с и выше считаются вполне перспективными для строительства ветроэлектрических установок (ВЭУ).
Если выяснится, что в месте предполагаемой установки ветрогенератора нет достаточно сильных ветров, то и не будет никакого смысла в её сооружении.

Второй вопрос — насколько мощным сделать ветрогенератор. Очевидно, что все энергетические проблемы исключительно с его помощью решить не удастся. Скорость ветра изменчива не только в зависимости от сезона, но и от времени суток, поэтому энергию необходимо запасать и бережно её расходовать. А лучше всего использовать различные источники совместно, например, ветряк и солнечные батареи

(рис. 2).


Правда, многие самодельщики готовы собирать ветровую установку своими руками даже только для того, чтобы заряжать аккумуляторы своего карманного гаджета. Это будет просто хобби. Но вот если вообще нет электроэнергии и перспективы её туда провести совершенно нереальны, то постройка ветрогенератора своими руками окажется полезной.

Расчет установки ветрогенератора


Простейшие расчёты помогут определить реальные возможности установки. Существует показатель, который позволит оценить, какую часть энергии воздушного потока можно использовать с помощью ветроколеса. Его называют коэффициентом использования энергии ветра (Е). Коэффициент использования энергии ветра Е зависит от типа ветродвигателя, качества его изготовления и других параметров. Лучшие быстроходные ветродвигатели с обтекаемыми аэродинамическими лопастями имеют значение Е = 0,43-0,47. Это означает, что ветроколесо такой ВЭУ может полезно использовать 43-47% энергии воздушного потока.

Максимальное теоретически вычисленное значение Е = 0,593, но на практике получить его невозможно.

Мощность ветроколеса на валу без учёта потерь в передачах и подшипниках можно подсчитать по формуле:

р — массовая плотность воздуха, равная при нормальных условиях 0,125 кг*с2/м4,
V — скорость ветра (м/с),
Р — ометаемая ветроколесом поверхность (м2),
Е — коэффициент использования энергии ветра.

Рассчитать площадь, ометаемую воздушным колесом, можно по формуле:


Для нормальных условий (температура — 15°С и давление — 760 мм рт.ст.) мощность можно рассчитать по упрощённым формулам в лошадиных силах и в киловаттах:

D — диаметр ветроколеса (м).

Сделать ветряк малого диаметра, стабильно работающий при малых ветрах, — сложная задача. Воздушный винт получает 75% энергии с кольцевой области ометания от 0,5 до 1,0 радиуса. В связи с этим наименьший диаметр пропеллера, выгодного с точки зрения использования ветра со скоростью 4 м/с, должен быть не менее 4,5 м. Для малых ветров предпочтительнее оказываются тихоходные многолопастные винты.

Для ветроэлектростанции применяют генераторы переменного или постоянного тока. В самодельных ВЭУ очень часто используют генератор от современного автомобиля. Несмотря на то что они вырабатывают переменный ток, любой из них не очень подходит для этой цели, так как требует высоких оборотов и подмагничивания обмотки возбуждения. А генераторы постоянного тока вообще плохо работают при медленном вращении и даже на номинальных оборотах имеют небольшую мощность (100-200 Вт).

Самодельный ветрогенератор из асинхронного двигателя


Гораздо лучшие результаты можно получить с помощью переделанного асинхронного электродвигателя, снабдив его ротор постоянными магнитами. Эти двигатели не имеют никакой обмотки в роторе, а только металлические пластины. Если к ротору прикрепить постоянные магниты, то получится трёхфазный генератор удивительно прочной и долговечной конструкции, способный отдавать токи в десятки ампер при низких скоростях вращения.

Однако при высоких оборотах из-за большого тока начинают греться обмотки статора. В таком случае провод этих обмоток лучше заменить на другой — с большим сечением.

В трёхфазном генераторе переменного тока имеются 3 обмотки, соединить которые можно по схеме «треугольник» или «звезда». Треугольное соединение позволяет получить большой ток при меньшем напряжении, чем у соединения в звезду. Звезда наоборот даёт большее напряжение при меньшем токе. Трёхфазные генераторы намного эффективнее однофазных и генераторов постоянного тока. Это доказал ещё Никола Тесла.

Любой ветроагрегат требует защиты от шквальных порывов ветра. Вместо сложной системы поворота лопастей всё чаще используют механизм разворота всего колеса под углом к воздушному потоку.

Преобразование переменного тока в постоянный (который необходим для зарядки аккумуляторов) легко произвести с помощью полупроводниковых диодов, включённых по мостовой схеме (см. рис. 3). Если же вам потребуется напряжение стандартной электросети 220 В частотой 50 Гц, то в качестве инвертора используйте обычный компьютерный блок бесперебойного питания. Новый блок стоит дорого, но поскольку нам потребуется лишь повышающий инвертор, то можно использовать и списанный. Достаточно к нему вместо внутреннего подсоединить аккумулятор ветряка. Мощности UPS 1000 или UPS 5000 будет более, чем достаточно.

Расчет лопастей ветрогенератора


Крепление лопастей к втулке позволяет перемещением их балансировать ветровое колесо в сборе.

Примером простейшей, но вполне работоспособной ВЭУ может служить конструкция французского умельца (фото 1). Его шестилопастное ветряное колесо, лопасти которого хомутами прикреплены к металлическим пруткам (фото 2), соединённым электросваркой с общей втулкой (рис. 4), насаживается на ось электрогенератора.

Рис. 4. Втулка ветрового колеса.



Аэродинамический руль устанавливает колесо строго к ветровому потоку.

Для автоматической ориентации лопастей на ветер служит аэродинамический руль, прикреплённый к поворотной трубе силового узла установки (фото 3). Подшипники поворотного устройства обеспечивают поворот ветроколеса с генератором на опорной мачте при изменении направления ветра.

Лопасти и аэродинамический руль выпилены из фанеры толщиной 10 мм. Консоль кронштейна крепления пера руля при порывистом ветре испытывает большие нагрузки, и потому её изготовили из заготовки толщиной в 15 мм. Готовые лопасти и руль мы видим на фото 4. Выкройки этих деталей представлены на рис. 5-8. Хотя лопасти и имеют плоский профиль, но их кромки должны быть обработаны в соответствии с рисунками.




Фото 6.Доработка ротора асинхронного электромотора позволяет получить эффективный генератор переменного тока для ветроустановки.
Фото 7. Переделать ротор можно двумя способами. Первый — это наклеить магниты на механически обработанный ротор двигателя. И второй способ — из стальной ленты по деревянной оправке сделать новый ротор, на который так же наклеить магниты.

Фото 8Катушки полюсов статора лучше сразу перемотать проводом большего сечения.





Ветровое колесо имеет 6 лопастей. Однако всего их было изготовлено 9. Три коротких лопасти необходимы для замены трёх полноразмерных лопастей на время сезона сильных ветров
(фото 5)
. Балансировку ветрового колеса можно произвести перемещением лопастей по пруткам от втулки или ближе к ней.

Пожалуй, самой трудоёмкой будет переделка асинхронного электродвигателя в трёхфазный генератор. Двигатель мощностью 150 Вт и выше, рассчитанный на работу от сети 220 В при частоте 50-60 Гц, после переделки сможет в качестве генератора ветроустановки отдавать в нагрузку ток до десятка ампер при напряжении не ниже 12 В.

Главной переделке в будущем генераторе подвергается ротор. После разборки электромотора тело ротора протачивают и фрезеровкой пазов разделяют на несколько сегментов. В нашем случае их шесть. На каждом сегменте размещены постоянные магниты (см. рис. 9). Их прикрепляют по 6 шт. на каждый полюс ротора (всего их 36) прочным эпоксидным клеем (фото 6). Количество полюсов магнитов на роторе не должно быть кратным количеству катушек на статоре. Это исключит трудный пуск ветроколеса из-за «залипання» магнитов ротора на статорных полюсах.

Есть и второй способ переделки ротора — это сделать из стальной полосы нужного диаметра цилиндр (по деревянной оправке) и на него наклеить магниты (фото 7).

Собирать обмотки полюсов статора при работе генератора на зарядку аккумулятора лучше в треугольник, а при прямой нагрузке большим током — в звезду. Катушки статора в любом случае лучше перемотать проводом большего сечения (фото 8). Это уменьшит потери на нагрев.

Ветроэлектрические установки, работающие параллельно с другими установками, использующими возобновляемые источники энергии (солнечные батареи, гидрогенераторы, тепловые насосы и пр.), вполне могут обеспечить энергоснабжение жилого дома или небольшого хозяйства. При наличии резерва в виде электроагрегата с бензодвигателем временное снижение альтернативной энергии может быть компенсировано в любой момент. Подобные системы приносят большую экономию энергии, получаемой от традиционных источников.



Борис ГЕОРГИЕВ, Москва

схема и чертеж, инструменты и материалы, подробная инструкция

Один из простых способов получить дешёвую электроэнергию — ветрогенератор. Его необязательно покупать, можно построить своими руками, используя правильно составленные чертежи и схемы, детали и материалы.

Принцип работы ветрогенератора

Принцип действия ветрогенератора прост: ветер приводит в движение лопасти, вращающие ротор турбины, который преобразует энергию ветра в механическую. Ветровые турбины бывают:

  • с роторами горизонтальной оси;
  • с роторами вертикальной оси.

Преимущество последних в том, что они работают независимо от направления ветра и его силы. Мощность, генерируемая самодельным ветрогенератором, составляет от 100 до 6000 Вт. Минимальная скорость, при которой турбина может начать вырабатывать электроэнергию — 2,5-3 м/с, но для достижения номинальной мощности необходима скорости ветра от 10 м/с.

Ротор обычно вращается со скоростью 15–20 об/мин, тогда как типичный асинхронный генератор вырабатывает электричество со скоростью более 1500 об/мин. Для самодельного ветряка подойдёт автомобильный генератор на 12 вольт.

Принцип работы ветрогенератора

Как сделать ветрогенератор своими руками

Основой создания ветрогенератора является грамотно сделанный проект и подготовленный чертёж. Это очень важно, потому что без чёткого представления о том, как должен выглядеть прибор, будет трудно построить его правильно, не нарушив порядок монтажа всех элементов.

Чертежи и схемы

Начинать нужно с составления общего эскиза ветротурбины, пометив ключевые элементы: башню, генератор, деревянное основание, лопасти и ступицу, которая соединяет их вместе. Самостоятельно составленная схема может быть не сильно подробной: в этом нет необходимости. Её следует использовать для общего представления о том, каким будет расположение различных частей ветряного двигателя, и как конструкция будет выглядеть на завершающих этапах.

Схема сборки ветроэлектрического генератора

После подготовки схемы нужно выставить правильные размеры ветрогенератора. Они должны включать в себя высоту, длину и ширину деревянного основания, которое соединяет генератор и хвостовой плавник с башней. Также определить размеры для лопастей из металлических труб или труб из ПВХ, в зависимости от того, какой материал будет использоваться. Отдельные измерения нужны для хвостового плавника: высота, ширина и длина, а также диаметр – для лезвий, которые определяют размер ветровой турбины.

После того как будет готов чертёж и черновой набросок устройства с выставленными размерами, можно переходить к подготовке материалов и инструментов для работы.

Необходимые инструменты и материалы

Для изготовления самодельного ветряка потребуются такие детали:

  • ротор с лопастями;
  • редуктор для регулирования скорости вращения ротора;
  • гелевый или щелочной аккумулятор для питания электроприборов;
  • инвертор для трансформации тока;
  • хвостовая часть;
  • мачта.

Ротор с лопастями можно сделать самостоятельно, тогда как остальные элементы, вероятно, придётся купить или собрать из необходимых деталей. Кроме этого, для сборки самодельного ветряка потребуются такие инструменты и материалы:

  • пила по дереву;
  • ножницы по металлу;
  • горячий клей;
  • паяльник;
  • дрель.

Обязательно нужны винты и болты для соединения лезвий со ступицей и для скрепления металлической трубы с деревом.

Лопасти для ветрогенератора своими руками

Изготавливая лопасти самостоятельно, стоит особое внимание уделить соблюдению заданной чертежом формы изделий. Лопасти могут быть крыльчатого или парусного типа. Второй более прост в изготовлении, но имеет невысокий КПД, что делает его неэффективным в самодельных ветрогенераторах даже средних размеров.

Для изготовления лопастей самодельного ветрогенератора подойдут такие материалы как:

  • пластик;
  • дерево;
  • алюминий;
  • стекловолокно;
  • поливинилхлорид.

Устройство лопастной части ветрогенератора

Если выбирать поливинилхлорид, то для создания лопастей отлично подойдут ПВХ-трубы диаметром от 160 мм. Пластик и дерево — менее износостойкие материалы, которые под воздействием осадков и сильного ветра через несколько лет придут в негодность. Оптимальный вариант — алюминий: он прочный и лёгкий, устойчивый к разрыву и залому, невосприимчивый к влаге и повышенным температурам.

Пошаговая инструкция по изготовлению

Когда все чертежи будут составлены, а материалы и инструменты подготовлены, можно начинать собирать ветрогенератор своими руками, руководствуясь следующим порядком:

  1. Подготовить бетонный фундамент. Глубина ямы и объём бетонной смеси рассчитывается исходя из типа грунта и климатических условий. После заливки фундаменту нужно несколько недель, чтобы набрать нужную прочность. Только после этого можно устанавливать в него мачту на глубину 60-70 см, закрепив её растяжками.
  2. Поместить подготовленные лопасти в трубу, закрепить их с помощью винтов и гаек на втулке, на которую будет установлен двигатель.
  3. Расположить диодный мост рядом с двигателем и закрепите его с помощью саморезов. Подсоединить провод от двигателя к диодному мосту «плюс», а другой провод к отрицательному мосту.
  4. Закрепить вал двигателя, надеть на него втулку и плотно затянуть её против часовой стрелки.
  5. Уравновесить основание трубы с прикреплённым к нему двигателем и валом и отметить точку баланса.
  6. Закрепить основание прибора болтами.

Ветрогенератор может прослужить гораздо дольше, если покрасить не только лопасти, но основание, вал и крышку двигателя. Чтобы включить установку потребуется комплект проводов, зарядное устройство, амперметр и аккумулятор.

Подготовка автомобильного генератора

Для того чтобы сделать ветрогенератор своими руками из автомобильного генератора? потребуется установка силой от 95A с напряжением 12 В. При 125 оборотах в минуту он вырабатывает 15,5 Вт, а при 630 оборотах этот показатель составит 85,7 Вт. Если говорить о нагрузке в 630 об/мин, то вольтметр покажет 31,2 вольт, а амперметр – 13,5 ампер. Таким образом, мощность генератора составит 421,2 Вт. Для достижения этого показателя необходимо использовать неодимовые магниты, которые в 7 раз эффективнее, чем ферритовые.

В начале подготовки автомобильного генератора нужно удалить роторную обмотку магнитного возбуждения и электронные щётки с коллектором. На место кольцевых ферромагнетиков нужно установить неодимовые магниты в количестве 3 штук, размер каждого из них должен составлять 85 х 35 х 15 миллиметров. Недостатком использования мощных магнитов может стать «залипание», затрудняющее движение вала. Для его уменьшения магниты должны размещаться под небольшим углом относительно друг друга.

Перед запуском генератора, его нужно протестировать на токарном станке, раскрутив вал до 950–1000 об/мин. Если устройство работает нормально, отдача будет составлять не менее 200 Вт. В большинстве случаев подойдёт классическая силовая установка с вертикальной осью: она характеризуется низкими оборотами и бесшумностью.

В процессе эксплуатации ветрогенератора рекомендуется периодически проверять надёжность креплений у основания мачты, смазывать подшипники поворотного устройства, проводить балансировку наклона установки. Раз в полгода рекомендуется проверять и менять электроизоляцию, которая нередко повреждается из-за использования в неблагоприятных условиях.

Самодельный ветрогенератор, собранный из автомобильного генератора и простых деталей, способен обеспечить электроэнергией небольшой дом и стать автономным резервным источником питания. Экологически безопасный и нетребовательный в обслуживании, он окупится в течение 2–4 лет в зависимости и прослужит десятки лет.

Ветрогенератор своими руками: фото и описание изготовления

Подробное описание, как сделать ветрогенератор своими руками в домашних условиях: фото и описание изготовления аксиального генератора.

Приветствую! Понадобилось сделать качественный и надежный ветрогенератор из подручных материалов.

Мне не нужна была большая мощность и много энергии. Но хотелось иметь надежный ветрогенератор, чтобы на обычном ветру он стабильно вырабатывал 30-40 ватт/ч электроэнергии.


От старых ветрогенераторов у меня сохранились 10 катушек, там намотано примерно по 60 витков проводом 1.5мм. Эти катушки я решил применить для этого генератора. После недолгих поисков дешевых магнитов их удалось приобрести всего по 1,5$ за штуку, в количестве 20шт.

Генератор будет однофазный, 10 катушек и на каждую катушку по два магнита на дисках ротора.

Изготовление ветрогенератора начал с рамы, так сказать основы ветрогенератора. Ветряк решил сделать как и все по классической схеме со складывающимся хвостом. Нашел у себя куски профильной трубы из которой сварил раму со смещением ветроголовки относительно поворотной оси. От старого прицепа нашел ступицу, которую применил. Просверлил отверстие и вставил вал оси, далее приварил с обоих сторон.

Далее на фото можно видеть, как сделано крепление для хвоста и на сколько смещена от центра ось вращения генератора. Ось генератора приварена не совсем горизонтально. Я ее немного задрал в верх, примерно на 2-3градуса, это чтобы лопасти были подальше от мачты, ведь при сильном ветре они сильно прогибаются и могут побиться о мачту.

Штырь для хвоста приварен под углом 45 градусов относительно оси вращения винта, по вертикали отклонение на 20 градусов. Потом готовый хвост просто одевается на этот штырь. Когда ветрогенератор на ветру, то хвост смотрит в сторону, так-как ось вращения винта смещена от центра, таким образом достигается баланс, но если ветер становился сильнее, то винт уходит в сторону и хвост складываетя. Обычно трудно точно рассчитать хвост, его лучше потом подогнать под нужный ветер смотря когда он начинает складываться.

Площадь хвоста должна быть 20% от ометаемой площади винта.

Далее из металла были выточены два диска будущего ротора под магниты. Для дисков я вырезал две восьмиугольные заготовки, которые отнес к своим знакомым и они их них выточили мне на токарном станке два диска. Потом на дисках были размечены и просверлены отверстия для крепления.

Статор изготавливался тоже уже по отработанной всеми схеме. Из фанеры вырезается заготовка, потом кладутся и спаиваются катушки между собой.

Если вы делаете как я, однофазный генератор, то катушки между собой соединяются так, конец первой с концом второй катушки, а начало второй с началом третьей , и конец третьей с концом четвертой и т.д. Если перепутать соединение катушек, то генератор работать не будет.

Для трехфазного катушки в фазах соединяются в одном направлении, то-есть все катушки каждой из трех фаз конец с началом. (описание трёхфазного генератора здесь)

Вот моя заготовка для заливки статора, стыки и всю форму я промазал клеем ПВА, просто под рукой не оказалось ничего другого. Лучше форму смазывать например вазелином, жиром, воском, в общем тем что не позволит полиэфирной смоле прилипнуть к форме, иначе потом будет трудно выковырять статор из формы.

Чтобы катушки не куда не сдвинулись, я их закрепил на красный скотч, потом аккуратно залил приготовленную смолу и сверху притянул крышкой, которая у меня осталась после вырезания круга в фанере под статор.

Как смола полностью отвердела я извлек статор и сразу решил собрать генератор и проверить что получилось. Сначала покрутил руками без диодного моста, удалось руками раскрутить генератор до 15 вольт. Результат осень обрадовал, потом собрал диодный мост и уже измерения делал по постоянному току.

От руки до 15 вольт так-же, ток короткого замыкания от руки до 5А, генератор сильно сопротивляется, но результат превзошел все ожидания и оказался мощнее.

Пробовал крутить руками и заряжать аккумулятор, удалось получить ток зарядки до 1.1А, это где то при 300об/м, значит на ветру будет гораздо больше так-как винт легко должен раскручивается до 1000 об/м при наличие хорошего ветра.

На фото:  самодельный аксиальный генератор.

Так-же чтобы магниты не отпадали с дисков я их тоже залил, но уже эпоксидной смолой. Чтобы было хорошее сцепление смолы с металлом диски были еще раз зачищены.

Магниты на дисках должны чередоваться полюсами, и два диска должны притягиваться, то-есть магниты на дисках на против друг друга должны быть противоположными полюсами и притягиваться.

 

Лопасти изготовил из сосновой доски, решил сделать на этот раз быстроходные лопасти. Ранее я делал и ставил на свои ветряки много лопастей с большими углами относительно ветра. У них получался большой крутящий момент, но очень маленькие обороты.

Теперь я сделал три лопасти с углом всего 3 градуса. У них низкий стартовый момент, но он не важен так как генератор не имеет залипаний и легко начинает вращаться. Зато у лопастей большая быстроходность, это значит что генератор будет крутится на больших оборотах.

Вот ветрогенератор уже наконец собран и установлен на мачту. Как видно на фото труба одета на трубу, это самый простой вариант. Провод пустил снаружи без всяких токосьемных колец. Потом пущу его внутри трубы. После установки сразу-же подсоединил ветрогенератор напрямую к аккумулятору через амперметр. Ветер в этот день был небольшой и ток зарядки доходил до 5А. Но потом ветер стал сильней и ток бывало переваливал за 10А.

Нашел новый амперметр со шкалой до 30А, в сильные порывы ветра стрелка отклонялась практически до конца. Ниже как-раз запечатлен момент, когда ток зарядки составил 28А. Ток может быть значительно больше, но срабатывает защита от сильного ветра и винт отворачивается от него и сбрасывает мощность и обороты.

Конструкция крепкая и можно защиту сделать на срабатывание на более сильных ветрах, но провод катушек тонковат и будет сильно греться, поэтому лучше так не делать чтобы не перегрелся статор и не расплавился лак в катушках и смола.

Потом попробую поставить на этот ветрогенератор заводские скоростные лопасти, комплект стоит не дорого и должен дать существенную прибавку по оборотам на средних ветрах, а значит и мощность. На этом все, более подробно как это сделать вы можете найти на других страницах сайта.

Роторный ветрогенератор своими руками: чертежи, схемы, инструкция по сборке: a_forester — LiveJournal

     Ветровая электростанция, которая имеет горизонтальную ось вращения, хоть и обладает высокими показателями КПД, имеет некоторые недостатки. Например, осуществляемая передача через коллектор тока в состоянии вызвать значительные потери энергии и привести к таким неприятностям, как нарушение контактов из-за их окисления, снижение упругости пластин.

 Во многих ситуациях более практичным и выгодным будет вертикальный (роторный) ветрогенератор, который имеет свойство работать при ветре любого направления. Роторный ветрогенератор, как правило, устанавливается на мачте или столбе. Интересно, что сделать своими руками данное устройство не так сложно, как может показаться на первый взгляд, так как простота конструкции – одно из главных достоинств роторного ветрогенератора.


Для того чтобы соорудить роторный ветрогенератор своими руками необходимо:
1. Взять три диска из фанеры, имеющими диаметр 1000 миллиметров. Толщина каждого должна составлять не менее 10 миллиметров. Это будут аэродинамические шайбы-перегородки.
2. Потребуется четыре пластины с параметрами 500 на 1050 миллиметров и толщиной около 5. Это будут лопатки ротора.
3. Необходимо произвести стыковку данных элементов при помощи специальных дюралюминиевых уголков, которые имеют сечение 2x30x30 мм, также для соединения используются винты марки М5 вместе с шайбами и гайками.
4. Усиливается данная конструкция стяжками, выполненными из стальных стержней, имеющих диаметр 6 миллиметров и на концах резьбу.
5. Нижняя шайба должна быть укреплена брусками из дерева с сечением 40 на 40 миллиметров.
 

 После того, как была осуществлена предварительная сборка, ветряк полностью разбирается для того чтобы все элементы из фанеры примерно три раза пропитать олифой. Только после этого процесса и полного высыхания покрытия, конструкция собирается в окончательной сборке и после окрашивается алкидной эмалью.

В качестве подшипникового узла можно использовать специальный тормозной мотоциклетный барабан. Ротор устанавливается на него посредством дистанционных втулок и болтов уже марки М8 с шайбами и гайками. В процессе монтажа между узлом и самим ротором необходимо установить самодельную ведущую звездочку цепного мультипликатора, также ведомая звездочка должна быть установлена на вал генератора. Звездочка, обладающая ведущими функциями, вырезается из дюралюминиевого листа, который имеет толщину около 4 миллиметров. Технология изготовления состоит в том, чтобы сначала на ее делительной окружности разметить центры отверстий, которые образуют впадины для зубьев, потом при помощи сверла, напильника и ножовки следует сформировать сами зубья.

    Если есть желание или     необходимость применить   электрогенератор под   ветродвигатель, то рекомендуется   использовать тот, который   предназначен легковому   транспортному средству.
   Стоит   отметить, что данная   конструкция   совсем неплохо   работает вместе с   насосом, при   необходимости поднять   из   скважины воду или из колодца и       направить в водонапорную башню.  
  Для этой цели можно использовать   топливный автомобильный насос или   специальную водяную помпу, которая   раньше находилась в стиральной   машине.

  Первый изготавливается при   помощи одного или нескольких   кулачков, на одинаковом расстоянии расположенных по всему валу ветродвигателя, вторая – посредством ременной передачи.

Есть еще один способ изготовления ветрогенератора. Для этой цели необходимо:
Разрезать пополам пластиковую бутыль.
Закрепить части друг с другом при помощи специальных заранее приготовленных кружков из текстолита или фанеры.
Прямо по центру кружков необходимо установить ось вращения.
На ось закрепить сам генератор электрической энергии.

При желании можно сделать ветряк разборным, тогда появляется возможность применять его в походах для того чтобы осуществить подзарядку аккумуляторов фотоаппаратов, мобильных телефонов или батарей от ноутбука. Кроме того при помощи данного приспособления можно легко провести освещение всей палатки, опять же в походе, а при желании можно осветить вообще весь палаточный городок, если установить несколько подобных конструкций. Переносить такой генератор очень удобно, так как в разобранном виде он занимает совсем немного места. Чаши из пластика можно уложить одна в другую, а затем в них же уложит сам электрогенератор.

Для того чтобы стационарно установить данную конструкцию, например на садовом участке или на даче, лучше соорудить более надежный вид генератора — не разборный и капитально закрепить его на крыше.

Источник

Вертикальный ветрогенератор своими руками — пошаговые инструкции по сборке

Здесь вы узнаете:

Вертикальный ветрогенератор своими руками — это метод преобразования энергии ветра в электрическую энергию. Альтернативная энергия, получаемая от ветра — экологичный и экономичный способ.

Законность установки ветрогенератора

Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.


Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.


Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)

Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.

Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.

Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.

Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:

  • Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
  • Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
  • Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
  • Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.

При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.

  • Целесообразность устройства ветряка обосновывается в первую очередь достаточно высоким и стабильным ветряным напором в местности;
  • Необходимо располагать достаточно большим участком, полезная площадь которого не будет существенно сокращена из за установки системы;
  • Из-за сопровождающего работу ветряка шума желательно, чтобы между жильем соседей и установкой было не менее 200 м;
  • Убедительно аргументирует в пользу устройства ветрогенератора неуклонно повышающаяся стоимость электроэнергии;
  • Устройство ветрогенератора возможно только в местностях, власти которых не препятствуют, а лучше еще и поощряют использование зеленых видов энергии;
  • Если в регионе сооружения мини электростанции, перерабатывающей энергию ветра, случаются частые перебои, установка минимизирует неудобства;
  • Владелец системы должен быть готов к тому, что вложенные в готовое изделие средства не окупятся сразу. Экономический эффект может стать ощутимым через 10 — 15 лет;
  • Если окупаемость системы — не последний момент, стоит задуматься об сооружении мини электростанции собственными руками.

Преимущества и принцип работы ветряков

Современный вертикальный генератор – один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.


Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично

Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.

Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.


Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре

Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.

Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.


Ветряк, имеющий вертикальную ось вращения, по эффективности уступает своим горизонтальным аналогам. Зато не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте

Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.

Ветрогенератор с вертикальной осью вращения

В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.

За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:

С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.

К положительным особенностям данной конструкции можно отнести:

  • Самостоятельную ориентацию по отношению к воздушным потокам;
  • Удобное обслуживание установки.
  • Простота схемы агрегата.

К отрицательным относятся:

  • Нет возможности в самостоятельной раскрутке лопастей;
  • Значительная нагрузка на элементы конструкции;
  • Лопасти должны быть идентичны и соответствовать заданному профилю;
  • Повышенный уровень шума в процессе работы.
  • С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.

Достоинствами данной группы являются:

  • Для запуска в работу требуются незначительные потоки ветра;
  • Способность быстрого набора крутящего момента;
  • Надёжность конструкции;
  • Низкая стоимость.

К недостаткам можно отнести:

  • Низкий КПД устройств этой группы.

Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.

С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.

По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.

К положительным качествам устройств относятся:

  1. Простота в изготовлении;
  2. Способность быстрого набора скорости вращения;
  3. Низкий уровень шума.
  4. Надежность в работе.
  5. С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.

Положительные качества:

  1. Более низкие нагрузки на элементы конструкции;
  2. Быстрый набор скорости вращения.

Недостатки:

  • Повышенный уровень шума;
  • Высокая стоимость.
  • Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.

Достоинства агрегатов данной группы:

  • Более высокий КПД установок;
  • Чувствительность к потокам ветра.

Недостатки:

  • Высокая стоимость;
  • Повышенный уровень шума.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Карусельный и ортогональный роторы

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50%. В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

Вертикальный ротор с направляющим аппаратом

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

Как изготовить ветрогенератор с вертикальной осью вращения своими руками

Составные элементы:

  • Осевая мачта — это несущая конструкция в форме пирамиды, треноги или шеста высотой около пяти метров. На ней закрепляют лопасти и генератор.
  • Лопасти улавливают потоки ветра.
  • Статор вмещает в себя фазы из катушек.
  • Ротор — это подвижная часть ветряка.
  • Контроллер включает замедление ветрогенератора, когда тот развивает мощность, выше его базовых метрик.
  • Инвертор дает переменный ток.
  • Аккумулятор накапливает сгенерированную энергию.

Подготовка элементов

Чтобы сделать лопасти для вертикального ветрогенератора, понадобится качественный пластик и/или жесть. Например, лопастную конструкцию можно сделать из пластиковых труб, Тогда к каждой стороне трубы крепятся полукруглые жестяные фрагменты. Высота и радиус вращения должны достигать 70 см. Или же можно изготовить лопастную конструкцию из запчастей.

Для ротора нужны 2 ферритовых диска диаметром 32 см, 6 неодимовых магнитов и клей. Роторная система состоит из двух дисков. Схема каждого диска следующая: нужно так расположить магниты, чтобы их полярность чередовалась, угол между ними составлял 60 градусов, а диаметр размещения равнялся 16,5 см. После правильного размещения магниты заливаются клеем.

Для статора нужно сделать девять катушек с 60 витками медной проволоки диаметром 0,1 см. Чтобы сделать три фазы, катушки необходимо спаять между собой в следующем порядке:

  1. Для первой фазы начало 1-ой катушки соединяем с концом 4-ой, а начало 4-ой с концом 7-ой;
  2. Для второй фазы делаем то же самое, но начинаем со 2-ой катушки;
  3. Для изготовления третьей фазы начинаем с 3-ей катушки.

Форму для катушек делают из фанеры и выкладывают стекловолокном. После размещения фаз их нужно залить клеем и оставить сохнуть на несколько дней.

Монтаж конструкции

Когда с изготовлением составных элементов покончено, можно приступать к их соединению между собой. Сначала нужно соединить ротор и статор:

  • В верхнем диске ротора сделайте отверстия для четырех шпилек.
  • В статоре сделайте отверстия для крепления к подставке.
  • Положите нижний диск ротора на подставку магнитами вверх.
  • На нижнем роторе разместите статор и уприте шпильки в алюминиевую пластину.
  • Накройте конструкцию вторым роторным диском (магниты расположены внизу).
  • При помощи вращения шпилек добейтесь равномерного сближения верхнего и нижнего роторных дисков, после этого шпильки и пластину аккуратно убирают.
  • Зафиксируйте генератор гайками.

Готовый генератор прикрутите к осевой мачте. После этого к генератору можно прикреплять лопастную конструкцию. Теперь ваш ветряк готов к установке! Для установки ветряка подготовьте армированный фундамент и зафиксируйте конструкцию растяжкой.

В последнюю очередь подключается электросеть в следующем порядке: энергия от генератора попадает на контроллер, затем собирается на аккумуляторе, а потом преобразуется в переменный ток при помощи инвертора.

Ветрогенераторы своими руками на 220 в

Для того, чтобы собрать ветроуловитель нам понадобятся: генератор на 12 вольт, аккумуляторные батареи, преобразователь с 12 v на 220 в, вольтметр, медные провода, крепежи (хомуты, болты, гайки).


Чтобы ветрогенератор получился практичным и качественным, перед его изготовлением лучше дополнительно ознакомиться с подробной инструкцией

Изготовление любого ветряка предполагает наличие таких этапов как:

  1. Изготовление лопастей. Лопасти вертикального ветрогенератора можно сделать из бочки. Нарезать детали можно при помощи болгарки. Винт для небольшого ветряка можно изготовить из трубы ПВХ с сечением в 160 мм.
  2. Изготовление мачты. Мачта должна быть высотой не менее 6 метров. При этом, для того, чтобы крутящее усилие не сорвало мачту, ее необходимо закрепить ее на 4 растяжки. Каждую растяжку, при этом, нужно намотать на бревно, которое следует закопать глубоко в землю.
  3. Установка неодимовых магнитов. Магниты наклеиваются на диск ротора. Лучше выбирать прямоугольные магниты, магнитные поля в которых сосредотачиваются по всей поверхности.
  4. Намотка катушек генератора. Намотка выполняется медной нитью с диаметром не менее двух мм. При этом, мотков должно быть не более 1200.
  5. Фиксация лопастей к трубе при помощи гаек.

При наличии мощных аккумуляторных батарей и инвертора, полученное устройство сможет выработать такое количество электричества, которого будет достаточно для использования бытовой техники (например, холодильника и телевизора). Отлично подойдет такой генератор для поддержания работы систем освещения, отопления и вентиляции небольшого дачного домика, теплицы.

Сборка аксиальной ВЭУ на неодимовых магнитах

Поскольку неодимовые магниты в России появились относительно недавно, то и аксиальные ветрогенераторы с безжелезными статорами стали делать не так давно.

Появление магнитов вызвало ажиотажный спрос, но постепенно рынок насытился, и стоимость этого товара стала снижаться. Он стал доступен для умельцев, которые тут же приспособили его для своих разнообразных нужд.


Аксиальная ВЭУ на неодимовых магнитах с горизонтальной осью вращения – более сложная конструкция, требующая не только умения, но и определенных знаний

Если у вас имеется ступица от старого авто с тормозными дисками, то её и возьмем в качестве основы будущего аксиального генератора.

Предполагается, что эта деталь не новая, а уже эксплуатировавшаяся. В этом случае её необходимо разобрать, проверить и смазать подшипники, тщательно вычистить прочь осадочные наслоения и всю ржавчину. Готовый генератор не забудьте покрасить.


Ступица с тормозными дисками, как правило, достаётся умельцам в качестве одного из узлов старого автомобиля, отправившегося в утиль, поэтому нуждается в тщательной чистке

Распределение и закрепление магнитов

Неодимовые магниты должны быть наклеены на диски ротора. Для нашей работы возьмем 20 магнитов 25х8мм.

Конечно, можно использовать и другое количество полюсов, но при этом необходимо соблюдать следующие правила: количество магнитов и полюсов в однофазном генераторе должно совпадать, но, если речь идёт о трехфазной модели, то соотношение полюсов к катушкам должно составлять 2/3 или 4/3.

При размещении магнитов полюса чередуются. Важно не ошибиться. Если вы не уверены, что расположите элементы правильно, сделайте шаблон-подсказку или нанесите сектора прямо на сам диск.

Если у вас есть выбор, купите лучше не круглые, а прямоугольные магниты. В прямоугольных моделях магнитное поле сосредоточено по всей длине, а в круглых – в центре.

У противостоящих магнитов должны быть разные полюса. Вы ничего не перепутаете, если с помощью маркера пометите их знаками минус или плюс. Чтобы определить полюса, возьмите магниты и поднесите их друг к другу.

Если поверхности притягиваются, поставьте на них плюс, если отталкиваются, то пометьте их минусами. При размещении магнитов на дисках чередуйте полюса.


Магниты установлены с соблюдением правила чередования полисов, по наружному и внутреннему периметрам расположены бортики из пластилина: изделие готово к заливке эпоксидной смолой

Для надежности закрепления магнита нужно применять качественный и максимально сильный клей.

Чтобы усилить надежность фиксации, можно воспользоваться эпоксидной смолой. Её следует развести так, как это указано в инструкции, и залить ею диск. Смола должна покрыть диск целиком, но не стекать с него. Предотвратить вероятность стекания можно, если обмотать диск скотчем или сделать по его периметру временные пластилиновые ограждения из полимерной полосы.

Генераторы однофазного и трехфазного вида

Если сравнивать однофазный и трехфазный статоры, то последний окажется лучше. Однофазный генератор при нагрузке вибрирует. Причиной вибрации становится разница в амплитуде тока, возникающая из-за непостоянной его отдачи за момент времени.

Такого недостатка у трехфазной модели нет. Она отличается постоянной мощностью из-за компенсирующих друг друга фаз: когда в одной происходит нарастание тока, в другой он падает.

По итогам тестирования отдача трехфазной модели почти на 50% больше, чем аналогичный показатель однофазной. Ещё одним достоинством этой модели является то, что в отсутствии лишней вибрации повышается акустический комфорт при функционировании устройства под нагрузкой.

То есть, трехфазный генератор практически не гудит в процессе его эксплуатации. Когда вибрация снижается, срок службы устройства логично повышается.


В борьбе между трехфазными и однофазными устройствами неизменно побеждает трехфазное, потому что оно не так сильно гудит в процессе работы и служит дольше однофазного

Правила наматывания катушки

Если спросить специалиста, то он скажет, что перед тем, как наматывать катушки, нужно выполнить тщательный расчет. Практик в этом вопросе положится на свою интуицию.

Мы выбрали не слишком скоростной вариант генератор. У нас процедура зарядки двенадцативольтового аккумулятора должна начаться при 100-150 оборотах за минуту. Такие исходные данные требуют, чтобы общее количество витков всех катушек составило 1000-1200 штук. Эту цифру нам осталось поделить между всеми катушками и определить, сколько же витков будет на каждой.

Ветряк на низких оборотах может быть мощнее, если увеличится количество полюсов. Частота колебаний тока в катушках при этом увеличится. Если для намотки катушек применять провод большего сечения, сопротивление уменьшится, а сила тока увеличится. Не упустите из виду тот факт, что большее напряжение может «съедать» ток из-за сопротивления обмотки.

Процесс намотки можно облегчить и сделать эффективнее, если использовать для этой цели специальный станочек.


Совсем необязательно такой рутинный процесс как наматывание катушек делать вручную. Немного смекалки и отличный станочек, который легко справляется с намоткой, уже есть

На рабочие характеристики самодельных генераторов большое влияние оказывают толщина и количество магнитов, которые расположены на дисках. Совокупную итоговую мощность можно рассчитать, если намотать одну катушку, а затем прокрутить её в генераторе. Будущая мощность генератора определяется путем измерения напряжения на конкретных оборотах без нагрузки.

Приведем пример. При сопротивлении 3 Ом и 200 оборотах в минуту выходит 30 вольт. Если отнять от этого результата 12 вольт напряжения аккумулятора, получится 18 вольт. Делим этот результат на 3 Ом и получаем 6 ампер. Объём в 6 ампер и отправится на аккумулятор. Конечно, в расчете мы не учли потери в проводах и на диодном мосту: фактический результат окажется меньше расчетного.

Обычно катушки делают круглыми. Но, если их немного вытянуть, то получится больше меди в секторе и витки окажутся прямее. Если сравнивать размер магнита и диаметр внутреннего отверстия катушек, то они должны соответствовать друг другу или размер магнита может быть немного меньше.

Толщина статора, который мы делаем, должна правильно соотноситься с толщиной магнитов. Если статор сделать больше за счет увеличения количества витков в катушках, междисковое пространство возрастет, а магнитопоток уменьшится. Результат же может оказаться таким: образуется такое же напряжение, но, из-за увеличившегося сопротивления катушек, мы получим меньший ток.

Для изготовления формы для статора применяют фанеру. Впрочем, сектора для катушек можно разметить на бумаге, используя в качестве бордюров пластилин.

Если поверх катушек на дно формы поместить стеклоткань, прочность изделия повысится. Перед нанесением эпоксидной смолы нужно форму смазать вазелином или воском, тогда смола не прилипнет к форме. Некоторые используют вместо смазки скотч или пленку.

Между собой катушки закрепляются неподвижно. При этом концы фаз выводятся наружу. Шесть выведенных наружу проводов следует соединить звездой или треугольником. Вращая собранный генератор рукой, производят его тестирование. Если напряжение будет 40 V, то сила тока составит примерно 10 ампер.

Окончательная сборка устройства

Длина готовой мачты должна составлять примерно 6-12 метров. При таких параметрах её основание должно быть забетонированным. Сам ветряк будет закреплен на верхней части мачты.

Чтобы до него можно было добраться в случае поломки, нужно предусмотреть в основании мачты специальное крепление, которое позволит поднимать и опускать трубу, используя при этом ручную лебедку.


Высоко вздымается мачта с прикрепленным к ней ветрогенератором, но предусмотрительный мастер сделал специальное устройство, которое позволяет при необходимости опустить конструкцию на землю

Чтобы изготовить винт, можно использовать трубу ПВХ диаметром 160 мм. Она будет использоваться для вырезания из её поверхности двухметрового винта, состоящего из шести лопастей. Форму лопастей лучше разработать самостоятельно опытным путем. Цель – усилить крутящий момент при низких оборотах.

Винт-пропеллер следует беречь от слишком сильного ветра. Для решения этой задачи используют складной хвост. Выработанная энергия накапливается в аккумуляторах.

Вниманию наших читателей мы предоставили два варианта ветрогенераторов, сделанных своими руками на 220 в, которые пользуются повышенным вниманием не только владельцев загородной недвижимости, но и простых дачников.

Обе модели ВЭУ эффективны по-своему. Особенно хорошие результаты эти устройства способны продемонстрировать в степной местности с частыми и сильными ветрами. Они достаточно эффективны, чтобы использоваться в организации альтернативного отопления дома и в поставке электроэнергии. И их не так уж сложно соорудить своими руками.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора — достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Результат работы ветряка: расчет эффективности

Тестовые испытания ветрогенератора при разной скорости ветра показали следующие результаты:

  • при скорости ветра 5 м/с получаем 60 об/мин — 7 В и 2,3 А = 16 Вт;
  • при скорости ветра 10,6 м/с получаем около 120 об/мин — 13 В и 3,4 А = 44 Вт;
  • при скорости 15,3 м/с примерно 180 об/мин — 15 В и 5,1 А = 76,5 Вт;
  • при скорости ветра 18 м/с получаем 240 об/мин — 18 В и 9 А = 162 Вт.

В основном ветряк выдает 16–45 Вт, так как ветер более 15 м/с бывает редко. Однако, если поставить скоростной винт, тогда можно получить более высокие результаты.

Проект ветряной турбины

для ветроэнергетической системы

Проект ветровой турбины для ветроэнергетики

В основе любой возобновляемой ветроэнергетической системы лежит ветряная турбина . Конструкция ветряной турбины обычно состоит из ротора, генератора постоянного тока (DC) или генератора переменного тока (AC), который установлен на вышке высоко над землей.

Итак, как же устроены ветряные турбины для выработки электроэнергии. Проще говоря, ветряная турбина — это полная противоположность домашнему или настольному вентилятору.Вентилятор использует электричество из сети для вращения и циркуляции воздуха, создавая ветер.

С другой стороны, конструкции ветряных турбин используют силу ветра для выработки электроэнергии. Движение ветра вращает или вращает лопасти турбины, которые улавливают кинетическую энергию ветра и преобразуют эту энергию во вращательное движение через вал, чтобы приводить в действие электрический генератор и вырабатывать электричество, как показано.

Типовая конструкция ветряной турбины

На изображении выше показаны основные компоненты, составляющие типичную конструкцию ветряной турбины .Ветряная турбина извлекает кинетическую энергию из ветра, замедляя ветер и передавая эту энергию вращающемуся валу, поэтому важно иметь хорошую конструкцию. Доступная мощность ветра, доступная для уборки урожая, зависит как от скорости ветра, так и от площади, охватываемой вращающимися лопастями турбины.

Таким образом, чем выше скорость ветра или чем больше лопасти ротора, тем больше энергии может быть извлечено из ветра. Таким образом, мы можем сказать, что выработка энергии ветряной турбиной зависит от взаимодействия между лопастями ротора и ветром, и именно это взаимодействие важно для конструкции ветряной турбины .

Чтобы улучшить это взаимодействие и, следовательно, повысить эффективность, доступны два типа конструкции ветряных турбин. Общая горизонтальная ось и вертикальная ось конструкции ветряной турбины. Конструкция ветряной турбины с горизонтальной осью улавливает больше ветра, поэтому выходная мощность выше, чем у ветряной турбины с вертикальной осью. Недостатком конструкции с горизонтальной осью является то, что мачта, необходимая для поддержки ветряной турбины, намного выше, а конструкция лопастей ротора должна быть намного лучше.

Типовая конструкция ветряной турбины

Турбина с вертикальной осью или VAWT проще в проектировании и обслуживании, но обеспечивает более низкую производительность, чем типы с горизонтальной осью, из-за высокого лобового сопротивления простой конструкции лопастей ротора. Большинство ветряных турбин, вырабатывающих электроэнергию сегодня, коммерчески или внутри страны, являются машинами с горизонтальной осью, поэтому именно эти типы ветряных турбин конструкции мы рассмотрим в этом руководстве по ветряным турбинам.

Ротор — это основная часть современной конструкции ветряной турбины, которая собирает энергию ветра и преобразует ее в механическую энергию в форме вращения.Ротор состоит из двух или более «лопастей» из ламинированного дерева, стекловолокна или металла и защитной ступицы, которая вращается (отсюда и название) вокруг центральной оси.

Так же, как крыло самолета, лопасти ветряных турбин создают подъемную силу за счет своей изогнутой формы. Лопасти ротора отбирают часть кинетической энергии из движущихся воздушных масс в соответствии с принципом подъемной силы со скоростью, определяемой скоростью ветра и формой лопастей. Конечный результат — подъемная сила, перпендикулярная направлению потока воздуха.Затем уловка состоит в том, чтобы сконструировать лопасть ротора так, чтобы она создавала нужную величину подъема и тяги лопасти ротора, обеспечивая оптимальное замедление воздуха и не более того.

К сожалению, лопасти ротора турбины не улавливают 100% всей мощности ветра, поскольку это означало бы, что воздух за лопатками турбины был бы полностью неподвижен и, следовательно, не позволял бы ветру проходить через лопасти. Теоретическая максимальная эффективность, которую лопасти ротора турбины могут извлекать из энергии ветра, составляет от 30 до 45% и зависит от следующих переменных лопаток ротора: Конструкция лопастей , Число лопастей , Длина лопастей , Лопасти Шаг / угол , Форма лезвия и Материалы и вес лезвия и это лишь некоторые из них.

Конструкция лопастей — Конструкции лопастей ротора работают по принципу подъема или сопротивления для извлечения энергии из текущих воздушных масс. В конструкции подъемных лопастей используется тот же принцип, который позволяет самолетам, воздушным змеям и птицам летать, создавая подъемную силу, перпендикулярную направлению движения. Лопасть несущего винта по существу представляет собой аэродинамическое крыло или крыло, по форме напоминающее крыло самолета. Когда лезвие рассекает воздух, между верхней и нижней поверхностями лезвия создается разница в скорости ветра и давлении.

Давление на нижней поверхности больше и, таким образом, «поднимает» лезвие вверх, поэтому мы хотим сделать это усилие как можно большим. Когда лопасти прикреплены к центральной оси вращения, как ротор ветряной турбины, эта подъемная сила преобразуется во вращательное движение.

Этой подъемной силе противодействует сила сопротивления, которая параллельна направлению движения и вызывает турбулентность вокруг задней кромки лопасти, когда она рассекает воздух. Эта турбулентность оказывает тормозящее действие на лопасть, поэтому мы хотим сделать эту силу сопротивления как можно меньшей.Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.

Конструкции с тормозами больше используются для вертикальных ветряных турбин с большими чашечными или изогнутыми лопастями. Ветер буквально выталкивает лопасти, прикрепленные к центральному валу. Преимущество лопастей ротора, спроектированных с помощью сопротивления, заключается в более низких скоростях вращения и высоком крутящем моменте, что делает их полезными для перекачивания воды и мощности сельскохозяйственных машин. Ветровые турбины с лифтовым приводом имеют гораздо более высокую скорость вращения, чем тормозные, и поэтому хорошо подходят для выработки электроэнергии.

Номера лопастей — количество лопастей ротора в конструкции ветряной турбины обычно определяется аэродинамической эффективностью и стоимостью. Идеальная конструкция ветряной турбины должна иметь множество тонких лопастей ротора, но большинство генераторов ветряных турбин с горизонтальной осью имеют только одну, две или три лопасти ротора. Увеличение количества лопастей ротора выше трех дает лишь небольшое увеличение эффективности ротора, но увеличивает его стоимость, поэтому более трех лопастей обычно не требуется, но для домашнего использования доступны небольшие высокоскоростные многолопастные турбогенераторы.Как правило, чем меньше количество лезвий, тем меньше материала требуется во время производства, что снижает их общую стоимость и сложность.

Роторы с одной лопастью имеют противовес на противоположной стороне ротора, но страдают от высокого напряжения материала и вибрации из-за негладкого вращательного движения одной лопасти, которая должна двигаться быстрее, чтобы улавливать такое же количество энергии ветра.

Также с роторами с одной или даже двумя лопастями большая часть доступного движения воздуха и, следовательно, энергии ветра проходит через непромокаемую площадь поперечного сечения турбины, не взаимодействуя с ротором, что снижает их эффективность.

Многолопастные роторы, напротив, имеют более плавное вращение и более низкий уровень шума. Более низкие скорости вращения и крутящий момент возможны с использованием многолопастных конструкций, что снижает напряжения в трансмиссии, что приводит к снижению затрат на редуктор и генератор. Однако конструкции ветряных турбин с множеством лопастей или очень широкими лопастями будут подвергаться очень большим нагрузкам при очень сильном ветре, поэтому в большинстве конструкций ветряных турбин используются три лопасти ротора.

Нечетное или четное количество лопастей ротора — конструкция ветряной турбины с «ЧЕТНЫМ» количеством лопастей ротора, 2, 4 или 6 и т. Д., Может иметь проблемы со стабильностью при вращении.Это потому, что у каждой лопасти ротора есть точная и противоположная лопасть, которая расположена на 180 o в противоположном направлении. Когда ротор вращается, в тот самый момент, когда самая верхняя лопасть направлена ​​вертикально вверх (положение на 12 часов), самая нижняя лопасть направлена ​​прямо вниз перед опорной башней турбины. В результате самая верхняя лопасть изгибается назад, поскольку она получает максимальную силу от ветра, называемую «осевой нагрузкой», в то время как нижняя лопасть проходит в безветренную зону непосредственно перед опорной башней.

Этот неравномерный изгиб лопастей ротора турбины (крайний верхний изгиб по ветру, а нижний прямой) при каждом вертикальном выравнивании создает нежелательные силы на лопасти ротора и вал ротора, поскольку две лопасти изгибаются вперед и назад при вращении. Для небольшой турбины с жесткими алюминиевыми или стальными лопастями это может не быть проблемой, в отличие от более длинных пластиковых лопаток, армированных стекловолокном.

Конструкция ветряной турбины, которая имеет «ODD» количество лопастей ротора (по крайней мере, три лопасти), вращается более плавно, поскольку гироскопические силы и силы изгиба более равномерно уравновешены между лопастями, что увеличивает стабильность турбины.

Самая распространенная конструкция ветряных турбин с нечетными лопастями — это трехлопастные турбины. Энергоэффективность трехлопастного ротора немного выше, чем у двухлопастного ротора аналогичного размера, а благодаря дополнительной лопасти они могут вращаться медленнее, что снижает износ и шум.

Кроме того, чтобы избежать турбулентности и взаимодействия между соседними лопастями, расстояние между каждой лопастью многолопастной конструкции и ее скоростью вращения должно быть достаточно большим, чтобы одна лопасть не столкнулась с нарушенным, более слабым потоком воздуха, вызванным предыдущим лезвие проходит через ту же точку прямо перед ним.Из-за этого ограничения большинство ветряных турбин необычного типа имеют максимум три лопасти на роторе и обычно вращаются с меньшей скоростью.

Как правило, роторы трехлопастных турбин лучше вписываются в ландшафт, более эстетичны и более аэродинамически эффективны, чем конструкции с двумя лопастями, что способствует тому, что трехлопастные ветряные турбины более доминируют на рынке ветроэнергетики. Хотя некоторые производители выпускают двух- и шестилопастные турбины (для парусных лодок).

Другие преимущества роторов с нечетными (тремя) лопастями включают более плавную работу, меньший шум и меньшее количество столкновений с птицами, что компенсирует недостаток более высоких материальных затрат. Количество лезвий существенно не влияет на уровень шума.

Длина лопасти ротора — Три фактора определяют, сколько кинетической энергии может быть извлечено из ветра ветряной турбиной: «плотность воздуха», «скорость ветра» и «площадь ротора». Плотность воздуха зависит от того, насколько вы находитесь над уровнем моря, а скорость ветра зависит от погоды.Тем не менее, мы можем контролировать площадь вращения, охватываемую лопастями ротора, увеличивая их длину, поскольку размер ротора определяет количество кинетической энергии, которую ветровая турбина может улавливать от ветра.

Лопасти ротора вращаются вокруг центрального подшипника, образуя идеальный круг 360 o при его вращении, и, как мы знаем из школы, площадь круга определяется как: π.r 2 . Таким образом, по мере увеличения рабочей площади ротора площадь, которую он покрывает, также увеличивается пропорционально квадрату радиуса.Таким образом, удвоение длины лопастей турбины приводит к увеличению ее площади в четыре раза, что позволяет ей принимать в четыре раза больше энергии ветра. Однако это значительно увеличивает размер, вес и, в конечном итоге, стоимость конструкции ветряной турбины.

Одним из важных аспектов длины лопасти является конечной скорости вращения ротора, являющейся результатом угловой скорости. Чем больше длина лопатки турбины, тем быстрее вращается наконечник при заданной скорости ветра. Аналогично, для данной длины лопасти ротора, чем выше скорость ветра, тем быстрее вращение.

Тогда почему мы не можем иметь конструкцию ветряной турбины с очень длинными лопастями ротора, работающую в ветреной среде, производя много бесплатного электричества от ветра. Ответ заключается в том, что наступает момент, когда длина лопастей ротора и скорость ветра фактически снижают выходную эффективность турбины. Вот почему многие более крупные ветряные турбины вращаются с гораздо меньшей скоростью.

Эффективность — это функция от того, насколько быстро кончик ротора вращается при заданной скорости ветра, создавая постоянное отношение скорости ветра к кончику, называемое «отношением концевых скоростей» (λ), которое представляет собой безразмерную единицу, используемую для максимизации эффективности ротора.Другими словами, «отношение конечной скорости» (TSR) — это отношение скорости кончика вращающейся лопасти в об / мин к скорости ветра в километрах в час (км / ч) или милях в час (миль / ч). ).

Хорошая конструкция ветряной турбины определит мощность ротора для любой комбинации скорости ветра и скорости ротора. Чем больше это отношение TSR, тем быстрее вращается ротор ветряной турбины при заданной скорости ветра. Скорость вала, на котором фиксируется ротор, также указывается в оборотах в минуту (об / мин) и зависит от конечной скорости и диаметра лопастей турбины.

Скорость вращения турбин определяется как: об / мин = скорость ветра x передаточное отношение конечной скорости x 60 / (диаметр x π).

Если ротор турбины вращается слишком медленно, он позволяет беспрепятственно проходить слишком большому количеству ветра и, таким образом, не извлекает столько энергии, сколько могло бы. С другой стороны, если лопасть ротора вращается слишком быстро, она кажется ветру как один большой плоский вращающийся круглый диск, который создает большое сопротивление и потери на конце ротора, замедляя ротор. Поэтому важно согласовать скорость вращения ротора турбины с конкретной скоростью ветра, чтобы получить оптимальный КПД.

Роторы турбин с меньшим числом лопастей достигают максимальной эффективности при более высоких передаточных числах, и, как правило, конструкции трехлопастных ветряных турбин для выработки электроэнергии имеют передаточное число оконечных скоростей между 6 и 8, но будут работать более плавно, поскольку они имеют три лопасти. С другой стороны, турбины, используемые для перекачивания воды, имеют более низкое передаточное число от 1,5 до 2, поскольку они специально разработаны для создания высокого крутящего момента на низких скоростях.

Шаг / угол лопастей ротора — лопасти ротора ветряной турбины фиксированной конструкции, как правило, не прямые или плоские, как крылья самолета, а вместо этого имеют небольшой изгиб и сужение по длине от кончика до основания, чтобы обеспечить различные скорости вращения. клинок.Этот поворот позволяет лопасти поглощать энергию ветра, когда ветер идет на нее под разными тангенциальными углами, а не только прямо. Прямая или плоская лопасть ротора перестанет подавать подъем и может даже остановиться (сваливаться), если лопасть несущего винта ударится ветром под разными углами, называемыми «углом атаки», особенно если этот угол атаки слишком крутой.

Следовательно, чтобы поддерживать лопасть ротора под оптимальным углом атаки, увеличивая подъемную силу и эффективность, лопасти конструкции ветряной турбины обычно скручены по всей длине лопасти.Кроме того, этот поворот в конструкции ветряной турбины предотвращает слишком быстрое вращение лопастей ротора при высоких скоростях ветра.

Однако для очень крупномасштабных конструкций ветряных турбин, используемых для выработки электроэнергии, это скручивание лопастей может сделать их конструкцию очень сложной и дорогостоящей, поэтому для идеального выравнивания угла атаки лопастей используется другая форма аэродинамического контроля. с направлением ветра.

Аэродинамической мощностью, производимой ветряной турбиной, можно управлять, регулируя угол наклона ветряной турбины в зависимости от угла атаки ветра, когда каждая лопасть вращается вокруг своей продольной оси.Тогда лопасти ротора с регулировкой шага могут быть более плоскими и прямыми, но, как правило, эти большие лопасти имеют похожий поворот в своей геометрии, но намного меньше, чтобы оптимизировать тангенциальную нагрузку на лопасть ротора.

Каждая лопасть ротора имеет механизм вращения, пассивный или динамический, встроенный в основание лопасти, обеспечивающий равномерное постепенное регулирование шага по всей длине (постоянное вращение). Требуемый шаг наклона составляет всего несколько градусов, так как небольшие изменения угла наклона могут сильно повлиять на выходную мощность, поскольку мы знаем из предыдущего урока, что энергия, содержащаяся в ветре, пропорциональна кубу скорости ветра.

Одним из основных преимуществ управления шагом лопастей ротора является увеличение окна скорости ветра. Положительный угол наклона создает большой пусковой крутящий момент, когда ротор начинает вращаться, снижая скорость ветра при включении. Аналогичным образом, при высоких скоростях ветра, когда достигается предел максимальной скорости роторов, можно регулировать шаг, чтобы обороты роторов не превысили его предел за счет снижения их эффективности и угла атаки.

Регулировка мощности ветряной турбины может быть достигнута с помощью управления шагом на лопастях ротора для уменьшения или увеличения подъемной силы на лопастях путем управления углом атаки.Лопасти меньшего размера достигают этого за счет небольшого поворота в их конструкции.

В более крупных коммерческих ветряных турбинах используется либо пассивное регулирование шага с помощью центробежных пружин и рычагов (аналогично роторам вертолетов), либо активное с использованием небольших электродвигателей, встроенных в ступицу лопастей, чтобы повернуть ее на требуемые несколько градусов. Основные недостатки регулировки высоты тона — надежность и стоимость.

Конструкция лопастей — кинетическая энергия, извлекаемая из ветра, зависит от геометрии лопастей ротора, и определение аэродинамически оптимальной формы и конструкции лопастей имеет важное значение.

Но так же, как аэродинамический дизайн лопасти несущего винта, не менее важен и конструктивный дизайн. Конструктивная конструкция лопасти состоит из выбора материала и прочности, поскольку лопасти изгибаются и изгибаются под действием энергии ветра во время вращения.

Очевидно, что идеальный конструкционный материал для лопасти ротора сочетает в себе необходимые структурные свойства, такие как высокое отношение прочности к массе, высокую усталостную долговечность, жесткость, собственную частоту вибрации и сопротивление усталости, а также низкую стоимость и способность легко формироваться. в желаемую форму крыла.

Роторные лопасти небольших турбин, используемых в жилых помещениях, мощностью от 100 Вт и выше, как правило, изготавливаются из массивной резной древесины, деревянных ламинатов или композитных материалов из шпона, а также из алюминия или стали. Деревянные лопасти ротора прочные, легкие, дешевые, гибкие и популярны в большинстве конструкций ветряных турбин, изготовленных своими руками, поскольку их легко изготовить. Однако низкая прочность деревянных ламинатов по сравнению с другими древесными материалами делает их непригодными для лезвий с тонкой конструкцией, работающих на высоких скоростях острия.

Алюминиевые лезвия также легкие, прочные и с ними легко работать, но они более дорогие, легко гнутся и страдают от усталости металла. Точно так же в стальных лопастях используется самый дешевый материал, и из них можно формировать изогнутые панели по требуемому профилю крыла. Тем не менее, в стальные панели гораздо труднее ввести скручивание, и вместе с плохими усталостными свойствами, то есть ржавчиной, сталь используется редко.

Лопасти ротора, используемые для очень большой горизонтальной оси ветряной турбины конструкции , сделаны из армированных пластиковых композитов с наиболее распространенными композитами, состоящими из стекловолокна / полиэфирной смолы, стекловолокна / эпоксидной смолы, стекловолокна / полиэстера и композитов из углеродного волокна.Композиты из стекловолокна и углеродного волокна имеют значительно более высокое отношение прочности на сжатие к массе по сравнению с другими материалами. Кроме того, стекловолокно является легким, прочным, недорогим, обладает хорошими усталостными характеристиками и может использоваться в различных производственных процессах.

Размер, тип и конструкция ветряной турбины, которая может вам понадобиться, зависит от вашего конкретного применения и требований к мощности. Конструкции малых ветряных турбин варьируются в размерах от 20 Вт до 50 киловатт (кВт) с меньшими или «микро» (от 20 до 500 Вт) турбинами, которые могут использоваться в жилых районах для различных применений, таких как производство электроэнергии для зарядки аккумуляторов и питания. огни.

Энергия ветра является одним из наиболее быстрорастущих источников возобновляемой энергии в мире, поскольку это чистый, широко распространенный энергетический ресурс, который находится в изобилии, имеет нулевую стоимость топлива и технологию производства электроэнергии без выбросов. Большинство современных ветряных генераторов, доступных сегодня, спроектированы для установки и использования в бытовых установках.

В результате они стали меньше и легче, что позволяет быстро и легко монтировать их непосредственно на крыше, на короткой опоре или башне.Установка более нового турбогенератора как части вашей домашней ветроэнергетической системы позволит вам снизить большую часть более высоких затрат на обслуживание и установку более высокой и более дорогой турбинной башни, как это было бы раньше в прошлом.

В следующем уроке о Wind Energy мы рассмотрим работу и конструкцию генераторов ветряных турбин, используемых для выработки электроэнергии в составе домашней ветряной системы.

Простая ветряная турбина мощностью 200 Вт, сделанная своими руками, построенная из хозяйственных материалов

Поделиться — это забота!

Zoetrope — это «недорогая ветряная турбина с открытым исходным кодом», которую вы можете построить дома очень недорого и из материалов, которые вы можете найти дома или в местном хозяйственном магазине.Вырабатывает около 150-200 Вт электроэнергии в зависимости от местоположения.

Планы бесплатно доступны по лицензии Creative Commons, что означает, что их можно бесплатно использовать и улучшать в своем собственном проекте дома.

Zoetrope ветряная турбина с вертикальной осью, Источник: Appliedsciences.net CC BY-SA 4.0

Zoetrope ветряная турбина с вертикальной осью, Источник: Appliedsciences.net CC BY-SA 4.0

Прикладные науки приняли решение открыть исходный код ветряной турбины и предоставить бесплатное ознакомление с ветроэнергетикой, тем самым позволив другим улучшить дизайн и функциональность.Руководство по строительству представляет собой реализацию решения с открытым исходным кодом. Он подробно описывает процесс сборки и включает полный список материалов, а также рекомендуемые инструменты. — Прикладные науки

Ветряная турбина Zoetrope, Источник: Appliedsciences.net CC BY-SA 4.0

Вертикально-осевой ветряк, Источник: Appliedsciences.net CC BY-SA 4.0

Zoetrope — это ветряная турбина с вертикальной осью, сделанная из обычных материалов, таких как печная труба, металлические кронштейны, пластиковый лист и ступица прицепа.Многие материалы можно найти в местных магазинах бытовой техники или товаров для дома, остальные можно сделать дома или купить в Интернете. Zoetrope был заказан жителем Вашингтона (США) и сторонником возобновляемых источников энергии Майком Мароном для обеспечения дополнительного нагрева воды.

Схема подключения

Zoetrope, Источник: Appliedsciences.net CC BY-SA 4.0

Подобные проекты делают возобновляемые источники энергии доступными для широкой аудитории домашних мастеров, которые могут быть не готовы покупать дорогостоящие ветряные или солнечные электростанции.Одна небольшая турбина с вертикальной осью может не привести в действие весь ваш дом, но это отличное начало.

Чертежи можно найти на ветряной турбине Zoetrope

.

Шесть инновационных проектов ветряных турбин

Cat DiStasio

Международная энергетическая ассоциация (МЭА) объявила на прошлой неделе, что мощности возобновляемых источников энергии во всем мире впервые затмили угольную. Ветроэнергетика составляет значительную часть мировой возобновляемой энергии, и с учетом всех последних технологических инноваций в конструкции ветряных турбин нет ничего удивительного в том, что она стала наиболее быстрорастущей формой чистой энергии.Используя усовершенствованные технологии, инженеры разработали новые устройства, которые более эффективны и безопасны для птиц. Некоторые ветряные турбины могут даже генерировать энергию, пока есть воздух.

Первая в мире турбина против тайфуна

Первая в мире турбина от тайфуна была изобретена Ацуши Симидзу, чтобы использовать огромное количество энергии, содержащейся в штормах, характерных для его родины в Японии. По его оценкам, энергия, накопленная в одном тайфуне, могла бы обеспечивать нацию 50 лет, если бы только ее можно было использовать.Устройство Симидзу, похожее на взбиватель яиц, представляет собой ветряной генератор Magnus с вертикальной осью, достаточно прочный, чтобы противостоять сильным ветрам тайфуна. Испытания, проведенные с использованием масштабной модели ветроэнергетического генератора, были многообещающими, и Shimizu ставит перед собой задачу связаться с инвесторами, чтобы помочь в создании более крупных практических версий в надежде однажды подать энергию тайфуна в национальную сеть.

Гибридная ветро-гидротурбина

Как ветряная турбина вырабатывает электричество, когда нет ветра? Обычные турбины просто не могут, но новый проект от Max Bögl Wind AG и GE Renewable Energy объединяет традиционные лопастные турбины с гидроэнергетической технологией для первого в мире гибридного ветро-гидроэнергетического генератора.Проект, который будет расположен в Швабско-Франконском лесу Германии, первоначально будет включать четыре ветряные турбины мощностью 13,6 мегаватт. Первый этап планируется подключить к сети в следующем году, а второй этап добавит гидроэлектростанцию ​​мощностью 16 МВт, строительство которой ожидается в 2018 году.

Плавающие ветряные турбины с гелием

В то время как большинство проектов в области ветроэнергетики прочно укоренились на земле или в море, некоторые недавние инновации помещают турбины высоко в небо, где ветер движется быстрее всего.Первая в мире воздушная ветряная турбина была запущена в 2014 году над Фэрбенксом, Аляска. Поднимаемая гелием, как гигантский цилиндрический дирижабль, BAT-Buoyant Airborne Turbine была спроектирована и построена стартапом MIT Altaeros Energies, чтобы парить в воздухе на высоте 1000 футов и улавливать ветровые потоки, в пять-восемь раз более мощные, чем ветер на уровне земли. В ходе 18-месячного эксперимента было произведено достаточно энергии, чтобы обеспечить энергией десяток домашних хозяйств. Благодаря своему высокому расположению системы BAT также могут передавать сигналы Wi-Fi и сотовой связи и выступать в качестве датчиков погоды.

Ветрогенератор Vortex Bladeless

Безопасность птиц — большая проблема в мире ветряных турбин. Чтобы уменьшить опасность для наших летающих пернатых друзей, инженеры создали ветрогенератор Vortex Bladeless, который имеет форму высокой и тонкой соломки, а не имеет больших вращающихся лопастей. Устройство собирает энергию из закрученных вихрей в движущемся воздухе, а поскольку безлопастные ветровые генераторы высоки и тонки, некоторые из них могут быть установлены в пространстве, занимаемом одностворчатой ​​турбиной.Его создатели говорят, что Vortex Bladeless сокращает производственные затраты на 53 процента и расходы на обслуживание на 80 процентов по сравнению с традиционными турбинами, а также имеет меньший углеродный след.

Вышка из аэродинамической трубы INVELOX от SheerWind

Эта инновационная ветряная турбина способна производить в 600 раз больше энергии, чем обычные ветряные мельницы. Турбина SheerWind Invelox — это туннельный генератор энергии ветра, который использует ветер с уровня земли и направляет его внутрь, увеличивая скорость воздуха.Генератор Invelox может работать даже в условиях слабого ветра и, поскольку у него нет внешних лопастей, вращающихся с высокой скоростью, он не подвергает опасности местную дикую природу. Кроме того, его строительство дешевле, чем традиционные ветряные турбины.

Ветровая установка для ловли птиц

Один из старейших дизайнов в этом обзоре был создан 89-летним ветераном вооруженных сил, который также любит птиц. В 2012 году Раймонд Грин разработал генератор Catching Wind Power, который направляет потоки ветра с помощью того, что выглядит как гигантский мегафон, а затем сжимает входящий воздух, чтобы создать больше энергии в турбине внутри.Однако нет внешних движущихся частей, которые представляли бы угрозу для птиц или летучих мышей, что делает Catching Wind Power намного безопаснее, чем традиционные конструкции. Грин разработал масштабируемую систему, надеясь, что как жилые, так и промышленные установки могут генерировать возобновляемую энергию, не подвергая опасности птиц.

Все продукты, рекомендованные Engadget, выбираются нашей редакционной группой, независимо от нашей материнской компании. Некоторые из наших историй содержат партнерские ссылки. Если вы покупаете что-то по одной из этих ссылок, мы можем получать партнерскую комиссию.

4 ультрасовременных ветроэнергетических проекта, которые удваиваются как искусство — Land Art Generator

Отвечая на вопрос о ветроуборочных технологиях, большинство людей, вероятно, думают о гигантских турбинах, разбросанных по любому ландшафту. Но сегодня есть еще много способов добыть этот богатый природный ресурс.

Выделенные ниже четыре заявки на конкурс дизайна Land Art Generator 2018 для Мельбурна демонстрируют захватывающие достижения в области технологий ветроэнергетики, происходящие за кулисами, и то, как эти инновации могут быть включены в общедоступные произведения искусства.Каждый из этих дизайнов для треугольника Сент-Кильда в городе Порт-Филлип одновременно красив и функциональн, обеспечивая звездные модели для городского поколения в пост-углеродную эпоху.

Seaflute

Seaflute
Команда художников: Иман Халили, Азиз Халили, Пуйя Халили, Лалех Джавахери
Энергетические технологии: генератор электроэнергии с прямым ветром (D-WEG)
Годовая мощность: 1200 МВтч
Подача заявки на конкурс дизайна Land Art Generator 2018 для Мельбурн

Азиз Халили с помощью сыновей Имана и Пуйи из Ionics Research + BETTER в Канаде разработал устройство в форме бутылки, которое использует технологию Direct Wind to Electricity Generator (D-WEG) для преобразования энергии ветра в электричество.Никаких движущихся частей. Минимальные потери энергии. Ветер проникает в узкое отверстие, создавая сзади вакуум, который всасывает воздух из салона. Затем больше воздуха устремляется, чтобы заполнить это пространство, создавая постоянный мощный поток воздуха от отверстия конструкции к задней части. Когда этот воздух проходит через узкую горловину Seaflute , которая оснащена генератором электростатических ионов, он создает длинный поток заряженных электронов, которые затем сталкиваются с ферромагнитным сердечником модуля. При этом используется индукция для генерации постоянного электрического тока, который улавливается, регулируется и отправляется непосредственно в виде постоянного тока в литиевые батареи для хранения.Он также играет на программируемой флейте, которая играет музыку.

Бало-он

Ballo-on
Команда художников: Мартин Мраз, Камила Родригес Леон
Энергетические технологии: высокогорная ветровая энергия (плавучий аэростат), органическая фотоэлектрическая энергия (OPV)
Годовая мощность: 50 МВтч
Заявка на конкурс Land Art Generator 2018 для Мельбурн

Balo-on — это плавучая воздушная турбина (BAT) с горизонтальной осью ветряной турбины внутри корпуса.Эта технология, впервые разработанная Массачусетским технологическим институтом и Альтаэросом, позволяет использовать изобилие энергии при сильных и устойчивых ветрах на больших высотах до 600 метров. Аэростат имеет аэродинамическую форму, так что ветер создает подъемную силу, которая помогает поддерживать высоту и плавучесть. Каждый воздушный шар покрыт яркой и светоотражающей лакированной золотой тканью, чтобы избежать столкновения с птицами. Добавляют к его мощности по производству энергии органические фотоэлектрические элементы (OPV), установленные снаружи, гибридная технология, разработанная, чтобы максимально использовать непредсказуемые погодные условия Мельбурна.

UNWIND

UNWIND
Команда художников: Дэвид Донли, Майкл Чиналли
Энергетические технологии: высотная ветряная турбина
(воздушный змей HAWT)
Годовая мощность: 1900 МВтч
Заявка на конкурс дизайна Land Art Generator 2018 в Мельбурне.

Игра с воздушными змеями может быть веселой и восстанавливающей силы! Кайт-сила вдвое эффективнее существующих технологий ветроэнергетики, потому что они могут достигать более сильных атмосферных ветров, которые являются более стабильными и более мощными, чем ветры, расположенные ближе к земле.Каждый блок в UNWIND работает на системе из двух воздушных змеев, соединенных с гигантским шаром, которые вращаются в стиле йо-йо. В то время как один змей взлетает по схеме «восьмерка», второй убирается. Когда первая достигает максимальной высоты и готовится вернуться, вторая начинает подъем. Внутри сфер находятся две катушки, соединенные с зубчатыми колесами с храповым механизмом, которые задействуют маховик импульса, регулируя скорость раскручивающихся воздушных змеев. Эта выходная энергия вращения подключается к генератору, который производит электричество для Сент-Кильды.Ночью инсталляция превращается в нечто совершенно иное. Под полупрозрачной оболочкой из стекловолокна каждой сферы размещена светодиодная сетка, которую можно запрограммировать на свечение разными оттенками или создание изображений или текста, что делает изучение возобновляемых источников энергии приятным и вдохновляющим опытом.

Цветок ветра

Wind Blossom
Команда художников: Джу Хён О, Джэ Хо Юн
Энергетические технологии: пико-ветряные турбины, асфальтоукладчики
Годовая мощность: 960 МВтч
Заявка на конкурс дизайна Land Art Generator 2018 в Мельбурне.

В качестве примера противоположного конца диапазона турбин с точки зрения размера, у нас есть этот замечательный дизайн из Южной Кореи. Джу Хён О и Джэ Хо Юн представляют себе серию холмистых рельефов, которые улучшают вид на залив Порт-Филлип. В зеленых холмах вырезаны 23 туннеля, стратегически ориентированных для захвата двух основных ветровых потоков, включая северные ветры вдоль Эспланады и бульвара Джека, а также еще один поток ветра, берущий начало от пляжа Сент-Килда. По словам разработчиков, внутри туннелей находятся тысячи крошечных пикотурбин, которые более эффективно собирают энергию ветра, чем более крупные турбины.В сочетании с брусчаткой Pavegen, размещенной по всему участку, мини-турбины способны питать около 200 австралийских домов каждый год.

создает волны: GE представляет планы по строительству морской ветряной турбины размером с небоскреб, самой мощной в мире

«Когда Винсент Шеллингс начал проектировать ветряные турбины два десятилетия назад, он часто опрашивал своих коллег о том, что, по их мнению, было самой большой турбиной, которую они могли построить.« Мы не продвинулись дальше, чем 3-мегаваттная машина со 100-метровым ротором, — вспоминает он.«Но даже это казалось слишком большим».
Шеллингс, 44 года, никогда не переставал задавать этот вопрос. Сегодня он возглавляет команду GE Renewable Energy, разрабатывающую самую большую в мире ветряную турбину, которая затмевает его юношеские размышления. Этот настоящий гигант будет высотой 260 метров от основания до кончиков лезвий — на 1 метр выше знаменитой нью-йоркской башни Рокфеллер Плаза 30. С лезвиями длиной с футбольное поле ротор будет иметь диаметр 220 метров.

Эти турбины оснащены 12-мегаваттным генератором, установленным на высоте 150 метров над уровнем моря.Каждый из них будет способен обеспечивать электроэнергией 16 000 домов и производить 67 гигаватт-часов в год, исходя из условий ветра на типичной немецкой площадке в Северном море — это на 45 процентов больше энергии, чем у любой другой морской ветряной турбины, доступной сегодня. «Мы спросили себя:« Какой самый большой ротор, с которым мы все еще будем чувствовать себя комфортно? », А затем подтолкнули себя еще немного», — вспоминает Шеллингс. «С технологической точки зрения это кажется натяжкой. Но мы знаем, что это выполнимо. Прелесть турбины в том, что она дает преимущество перед конкурентами.Нет ничего подобного. Даже не близко.»

Сегодня самая большая ветряная турбина имеет ротор диаметром 180 метров, но это прототип. Самые большие действующие турбины имеют роторы высотой 164 метра и генераторы мощностью до 9,5 мегаватт. «Мы решили обойти конкурентов», — говорит Шеллингс.

Размер имеет значение. Огромный ротор позволяет инженерам ловить намного больше ветра и увеличивать то, что в отрасли называют «коэффициентом мощности». Это число описывает количество энергии, которое турбина может производить в год на данном участке, по сравнению с энергией, которую она могла бы произвести, если бы все время работала на полной мощности.Показатель GE Haliade-X составляет 63 процента, «на пять-семь пунктов выше, чем у конкурентов», — говорит Шеллингс. «Фактически, каждая точка коэффициента мощности стоит для наших клиентов 7 миллионов долларов на 100 мегаватт. Это хороший плюс ».


Есть и другие преимущества. Новая конструкция мощностью 12 мегаватт позволит операторам строить ветряные электростанции с меньшим количеством турбин, прокладывать меньше кабелей, сокращать строительные, эксплуатационные и другие капитальные затраты и быстрее окупать свои инвестиции. «Это помогает клиентам, когда они конкурируют на аукционах за строительство оффшорных ферм и выставляют самую низкую цену за киловатт-час», — говорит Джон Лавелль, генеральный директор подразделения GE Renewable Energy Offshore Wind.Он и его команда начинают разговаривать с компаниями, заинтересованными в строительстве ветряных электростанций в ближайшие несколько лет с использованием оборудования, поставки которого начнутся в 2021 году. «Мы пытаемся привлечь этих участников тендера, чтобы они могли учесть ценность, которую мы можем принести. Если они выиграют, мы выиграем ».

Морская ветроэнергетика — самый быстрорастущий сегмент возобновляемой энергии. «Отрасли возобновляемых источников энергии потребовалось более 20 лет, чтобы установить первые 17 ГВт оффшорной ветроэнергетики», — сказал Жером Пекресс, президент и генеральный директор GE Renewable Energy. «Сегодня отрасль прогнозирует, что в течение следующих 12 лет будет установлено более 90 ГВт.Это вызвано более низкой стоимостью электроэнергии из-за масштабов и технологий. Haliade-X установит новый стандарт стоимости электроэнергии и будет стимулировать дальнейший рост в офшорных зонах ».

Огромные ветряные турбины, такие как Haliade-X, будут играть ключевую роль, но как их построить? GE, инвестирующая в проект 400 миллионов долларов, начала изучать эту идею два года назад. После определения диаметра ротора команда Шеллингса работала в обратном порядке, чтобы вычислить величину генератора и размер башни, поддерживающей и то, и другое.

Каждый шаг представлял свою задачу. Во-первых, сложно серийно производить лопасти, не говоря уже о том, что длина каждого из них 107 метров. «Здесь много ручного труда, — говорит Шеллингс. «Вам понадобится до 250 рабочих, работающих на одной машине, и все виды строительных лесов и инструментов для правильной обработки материала». «Для создания лезвия такого размера требуется много людей с сильной командной синхронизацией и совместной работой для обработки материалов и инструментов».

Вверху и выше: «Мы спросили себя:« Какой самый большой ротор, с которым мы все еще будем чувствовать себя комфортно? », А затем подтолкнули себя еще немного, — говорит инженер ветряных турбин Винсент Шеллингс.Изображения предоставлены GE Renewable Energy.

Команда обратилась к специалистам LM Wind Power, датского производителя лопастей, приобретенного GE в прошлом году. LM Wind сейчас стремится «индустриализировать» производство самых больших лопастей.

Следующим элементом стал размер самого ротора. «Вы ловите сильный ветер, что хорошо для производства энергии, но недостатком является то, что вам нужна опорная конструкция, чтобы удерживать ротор на ветру», — говорит Шеллингс. «Прискорбно, что по мере увеличения размера ротора стоимость турбины будет расти быстрее, чем дополнительная мощность, которую вы получаете от более крупного ротора.”

Команда решила проблему с помощью программного обеспечения, используя алгоритмы для обработки данных от турбины и компенсации больших сил, создаваемых ветром. «Мы используем программное обеспечение, чтобы контролировать шаг турбины и удерживать ее на ветру», — говорит Шеллингс. «Это помогает нам контролировать размер и вес опорной конструкции».

Когда команда Шеллингса провела свои ранние расчеты, она обратилась к инженерам компании с просьбой помочь проверить и улучшить конструкцию. Шеллингс называет этот подход «лучшим из GE.Его команда тесно сотрудничала с Виком Абате, главным техническим директором GE, который также руководит GE Global Research, чтобы помочь найти экспертов в различных областях для анализа проектов. «Нагрузка на фундамент, аэродинамика, вес конструкции — мы проработали эти вопросы вместе с учеными GE Global Research», — говорит Лавель. «Мы пригласили экспертов из GE Aviation, Power, LM Wind и других предприятий GE для проведения экспертных оценок. Это вселило в нас уверенность в том, что мы идем в правильном направлении. Поразительно, чего мы можем достичь, когда сотрудничаем и привлекаем лучшие из имеющихся талантов.”

Инженеры еще далеки от завершения. Команды, работающие в Барселоне, Испании, Нанте, Франции, Гамбурге, Германии и других странах Европы и США, потратят следующие несколько месяцев на совершенствование своих конструкций и подготовку к первым испытаниям компонентов. GE планирует установить первую полную испытательную турбину во втором квартале 2019 года.

Но Лавель уже думает о будущем и ищет способы включить в конструкцию новейшие технологии, такие как 3D-печать, продолжить ее совершенствование и снизить затраты.GE Aviation уже печатает целые блоки авиационных двигателей, а GE Additive построила бета-версию 3D-принтера для металлов, который может печатать детали диаметром до 1 метра. «Мы не можем ограничивать свое мышление, — говорит Лавель. «То, что наш предел сегодня, может не быть нашим пределом в 2020 году».

Лавель должен знать. Он проработал 35 лет в GE, занимаясь разработкой технологий для электростанций. «Все это было весело, и они имели значение, и они были важны, но то, что помогает улучшить окружающую среду, я думаю, это то, что вы можете пойти домой и рассказать своим детям и своей семье, и они гордятся тем, что вы делаете. .»»

Текущая модель турбины Haliade может генерировать 6 мегаватт. Эти машины предназначены для огромной морской ветряной электростанции Merkur в Германии. Изображение предоставлено Томасом Келлнером для GE Reports. «

43 лучших идей для ветряных турбин своими руками

Поделиться — это забота!

Ветряные турбины супер крутые, потому что их относительно легко построить и они действительно великолепно выглядят. Независимо от того, используете ли вы его для научного проекта или расчета ветра, или просто хотите его для дома, существует так много разных типов, которые вы можете построить или создать.

В этой статье мы объединили некоторые из лучших идей ветряных турбин своими руками, которые вы можете реализовать как индивидуальный проект, так и проект с семьей. При таком большом количестве вариантов вы можете захотеть сделать два или три!

1. Сделай сам Windy Turbine

Проверьте здесь

Эта ветряная мельница, сделанная своими руками, сделана из трубы ПВХ, но вы можете легко заменить тяжелые лезвия для труб из ПВХ на картонные. Вы даже можете использовать картон, если у вас возникли затруднения, просто добавьте немного герметика на лезвия, чтобы они не промокли и не промокли.

2. Сверхмощный

Проверьте здесь

Эта идея сверхмощной турбины сочетает в себе множество бытовых инструментов, которые у вас, вероятно, валяются. Таким образом, вы используете перерабатываемые материалы, и вам не нужно покупать что-то новое, чтобы создать этот классный источник энергии. Двигатель этой конструкции также более мощный, что делает машину более прочной.

3. Большая версия

Проверьте здесь

Эта конкретная турбина находится на большей стороне, поэтому вам понадобится якорь, чтобы предотвратить падение агрегата.Это более серьезный проект, поскольку двигатель этой конструкции очень мощный, а лезвия острые и могут быть опасными. Лучше всего проявлять осторожность при создании этого.

4. Турбины для опытных

Проверьте здесь

В этом разделе «Сделай сам» подробно описаны все детали, которые могут понадобиться для создания этой более сложной турбины. Такой дизайн, как этот, будет отлично смотреться за пределами фермерского дома или даже во дворе перед домом. Что вы решите с ним делать, действительно зависит от вас, но этот определенно более сложный.

5. Модель Wind мощностью 1000 Вт

Проверьте здесь

Эта ветряная турбина мощностью 1000 Вт — более серьезная ветряная турбина. Этому младенцу требуется 1000 ватт для питания своих массивных крыльев. Мотор также более серьезен, так как для успешного движения больших лопастей потребуется мощный двигатель.

6. Паразитический?

Проверьте здесь

Эта модель энергии ветра называется паразитной, потому что она питается от компрессора кондиционера.Это отличная идея для ветряной турбины, которая просто использует мощность уже существующего компрессора. Это может стать забавным проектом, если вы ищете что-нибудь, связанное с дополнительными деталями.

7. Одуванчик своими руками

Проверьте здесь

Эта ветряная турбина из одуванчиков и меньше по размеру, и ее изящные крылья напоминают лепестки дикого цветка одуванчика. Это отличный проект, если вы хотите создать турбину меньшего размера, которая была бы абсолютно функциональной, но не слишком опасной по мощности и размеру.

8. Коксовый баллон Turbo

Проверьте здесь

Эта турбина из коксового баллона очень крутая, потому что вы можете переработать старую использованную коксовую бутылку в качестве крыльев. Это сделало бы отличным проектом для научной выставки или даже классным проектом. Этот сделай сам выполняет все необходимые шаги, чтобы сделать эту конструкцию возможной.

9. Рассеивание ветра

Проверьте здесь

Эта ветряная турбина с диффузором очень крутая, потому что в ее конструкции используются два ковша.Это интересный DIY для турбины, поскольку материалы немного отличаются от прошлых инструкций. Это также модель меньшего масштаба, поэтому мощность не будет такой большой.

10. Дарриус

Проверьте здесь

Этот ветряк Дарриуса супер крутой, потому что он может научить студентов примерно возобновляемой энергии . В этой модели также используется аэродинамическая труба, поэтому это скорее учебный инструмент, чем просто автономная ветряная турбина.Этот DIY дает вам все инструкции, как создать этот крутой энергетический блок.

11. Идея полумозгового человека

Проверьте здесь

Этот «сделай сам» утверждает, что даже кто-то с половиной мозга может осуществить эту конструкцию энергии ветра. Другими словами, это очень простая статья, сделанная своими руками, которая может помочь вам построить функциональную ветряную турбину без необходимости быть ученым, чтобы понять это. Это забавный проект с очень простой инструкцией.

12.Вертикальная ось

Проверьте здесь

Эта ветряная турбина с вертикальной осью выглядит очень впечатляюще, и ее непросто сделать, если вы не знакомы с полной конструкцией ветряной турбины. Этот дизайн может быть немного меньше, но он получает много энергии от этого изящного возобновляемого источника.

13. LENZ2 Модель

Проверьте здесь

Эта супер крутая ветряная турбина LENZ2 была сделана из материалов, найденных по всему дому.Таким образом, эта конструкция не только является источником возобновляемой энергии , но и в самой ее конструкции использовались в основном перерабатываемые материалы. Это супер крутой проект, который также может быть инструментом для демонстрации сохранения.

14. Ветряная турбина, модель

Проверьте здесь

Эта конкретная модель — отличный стартер для тех, кто не знаком с базовой маркой ветряных турбин. Это тот тип турбины, который вы делаете перед тем, как приступить к более крупным турбинам.Этот простой сделай сам расскажет вам все о процессе и о том, как сделать эту симпатичную турбину.

15. Практическое руководство

Проверьте здесь

В этом разделе «Сделай сам» вы получите основную информацию о том, как построить настоящую ветряную турбину. Это проще сделать своими руками, но готовый продукт на самом деле больше по размеру. Для этой конструкции требуется дюбель и доска большего размера, поэтому обязательно следуйте инструкциям для этого DIY правильно, чтобы выполнить это правильно.

16.Улучшение игры

Проверьте здесь

Эта игра с ветряной турбиной сочетает в себе самоучитель по созданию турбины с реальной игрой. Это была бы отличная игра и проект для реализации в классе, потому что каждая группа могла бы построить свою собственную турбину, а затем буквально поразить их тем, насколько уникальна каждая турбина.

17. Ветреный учебник

Проверьте здесь

В этом конкретном руководстве рассказывается о самостоятельном создании более мощного готового устройства.Это типы турбин, которые вы чаще всего видите на больших полях или в сельской местности, чтобы приводить в действие дома и фабрики. Это более крупномасштабная модель, но на самом деле она очень крутая.

18. Заряжайте телефон ветром!

Проверьте здесь

Это зарядное устройство для телефона с ветряной турбиной — отличный DIY, который фактически создает зарядное устройство для телефона на возобновляемых источниках энергии с помощью ветряной турбины. Таким образом, вы можете узнать, как построить турбину, и фактически иметь возможность заряжать свой телефон с помощью этой возобновляемой формы энергии.

19. Энергия ветра Осы

Проверьте здесь

Эта супер крутая ветряная турбина Wasp — это сделай сам для турбины, которую наверняка будет интересно сделать. Готовый продукт тоже будет здорово смотреть. Это ветрогенератор, сконструированный по максимально эффективной модели. Это может стать отличным классным проектом или даже просто личным хобби.

20. Малый масштаб

Проверьте здесь

Этот сделай сам для этого небольшого ветроэнергетического агрегата объясняет, как сделать ветряную турбину на оси x.В результате получается более высокий, который будет круто смотреться вне дома. Это также станет отличным проектом для веселого семейного дня.

21. Назад к основам

Проверьте здесь

Это базовое руководство для этой ветряной турбины проще, поэтому не позволяйте фотографиям вас запугать. Это был бы действительно крутой проект для детей или даже в качестве классного проекта. Согласно этому руководству, от этой турбины было достаточно энергии, чтобы зажечь светодиод.

22. Это электричество!

Проверьте здесь

Из этого туториала Вы узнаете, как создать турбину, которая обязательно будет производить электричество. Это относительно простой учебник, в котором рассказывается, как установить генератор и как ухаживать за лопастями фактически готового агрегата. Не нужно быть экспертом, чтобы выполнить это правильно.

23. Модель с вертикальной осью

Проверьте здесь

Эта ветряная турбина с вертикальной осью выглядит действительно уникально и имеет множество интересных особенностей.В отличие от большинства конструкций, которые мы уже рассмотрели, эта конструкция оси стоит более вертикально и более компактна, чем стандартный разветвленный тип, к которому мы больше привыкли.

24. Крепление для старого офисного кресла

Проверьте здесь

В этой классной ветряной турбине используется старый офисный волос в качестве опоры. Это было бы забавным проектом в классе или даже в офисе, поскольку вы все равно используете стул. Экологичность и более экологичный образ жизни становятся все более популярными в наши дни, и это всего лишь дополнительная забавная причуда для проекта.

25. Идеальный Pringles

Проверьте здесь

Эта ветряная турбина сконструирована из банки для микросхем Pringles. Это был бы отличный проект для всех, кто заинтересован в создании возобновляемого источника энергии и одновременном использовании чего-то, что пригодно для вторичной переработки. Сделайте несколько таких турбин, используя несколько банок со стружкой Pringles.

26. Энергия осевого потока

Проверьте здесь

Эта семифутовая ветровая турбина с осевым потоком — отличный способ создать более крупную модель, не беспокоясь ни о чем массивном.Этот относительно простой учебник объединяет лучшее из обоих миров: возобновляемые источники энергии и простоту относительно простого проекта DIY.

27. Умный привод, большие результаты

Проверьте здесь

Эта ветряная турбина с двойным статором и интеллектуальным приводом может показаться невозможным построить, но на самом деле этот учебник хорошо разбирает весь процесс. Это немного сложный проект, поэтому это не лучший проект для тех, кто только начинает экспериментировать с турбинами.

28. Уникальный источник энергии

Проверьте здесь

Это уникальный ветроэнергетический агрегат с саморегулирующейся фольгой. Это особый проект из-за особенности фольги, но и дизайн тоже действительно интересен. Это также более легкий дизайн, поэтому он не будет слишком тяжелым, и вы даже можете держать его в доме, как показано на рисунке.

29. Лезвия для дизайна и печати

Проверьте здесь

В этом руководстве показано, как спроектировать и напечатать свои собственные лопасти ветряных турбин.Эта модель турбины может эффективно работать с 3D-принтером и некоторой изобретательностью. Из этого туториала Вы узнаете, как получить доступ к 3D-принтеру и использовать его для печати собственных деталей для построения турбины.

30. Энергия большого масштаба

Проверьте здесь

Из этого туториала Вы узнаете, как построить шестнадцатифутовую ветроэнергетическую конструкцию. Это очень большая турбина, и вам следует приступить к этому проекту с некоторыми общими знаниями о проекте ветроэнергетики, так как это будет нелегко.

31. Выбирайте!

Проверьте здесь

Эта страница с описанием различных ветряных турбин демонстрирует, насколько уникальными могут быть эти вещи и насколько разными может быть каждая модель. Это дает возможность любому, кто хочет запустить свою собственную турбину, получить представление обо всех различных типах конструкций и количестве существующих моделей.

32. Основной источник энергии

Проверьте здесь

Эта базовая модель детально проработана, когда речь идет о масштабе, размере и мощности.Все материалы для запуска этой турбины наглядны, и каждую из этих частей легко найти в любом хозяйственном магазине или даже в Интернете, если вы не против дождаться отправки.

33. Партии турбин

.

Проверьте здесь

В этой статье так много разных моделей ветряных турбин, что есть даже руководство по созданию турбины из пасхального яйца. Если вы не уверены, какой тип конструкции турбины выбрать, просмотрите эти идеи и посмотрите, какую из них вы бы хотели попробовать сами.

34. Ветреная турбина

Проверьте здесь

Этот милый учебник по турбине представляет Винди Турбину. Это относительно простой учебник, который показывает вам, как именно построить собственную турбину для возобновляемого источника энергии. Автор этой модели — студент-электоральный факультет, поэтому вы можете увидеть все процессы шаг за шагом.

35. Propeller Perfection

.

Проверьте здесь

Эта ветряная турбина с пропеллером представляет собой готовый пропеллер.Пропеллер упрощает выполнение этой конкретной конструкции, поскольку некоторые из самых сложных частей уже сделаны за вас. Что касается остальной части турбины, в руководстве подробно рассказывается о том, что вам нужно и где взять детали.

36. Мини Энергия

Проверьте здесь

Этот мини-производитель ветровой энергии действительно симпатичный и на самом деле не так уж и сложен в исполнении. Учебное пособие дает вам четкую и краткую пошаговую инструкцию, чтобы вы могли легко воссоздать свою собственную мини-модель для дома.Это было бы очень мило в саду или даже на небольшом открытом пространстве для дополнительной мощности.

37. Миниатюрная модель

.

Проверьте здесь

Это супер милая миниатюрная ветряная турбина. Это так мило, как следует из названия. Удивительно, но и следовать этому руководству довольно просто. Вы можете легко собрать эту мини-конструкцию из простых деталей, и ее изготовление не будет стоить слишком много денег.

38. Ветряная турбина 1М

Проверьте здесь

Эта ветряная турбина 1M — отличный пример того, насколько ясными и краткими могут быть эти учебные пособия.В руководстве объясняются некоторые испытания и ошибки, которые конструктор впервые имел в начале этого проекта, а также способы избежать этих ошибок, чтобы вы могли создать наиболее совершенный источник энергии ветра.

39. Простой источник

Проверьте здесь

Эта простая ветряная установка подробно описывает, как создать эффективного производителя ветровой энергии, не вдаваясь в подробности. Этот проект подходит для всех, кто не имеет опыта в строительстве ветряных турбин или кому интересно и только начинает исследовать различные типы их моделей.

40. 12 Вольт DIY Модель

Проверьте здесь

Этот учебник для этой ветряной турбины на 12 вольт великолепен, потому что, хотя это крошечный блок, он работает точно так же и так же эффективно, как и более крупные, которые вы найдете в более сельских районах. Эта турбина будет производить много энергии для небольшого проекта.

41. На малой стороне

Проверьте здесь

Эта небольшая ветряная турбина — отличный проект для всех, кто хочет пройти через процесс ее изготовления, но для тех, у кого нет доступа ко всем этим большим деталям, которые необходимы для больших проектов.Это станет отличным дневным проектом для тех, кто только начинает.

42. Турбина, напечатанная на 3D-принтере

Проверьте здесь

Использование 3D-принтеров становится все более популярным и экологически безопасным способом печати деталей проекта с абсолютно нулевыми отходами. В этом уроке эта турбина состоит в основном из трехмерных деталей. Вы можете просто распечатать все детали, которые вам нужны, чтобы построить эту полностью функциональную ветряную турбину.

43. Умная энергия

Проверьте здесь

Это руководство для интеллектуальной ветряной турбины, которая имеет дело с большим количеством энкодеров и другими более сложными деталями для крупномасштабной ветряной турбины.Это определенно не проект для тех, кто хочет построить такую ​​турбину за короткий промежуток времени, но это проект, который определенно научит вас чему-то в процессе.

Заключение

Итак, как видите, вам не обязательно быть ученым-ракетчиком, чтобы создать свою собственную ветряную турбину. Независимо от того, являетесь ли вы профессионалом в создании ветряных турбин или новичком, вы можете попробовать множество учебных пособий, и вы легко найдете учебное пособие, которое подходит именно вам.

Не знаете, какое руководство попробовать? Может быть, сначала определитесь со своими навыками и турбиной какого размера вы надеетесь построить. Есть ли опыт изготовления турбины для себя? Мы хотели бы услышать от вас! Пожалуйста, поделитесь своим опытом и мнениями в комментариях ниже, чтобы мы все могли получить более полезную информацию.

Поделиться — это забота!

Ветряная электростанция урагана Комплекты ветрогенераторов для жилых домов


Малые ветряные генераторы

Немного о том, как малая ветряная турбина работала или работала в прошлом, и чем отличается наш продукт.Чтобы понять, как работает ветрогенератор, вы должны сначала понять, что генератор сам по себе не вырабатывает мощность, он преобразует кинетическую энергию и крутящий момент из набора лопастей в электрическую энергию. Казалось бы, в то время как средний потребитель или частное лицо испытывает сжатие этой концепции, когда они понимают, что ветряная турбина коммунального масштаба с огромными лопастями вырабатывает больше энергии, чем ветряная турбина микро. В какой-то момент эта логика теряется для многих потребителей, которые, по-видимому, теперь принимают решения о покупке на основе «рейтингов мощности», которые, по моему опыту, являются просто вымышленными счетами, в некоторых случаях сфабрикованными некоторыми небольшими поставщиками ветроэнергетики.Некоторые члены сообщества энтузиастов малого ветра придумали термин и называют его «ваттными войнами». В то время как ваттные войны хороши для некоторых недобросовестных людей, которые стремятся получить какое-либо конкурентное преимущество, которое они могли бы получить на конкурентном рынке, успехи этих компаний, по сути, сбивают потребителей с толку, порождают нереалистичные ожидания от их продуктов и во многих случаях приводят к исходу многих потребителей. и маленький энтузиаст ветра из хобби. Как минимум, эти люди отвлеклись от того, что важно в малом ветре и, в большей степени, от возобновляемых источников энергии в целом.

Так что же важно при покупке небольшой ветряной турбины?

Мне самому еще не приходилось получать счет за электроэнергию в ваттах. Используемая мера — киловатт-часы. Это просто означает использование нагрузки 1000 Вт в течение всего часа. Это используется для расчета того, сколько энергии используется и как определить размер систем возобновляемой энергии. При обсуждении малых ветряных генераторов было бы лучше понять, какие из них производят больше киловатт-часов в день.

Турбина А имеет стабильную мощность 250 Вт, поэтому за 4 часа она производит 1 киловатт-час. В течение дня тот же ветрогенератор в этом примере будет производить 6 киловатт-часов в течение дня. 24 часа, разделенные на 4, составляют 6 кВтч. Оценивая эту скорость, мы можем предположить, что на этой средней турбине A будет генерироваться около 180 кВт / ч в месяц.

Турбина B Эта турбина поставляется от производителя с номинальной мощностью 2000 Вт, 5 лопаток диаметром 28 дюймов с минимальной рабочей площадью.После проверки калькулятора клинков, который мы обнаружили в компании Warlock Engineering, мы обнаружили, что для достижения мощности всего 200-300 Вт при стандартной конструкции энергетической лаборатории Национального исследовательского центра на скорости 24,6 миль в час. Это была бы выходная мощность, если бы турбина была хорошо спроектирована, как рекламируется, и запускалась при слабом ветре, как рекламируется. Реальность такова, что многие из этих турбин плохо спроектированы и построены и со временем вырабатывают незначительную мощность, если только они не работают при сильном ветре. Гипотетически, ради обсуждения, мы дадим турбине В преимущество сомнения и скажем, что она вырабатывает 2000 Вт в течение получаса во время сильного ветра.В этом случае турбина вырабатывала бы 1 кВт / ч, а генераторы — минимальную, если вообще мощность, при среднем ветре из-за плохой конструкции, зубчатости и других конструктивных недостатков. Снова предоставляя некоторым из этих продуктов преимущество сомнения и «кредит» от производства еще одного кВтч в течение остальной части дня при подзарядке при ветре 12-18 миль в час, этот продукт может выдавать в целях обсуждения 2 кВтч на день. В течение месяца у вас будет что-то еще, порядка 60 кВт · ч, произведенное за тот же период времени.

Выводы

Глядя на оба гипотетических примера и сравнивая, легко увидеть и теперь понять, почему небольшой ветрогенератор, рассчитанный на необычно высокую выходную мощность, на самом деле может вырабатывать меньше полезной мощности с течением времени в несколько раз. В 3-4 раза меньше, чем на то, что хорошо построено, правильно спроектировано и честно оценено.

При этом в генераторе есть обмотки. Это провода, которые вы видите в кожухе, которые намотаны в непосредственной близости.Эти провода имеют эмалированное покрытие, которое имеет температурный диапазон, при котором, если он нагревается за пределы покрытия, сгорает, и генератор или даже электродвигатель сгорают. Поэтому важно понимать, что в любом генераторе, если слишком большой крутящий момент приложен к обмоткам такого размера или калибру проводов, ток в силе тока нагнетает тепло, и любой генератор может сгореть, если для данного генератора приложен слишком большой входной крутящий момент. Вот почему важно согласовать ветряную турбину с генераторной установкой.

Понимание обмоток генератора с постоянными магнитами и покупка pma’s

В любом генераторе, будь то переделанный генератор переменного тока с постоянными магнитами delco, наша конструкция с радиальным или даже большим осевым потоком с белой молнией может использоваться с разными калибрами проводов, которые используются по разным причинам для конкретного применения. Также важно понимать, что, вообще говоря, когда вы смотрите на генератор переменного тока с постоянным магнитом для продажи на нашем сайте ebay youtube Amazon и т. Д., Когда вы видите рекламируемое напряжение, такое как часто модели 12, 24 и 48, это обычно не означает, что есть это своего рода внутренний регулятор, который ограничивает выходное напряжение генератора или pma до адекватного уровня зарядного напряжения для приложения. Это одна из самых больших ошибок, которые, как мы видим, делают сами люди при выборе генератора.Обычно продавцы и производители оценивают генератор с постоянным магнитом как, например, 12 вольт, когда диапазон оборотов генератора достаточен для достижения напряжения отключения для зарядки данной батареи. Термины ветряная мельница, ветряные генераторы, ветряные зарядные устройства или комплекты ветряных турбин для жилых помещений, которые мы часто видим взаимозаменяемыми, пытаются сказать вам, что в приложении с прямым приводом с определенным набором лопастей они будут использовать конкретный генератор для приложения. Так в чем разница? Генератор любого типа имеет емкость «прорези» или область, в которую может поместиться обмотка.Это будет уникально для конкретного генератора. Важно понимать, что в пределах рабочей зоны можно использовать провода разного калибра. В области обмоток генератора больше витков или любая другая терминология, которую вы предпочитаете, могут поместиться в данной области с более тонким проводом, чем с более толстым проводом, в зависимости от того, что физически вписывается в данную катушку статора, обмотку, обмотку и / или паз. «Опять же, какая терминология подходит для данного генератора переменного тока.

Влияние калибра провода в обмотке генератора с постоянным магнитом,

1-й принцип работы ветрогенераторов (который мы преодолели с помощью нашей новой технологии) Я объясню, как это сделать в конце статьи.

Врезка в точку.

Независимо от напряжения аккумуляторной батареи системы или запуска связи с сетью для получения любой полезной мощности, напряжение в обмотках статора или генератора должно быть больше, чем то, на которое он пытается передать мощность.

Когда полюс или магнитное поле проходит через катушку, в результате начинают течь электроны, но для целей нашего обсуждения того, как работают обмотки, важно понимать, что большее количество обмоток в прорези более тонкого провода создает более высокое напряжение с магнитный ротор вращается на более низких оборотах.Это отлично подходит для ветряных генераторов в районах с слабым ветром и встраивается в здания, где люди помнят, что выработать некоторую мощность с течением времени лучше, чем не производить никакой энергии, пока не дует сильный ветер. Это остается балансирующим действием, потому что, хотя многие потребители хотят генератор с низкой частотой вращения. Компромисс заключается в том, что в то время как более тонкий провод будет создавать напряжение, чтобы достичь точки разреза, чтобы начать генерировать мощность, нижняя сторона заключается в том, что более тонкий провод ограничивает потенциальный ток, который может нести обмотка. Проволока Найнера также нагревается из-за большего внутреннего сопротивления.

Во многих отношениях то, что происходит с производителем, во многих случаях является тонким балансирующим действием, которое должно учитывать множество переменных. Если провод слишком тонкий, генератор может «включиться», то есть повысить напряжение выше, чем на батарее. Если включение слишком низкое, сопротивление будет затягивать турбину, водяное колесо и т. Д. С резистивной нагрузкой из-за недостатка крутящего момента. Избыточное тепло может накапливаться, когда обмотка пытается пропустить ток при наличии достаточного крутящего момента для преодоления «резистивной нагрузки», т.е.е. когда генератор становится труднее вращать после включения ». И наоборот, в случае, когда в генераторе используется слишком толстая или тяжелая обмотка, существует возможность создания большого тока, но из-за ограничений числа оборотов в минуту для конкретного приложения мощность не может генерироваться из-за невозможности достичь точки включения. Примерное напряжение батареи составляет 13,3, а показание напряжения холостого хода на генераторе составляет 8,8. Напряжение перетекает от более высокого давления к более низкому »

Неправильный генератор Неправильное приложение

Одна из ошибок, которую часто допускают новички, пытающиеся определить размер генератора, заключается в том, что они покупают именно по классификации напряжения.Помните, как мы обсуждали ранее, изготовители ветряных генераторов склонны оценивать свои напряжения при оборотах прямого привода 150–250 при заданном напряжении. Это не означает, что если генератор с постоянным магнитом вращается на более высоких оборотах, напряжение генератора не будет превышать 24 или даже 48 вольт. Это означает, что в случае, если у вас может быть гидромашина с кабелем с более высокой передачей и более высокими оборотами, может быть лучше фактически использовать генератор переменного тока с постоянными магнитами на 24 или даже 12 вольт.

Вольт умноженное на амперы = ватты

В примере, где потребитель решает использовать генератор с обозначением 12 вольт, который будет иметь более толстую обмотку, он на самом деле будет иметь возможность проводить больший ток на конкретном генераторе и производить больше мощности при 48 вольт, в то время как фактически работает pma. прохладнее и продлевает продолжительность жизни.

Ураган Белая молния: отклонение от статус-кво

В Hurricane white Lightning используется более толстая обмотка, которая позволяет более высокому уровню тока проходить на сетку или батарею. Это позволяет генератору работать с обоими охладителями и пропускать больший ток, что дает большую мощность и меньшее сопротивление, проходящее через обмотки. Мы используем запатентованный интеллектуальный контроллер MPPT для повышения выходной мощности, чтобы максимизировать выходную мощность в любых условиях. Если вы могли следить за обсуждением по существу, мы удалили часть действия по уравновешиванию.Мы больше не ограничены использованием более тонкой проволоки в обмотках для достижения точек врезки. У нас меньше тепла в генераторах. Больший контроль над турбинами и, наконец, большая выходная мощность с течением времени, чем что-либо в этом классе. Мы используем наш контроллер, чтобы получать зарядную мощность от турбин, которую другие машины с более легкой обмоткой не могут.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *