Виды нетрадиционной энергетики – Альтернативные источники энергии в быту для загородных домов: дополнительное электроснабжение, популярные источники | Блог о строительстве и ремонте

Содержание

Альтернативные источники энергии: виды и использование

В течение всего периода развития цивилизации происходила борьба за обретение новых, более эффективных форм энергии. За тысячи лет был пройден путь от овладения огня до применения управляемой ядерной реакции в атомных электростанциях. Поэтому в истории человечества принято выделять несколько энергетических революций, которые заключались в переходе от одного доминирующего первичного источника энергии к другому. Результаты этих изменений затрагивали не только сферу энергетики и экономики, но и меняли социальный и культурный облик цивилизации.

В настоящее время Мировая энергетика находится на перепутье. С увеличением народонаселения Земли экономика требует все больше энергии, а запасы ископаемого топлива, на котором основана традиционная энергетика, не безграничны. Рост стоимости ископаемого топлива усугубляется и тем, что достигшее колоссальных размеров использование углеводородов наносит ощутимый вред окружающей среде, что отражается на качестве жизни населения. А это означает, что в будущем потребности в энергии, а значит и в новых способах её получения, будут только увеличиваться. На смену эре углеводородов (нефти и газа), придет эра использования альтернативной, чистой энергии.

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, а на традиционную — постоянно растут.

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, – всё это увеличивает социальную напряженность.

Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

Именно с нетрадиционными возобновляемыми источниками энергии (ВИЭ) связывают будущее энергетики. Усилиями мировой науки было обнаружено множество таких источников, большинство из них уже используется более или менее широко. В настоящее время общий вклад ВИЭ в мировой энергобаланс пока невелик, около 20 % конечного потребления энергии. При этом на долю биотоплива и гидроэнергии, используемых традиционными способами, приходится основная часть – около 17 %, на долю нетрадиционных ВИЭ всего около 3 %.

Наиболее известны  и частично применяются следующие виды энергии:

— энергия Солнца;
— энергия ветра;
— биоэнергетика;
— энергия приливов и волн;
— тепловая энергия Земли.
— энергия атмосферного электричества и грозовая энергетика.

Из всех существующих видов альтернативной энергетики самыми востребованными являются солнечная, ветро- и гидроэнергетика.

Энергия солнца

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества.

Существуют разные способы преобразования солнечного излучения в тепловую и электроэнергию и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи.

Солнечные электростанции активно используются более чем в 80 странах мира. Большинство крупнейших фотоэлектрических установок мира находятся в США.

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками в использовании солнечной энергии являются дороговизна оборудования, зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Энергия ветра

Одним из перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума (вследств

что это такое, виды, в России, плюсы и минусы

Когда запасы традиционных источников энергии, таких как нефть, газ и уголь, неумолимо уменьшаются и их стоимость достаточно высока, а использование приводит к образованию парникового эффекта на планете, все большее количество стран в своей энергетической политике, обращают свои взоры в сторону альтернативных источников энергии.

Что это такое

Содержание статьи

Альтернативные источники энергии – это экологически чистые, возобновляемые ресурсы, при преобразовании которых, человек получает электрическую и тепловую энергию, используемую для своих нужд.

К таким источникам относятся энергия ветра и солнца, воды рек и морей, тепло поверхности земли, а также биотопливо, получаемое из биологической массы животного и растительного происхождения.

Виды альтернативной энергетики

В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.

Энергия солнца

Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.

Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.

Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.

Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.

Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.

Энергия ветра

Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.

Ветровые электростанции для дома

Основой ветровых установок служит ветровой генератор. Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).

Сила воды

Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.

К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.

Макро ГЭС водоповоротного типа

Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.

Тепло земли

Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.

Тепловой насос

Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.

Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.

Тепловые насосы различаются по мощности и своей конструкции, зависящей от первичного источника энергии, определяющей их тип, это системы: «грунт-вода» и «вода-вода», «воздух-вода» и «грунт-воздух», «вода-воздух» и «воздух-воздух», «фреон-вода» и «фреон-воздух».

Биотопливо

Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.

канистра

Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.

Плюсы и минусы использования

Как у каждого конкретного источника энергии, вне зависимости от того, к какому типу он относится, традиционному или альтернативному, свойственны относящееся именно к нему достоинства и недостатки использования.

solar7

Кроме этого, в каждой группе энергоресурсов свойственны общие плюсы и минусы. Для альтернативных источников, к таковым относятся:

  • Плюсами использования являются:
  • Возобновляемость альтернативных источников энергии;
  • Экологическая безопасность;
  • Доступность и возможность использования в широком спектре применения;
  • Низкая себестоимость энергии, получаемой в результате преобразования.
  • Минусы использования:
  • Высокая стоимость оборудования и значительные материальные затраты на этапах строительства и монтажа;
  • Низкий КПД установок;
  • Зависимость от внешних факторов, как-то: погодные условия, сила ветра и т.д.;
  • Относительно не большая установленная мощность генерирующих установок, за исключением гидроэлектростанций.

Альтернативные источники энергии в России

В нашей стране, как и во многих технически развитых странах мира, использованию альтернативных источников энергии уделяется особое внимание. Это обусловлено большими территориями, на которых и в настоящее время нет централизованных источников энергии, а также общемировой тенденцией, связанной с борьбой за экологию планеты и экономией традиционных видов топлива.

solar12

В разных регионах страны получили развитие разные виды альтернативной энергетики. Это связано с географическим положением и возможностью использования того или иного первичного источника получения энергии.

Солнечная энергетика

Солнечные электростанции в настоящее время, получают все большее распространение среди различных слоев населения, как альтернативный или резервный источник электрической и тепловой энергии.

В промышленных масштабах, данный вид энергетики, также присутствует в нашей стране.

Общая установленная мощность солнечных электростанций превышает 400,0 МВт, из них наиболее крупными являются:

  • Орская им. А. А. Влазнева, установленной мощностью 40,0 МВт в Оренбургской области;
  • Бурибаевская, мощностью 20,0 МВт и Бугульчанская, мощностью 15,0 МВт, в Республике Башкортостан;
  • На полуострове Крым функционирует более десяти солнечных электростанций мощностью 20,0 МВт каждая.

На стадии разработки проектной документации и различных этапах строительства, находятся более 50 объектов солнечной генерации, расположенных в различных регионах, от Дальнего Востока и Сибири, до центральных и южных областей нашей страны.

Общая мощность проектируемых и строящихся объектов составляет более 850,0 МВт.

Ветровая энергетика

Ветровые энергетические установки, работающие для получения электрической энергии в промышленных масштабах, также существуют на территории нашей страны, хотя их доля, в общей мощности энергетической системы, значительно ниже, чем солнечных электростанций.

Общая установленная мощность ветровых генераторов составляет немногим больше 100,0 МВт, из них наиболее мощные, это:

  • Зеленоградская ветровая установка, мощностью 5,1 МВт, расположенная в Калининградской области;
  • Останинская (25,0 МВт), Тарханкутская (22,0 МВт) и Сакская (20,0 МВт) – на полуострове Крым.

На стадии проектирования и строительства, находятся 22 ветровые энергетические установки, общей мощностью более 2500,0 МВт.

Гидроэнергетика

Этот вид альтернативной энергетики наиболее распространен на территории России. В настоящее время доля вырабатываемой электрической энергии ГЭС установленными на реках, в разных регионах страны, превышает 20,0 % от общей генерации всей энергосистемы РФ.

solar12

Суммарная установленная мощность гидроэлектростанций, на начало 2017 года, составляет 48085,94 МВт, а их количество – 191объект генерации, различной мощности и конструкции.

Энергию приливов также используют в нашей стране, для производства электрической энергии. В Мурманской области со второй половины ХХ века работает Кислогубская приливная электростанция, которая в 2007 году была реконструирована и в настоящее время, ее установленная мощность составляет 1,7 МВт.

В настоящее время ведется разработка экономического обоснования и проектной документации по строительству подобных станций в Охотском (Пенжинская и Тугурская ПЭС) и Белом (Мезенская) морях.

Геотермальная энергетика

Энергия недр нашей планеты, ее тепло, широко используется в ряде стран, где присутствует вулканическая деятельность. В нашей стране, этот вид энергетики, в силу ее особенностей, распространен на Дальнем Востоке.

В настоящее время успешно работает 5 геотермальных электрических станций установленной мощностью 80,1 МВт, три из которых расположены на Камчатке (Мутновская, Паужетская и Верхне-Мунтовская) и по одной на островах Кунашир (Менделеевская) и Итуруп (Океанская).

Использование биотоплива

Данный вид энергоресурсов не так широко распространен, как традиционные виды топлива или гидроэнергетика. Тем не менее, в связи с тем, что в нашей стране развита лесная и деревообрабатывающая промышленности и большие территории заняты выращиванием сельскохозяйственных культур, то и на этот вид энергетики обращается все большее внимание.

Последние годы построено большое количество заводов по переработке отходов древесины, из которых изготавливаются топливные брикеты и гранулы (пеллеты). Брикеты и пеллеты, в свою очередь, используются в качестве топлива для различного типа котлов в результате сжигания которых, вырабатывается тепловая и электрическая энергии.

Из отходов сельскохозяйственных культур производится биогаз и жидкое топливо для дизельных двигателей и установок, где они сжигается, в результате чего осуществляется производство тепловой и электрической энергий.

Данный вид топлива не получил широкого распространения в нашей стране, но тем не менее перспективы его развития, достаточно обширны и успешны.

Использование для частного дома

Использование альтернативных источников для отопления загородного дома или дачи, а также для его электроснабжения, может быть осуществлено достаточно успешно. В этом случае все зависит от региона проживания пользователя и места расположения объекта потребления энергии.

знакомство

Способность вырабатывать электрический ток солнечными станциями и ветровыми установками зависит от активности солнца и скорости ветра в месте их размещения, а также прочих погодных явлений, характеризующих этот регион.

Устройство микро ГЭС возможно только при наличии вблизи объекта потребления реки или иного водоема, а геотермальной станции – при присутствии близко расположенных к поверхности земли геотермальных вод.

Биотопливо в виде дров и продуктов отходов деревопереработки, возможно в регионах страны богатых лесами, с развитой промышленностью данного направления.

Получение биогаза и жидкого топлива — доступно там, где большие территории отведены под выращивание сельскохозяйственных культур, что позволяет иметь большой запас биомассы, используемой для производства этих видов топлива.

Можно ли сделать своими руками в домашних условиях

При наличии свободного времени, желания, а также умения работать ручным инструментом, можно создать установки, с помощью которых использовать альтернативные источники для своих нужд, как в виде электрической, так и тепловой энергии.

знакомство

Это касается всех выше перечисленных видов альтернативной энергетики, так для:

  • Солнечных электростанций – можно самостоятельно изготовить солнечные батареи, используя фотоэлементы заводского производства, а также собрать контроллер заряда и инвертор, являющиеся элементами таких установок.
  • Ветровых установок – также, как и для солнечных станций, электронные устройства (контроллер, инвертор) собираются достаточно просто с использованием существующих электрических схем и из элементов заводского производства. Самый важный элемент, ветрогенератор – можно изготовить из имеющихся запасных частей и материалов.
  • Микро ГЭС – изготовить и смонтировать может каждый, если есть река или водоем, где можно соорудить плотину. Конструкция и вид гидротурбины, зависят от типа водоема и рельефа местности.
  • Биогазовую установку – создать не составит труда любому сельскому жителю, условиями для этого будут – наличие необходимого количества биомассы и температура окружающего воздуха, позволяющая происходить процессу ее брожения.

виды, нетрадиционная энергетика для частного дома

Традиционная энергетика основана на тепловых и атомных станциях, а также на гидроэлектростанциях, что существенно вредит природе, опасно для окружающей среды и человека.

Шагом в будущее признаются альтернативные источники энергии, которые не требуют расходования полезных ископаемых и основаны на экологически чистых принципах работы. В них максимально задействованы нескончаемые возобновляемые природные энергетические запасы.

foto 1

foto 1

Откуда можно получать энергию?

Альтернативными энергетическими источниками признаются технологии и устройства, чей принцип действия не основывается на сжигании полезных ископаемых и иных традиционных способах, но которые позволяют получить электрическую энергию или другой, необходимый вид энергии – механическую, тепловую.

Основная цель такой энергетики – независимость от углеводородного топлива, исключение риска истощения залежей полезных ископаемых, исключение вредных выбросов в атмосферу и снижение парникового эффекта.

Где спрятаны огромные энергетические ресурсы нашей планеты? Обращают на себя внимание неисчерпаемые природные возможности:

  1. Солнечная энергия. Она способна нагревать, освещать, служить катализатором химических реакций, вызывать фотоэффект. Возникает задача рационально преобразовывать солнечную энергию в необходимые виды и накапливать энергию для круглосуточного использования.
  2. Ветер. Он имеет большой энергетический потенциал, который способен вращать специальные конструкции, способные генерировать электроэнергию.
  3. Энергия Земли. Огромные запасы тепла хранят в себе недра нашей планеты. Геотермальные источники могут стать поставщиком необходимой тепловой или электрической энергии при правильном использовании.
  4. Энергия воды. ГЭС давно служат человечеству, но они требуют перекрывания русла рек плотинами, что вносит заметный вклад в изменение природы. Неисчерпаемые энергетические возможности обнаруживают приливно-отливные морские процессы, которые иногда приносят только беды человеку. Если эту энергию использовать для вращения турбин, то можно обеспечить себя электроэнергией.
  5. Биологическая энергия. В процессе гниения биологических масс (навоз, элементы растений, погибшие организмы) выделяется газ, основу которого составляет метан. Этот биогаз можно задействовать для выработки электричества и обогрева. Данная технология позволяет использовать отходы животноводства с большой пользой. На базе биомассы уже создается жидкое (биодизель, этанол) и твердое (биобрикеты и пеллеты) топливо.
  6. Природный температурный градиент. Перепад температур, возникающий в естественных условиях, с пользой используется в тепловых насосах.

foto 2

foto 2

Виды источников

Как можно использовать альтернативные источники? При правильном подходе можно получить такие виды энергии:

  • Электроэнергия. Альтернативная энергия дает возможность создания электрических аккумуляторов, строительства тепловых и гидроэлектростанций.
  • Тепловая энергия. Обогрев домов, теплиц, производственных сооружений можно осуществлять непосредственно от природных источников, что уже находит широкое применение.
  • Транспорт. Биотопливо способно приводить в движение двигатели транспортных средств. Если в настоящее время такой подход больше похож на эксперимент, то в будущем у него отмечаются хорошие перспективы.
  • Механическая энергия. С древних времен вода приводила в движение жернова мельниц. При современной технике альтернативные источники способны двигать конструкции самого разного назначения.

Использование солнечного излучения

Энергия солнца может преобразовываться в электрическую и тепловую энергию. Для этого используются фотоэлектрические и термодинамические способности солнечных лучей. На первом механизме основывается принцип действия солнечных батарей, в которых с помощью фотоэлектрических преобразователей энергия фотонов трансформируется в электричество.

Термодинамика солнечного источника задействована в коллекторах, которые способны накапливать тепловую энергию, вырабатываемую под воздействием солнечных лучей.

foto 3foto 3

Основной недостаток солнечной энергетики связан с зависимостью излучения от времени суток, сезона и погодных условий. Для бесперебойной работы такого источника возникает необходимость аккумулирования энергии в период максимальной излучательной интенсивности.

foto 3foto 3

Строительство солнечных электростанций и ТЭЦ должно учитывать климатические и метеорологические особенности региона.

Солнечные батареи

Солнечная батарея или фотоэлектрический генератор представляет собой комплект моделей в виде двухслойного полупроводникового элемента, в котором происходит преобразование световой энергии в электрическую за счет фотоэффекта.

Современные фотоэлементы имеют достаточный срок службы и просты в обслуживании. Они накапливают энергию в течение всего времени попадания на них солнечных лучей, а затем постепенно отдают ее в виде электрического тока беспрерывно (пока хватает запасов). Так обеспечивается их работа и в темное время суток.

foto 3foto 3

Важно. Для бесперебойной работы батарей должна обеспечиваться достаточная продолжительность светлого времени суток. Кроме того, их нельзя нагревать выше 110-120 ºС, а для устранения влияния осадков надо установить наклонно (примерно под углом 45º).

К преимуществу солнечных батарей относится экологическая чистота, возможность выработки энергии в труднодоступных местах (даже в космосе). Недостатки связаны с малой суммарной мощностью установок и высокой стоимостью солнечных электростанций.

Солнечные коллекторы

foto 5

foto 5Солнечный коллектор представляет собой устройство, преобразующее солнечное излучение в тепловую энергию.

Принцип их действия основан на нагревании теплоносителя, с последующим направлением тепловой энергии на отопление или выработку электричества (теплоэлектростанция).

Выделяются несколько типов таких устройств.

Воздушные

Это наиболее простой вариант рассматриваемой системы. В основе конструкции закладывается пластина из материала с высокой теплопроводностью, которая покрыта прозрачным, теплоизоляционным слоем.

Солнечные лучи проходят через защитный слой, разогревая базовый элемент. Далее тепло передается на конвектор, где потоком воздуха направляется на обогрев помещения или тепловой электрогенератор.

Главный недостаток – работа только в светлое время суток, а потому воздушные коллекторы обычно совмещаются с ТЭНами, что позволяет существенно экономить электроэнергию.

Плоские

Их задача нагреть теплоноситель. В конструкцию устройства входит поглотитель солнечной энергии, трубопровод и термоизоляция. Поглотитель часто делается из стекла с определенным содержанием металла. Внутри установки он соединяется с трубопроводом, по которому пропускается теплоноситель.

Нагреваемый трубопровод может выполняться в решетчатой или серпантиноообразной форме и изготавливается из металла с повышенной теплопроводностью (медь, алюминий).

Трубчатые или вакуумные

Основу конструкции составляют 2 трубки из стекла боросиликатного типа, которые вставлены друг в друга. Внутренняя трубка выполняется с покрытием веществом с повышенным теплопоглощением. В межтрубном пространстве обеспечивается вакуум.

Теплоноситель циркулирует по центральному каналу. Такая конструкция обеспечивает достаточно высокий КПД и возможность работы при морозе. Даже при повышенной облачности такой коллектор будет работать за счет поглощения инфракрасных лучей.

foto 6foto 6

Ветрогенераторы

Ветроэнергетика начинает широко внедряться во многих странах мира, чему способствует экологичность таких систем и огромная сила ветра. Он помогает привести в движение лопасти ветрогенераторов, с помощью которых механическая энергия ветра преобразуется в электричество.

Такая установка включает двигатель с ветряным приводом, электрогенератор, автоматическую систему регулировки и контроля, а также конструкцию, позволяющую поднять установку на оптимальную высоту.

Основу привода двигателя составляет многолопастные элементы, которые раскручиваются в потоке ветра – пропеллеры, «ромашки», роторы вертикального типа и т.п. Различаются горизонтальные и вертикальные устройства, различающиеся расположением оси вращения турбины.

Наибольшее распространение находит система с горизонтальной осью и трехлопастным пропеллером, установленным в вертикальной плоскости. Она способна работать даже при небольшом ветре.

Каждый ветрогенератор имеет небольшую мощность, а потому для создания электростанции требуется достаточно большое количество установок, что требует больших площадей. Эксплуатация такой станции возможна только при наличии ветра, а ее эффективность зависит от силы ветра.

Полная зависимость в этом отношении от природы составляет важный недостаток ветрогенераторов. К плюсам надо отнести то обстоятельство, что ветер дует практически везде, а значит вырабатывать электроэнергию для небольшого потребителя можно в любом месте.

Энергия Земли, воды и воздуха

foto 7

foto 7Известный закон физики гласит, что тепловой поток всегда устремляется от теплой среды к более холодной.

Именно этот механизм и закладывается в установках для обогрева помещений. Задачу отбора энергии у окружающей среды решают тепловые насосы.

По своей сути, тепловой насос представляет собой установку, которая способна использовать природную энергию для получения тепла или холода в зависимости от назначения.

Устройство можно применить для обогрева помещения, в качестве кондиционера или нагревателя воды.

Принцип действия теплового насоса основан на наличии температурного градиента, обеспечивающего тепловой поток. Он реализуется за счет хладагента, испаряющегося при нагревании. Процесс испарения происходит в камере с пониженной температурой и давлением. При перемещении хладагента в камеру с повышенным значением указанных параметров, он отдает полученная извне тепло.

Установка содержит такие элементы, как компрессор, капиллярную трубку, испарительную и конденсаторную камеру. Все устройство во многом похоже на обычный бытовой холодильник и работает за счет перемещения хладагента внутри замкнутой системы.

Как обогреть помещение?

На практике задействованы разные альтернативные источники. Исходя из способа отбора энергии, выделяются тепловые насосы таких типов:

  1. Воздушный тип. По своей конструкции он аналогичен кондиционеру, забирающему энергию из окружающего воздуха. Главное отличие – тепловой насос имеет гораздо большую мощность по сравнению с обычными сплит-системами. Он имеет очень высокую эффективность при температуре воздуха выше 25-28 ºС. Основной недостаток – существенное снижение КПД при опускании температуры ниже 12 ºС.
  2. Система «вода-вода». Источником тепла становятся естественные водоемы, грунтовые или сточные воды. На глубине, где вода не замерзает, температура не опускается ниже 4-6 ºС, что дает возможность задействовать тепловой насос. Испарительный контур устройства можно расположить на дне реки, озера, колодца. В подземных водах температура не падает ниже 7-10 ºС, что вполне достаточно для обеспечения работы испарительной камеры.
  3. Система «воздух-вода». В этой установке энергия берется из окружающего воздуха, а в качестве теплоносителя используется вода, которая циркулирует в отопительной системе. Данный тепловой насос достаточно эффективен при температуре воздуха выше 12-14 ºС.
  4. Система «земля-вода». Установка работает аналогично предыдущему варианту, но испарительная камера размещается под землей.

foto 8

foto 8 foto 3foto 3

Справка. Несмотря на то, что требуются затраты на электроэнергию, питающую компрессор, тепловые насосы достаточно эффективны. На каждый 1 кВт затраченной электроэнергии можно получить до 5-6 кВт тепловой энергии. Использование электрогенератора мощностью не более 3-4 кВт позволяет обогреть дом площадью более 280 м².

Биогазовые установки

Биогазовые установки основываются на использовании анаэробного брожения. В результате разложения биологической массы выделяется смесь газов, основу которой составляет метан. Его вполне можно считать аналогом природного газа, который используется, как топливо для тепловых электрогенераторов.

Технология

Технология получения биогаза базируется на введении определенных бактерий, которые активизируют процесс брожения. В качестве сырья можно использовать практически любые билогические отходы – остатки пищи, отходы животноводческих и птицеводческих ферм, опавшую листву, траву, водоросли и т.п.

Биогаз (биометан) можно использовать для получения электрического тока, обогрева помещения, нагрева воды, использовать в качестве автомобильного топлива.

Принцип работы

Выработка газа обеспечивается в биогазовых установках. Основу их конструкции составляет реактор в виде герметичной емкости с искусственным подогревом, без доступа воздуха. В него периодически загружается биологическое сырье и запускаются полезные бактерии.

foto 9

foto 9

Подогрев массы производится до 34-38 ºС. Выделяемый газ направляется в накопитель – газгольдер. После очистки через систему фильтров он поступает в газовый котел или газовый электрогенератор.

Преимуществом биоэнергетики является использование вторичного сырья и возможность утилизации отходов с большой пользой. Недостатки ее аналогичны проблемам, возникающим в электростанциях, работающих на природном газе. Прежде всего, выделяется риск парниковых эффектов.

Новаторские идеи для частного дома

Популярность экологически чистой альтернативной энергетики требует совершенствования способов ее осуществления. Можно выделить такие технологии, которые направлены в будущее

  1. АэроГЭС. Принцип действия основан на получении конденсата из облаков, тумана, влажной атмосферы. Уже запущены такие опытные установки.
  2. Энергия грозы. Перед учеными ставится задача поимки разряда молний и направления его в линии электросетей.
  3. Водород. Это один из самых распространенных химических элементов и его активное использование в энергетике может вызвать настоящую революцию. На стадии разработки находятся водородные двигатели и установки для получения биоводорода.
  4. Биогаз второго поколения. Более эффективные и чистые составы получаются путем современных пиролизных технологий. Уже сейчас на опытных установках получается метанол, этанол, биодизель.
  5. Космическая энергетика. Получение электричества с помощью фотоэлементов в космосе с последующей передачей его путем микроволнового излучения сейчас кажется фантастикой. Однако перспективы у такого направления огромны.

foto 11

foto 11

Заботы о состоянии атмосферы и всей планеты в целом, а также ожидание исчерпания запасов углеводородного топлива заставляет всерьез относиться к альтернативной энергетике.

Запасы энергии в природе неисчерпаемы. Важно найти наиболее оптимальный подход и выбрать лучший, эффективный вариант получения необходимой энергии.

foto 3foto 3

Полезные видео

Посмотрите реальный проект по внедрению альтернативных источников энергии в частном доме, характеристики, свойства и цены:


Обеспечение полной энергонезависимости частного дома солнечными фотомодулями (панелями) и ветрогенератором, как происходила установка, какой объем вырабатываемой энергии, смотрим:

Нетрадиционная энергетика своими руками, как добывают бесплатную энергию самостоятельно, смотрим:

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

Альтернативная энергия: производство, использование, виды, плюсы и минусы

Альтернативная энергия для частного дома - мечта многих людей, которые желают избавиться от платы за коммунальные платежи. Но все ли мы понимаем, что это такое? Так вот, альтернативная энергия - это любой источник энергии, который является альтернативой традиционному виду топлива.

В основном они относятся к классу возобновляемых, а их цель - справиться с проблемами, возникающими от использования традиционных источников, а именно сильным загрязнением окружающей среды углекислым газом.

С течением времени понятие того, что представляет собой альтернативный источник, сильно изменилось, так же как и усилились противоречия в отношении их использования. Определение некоторых источников в качестве «альтернативных» считается весьма противоречивым. Причиной тому служит многообразие путей использования материалов и сильное отличие целей сторонников их применения. Таким образом, любители делать альтернативные источники энергии своими руками могут сильно навредить окружающей среде даже не осознавая это.

Содержание:

Виды альтернативных источников энергии

  • Гидроэнергетика: получение энергии из движения воды. К этому классу относятся традиционные ГЭС, а также приливные и волновые электростанции.
  • Ядерная энергетика: используется огромное количество энергии, которое высвобождается при ядерном делении тяжелых элементов.
  • Ветроэнергетика: генерация электричества за счет вращения ветром специальных установок.
  • Солнечная энергетика: получение полезной энергии из солнечного света и излучения. Термальные преобразователи задействуют тепло Солнца, а свет используется для генерации электричества фотогальваническими устройствами.
  • Геотермальная энергетика: использование горячих источников нашей планеты, чтобы прогревать строения или производить электричество.
  • Биотопливо: альтернатива нефти, применяемая в качестве топлива в машинах, мотоциклах и т. д.
  • Водород: носитель энергии, можно отнести к биотопливу. Существует множество способов получения материала, например из воды с помощью электролиза.

История

Некоторые ученые историки исследовали основные моменты смены традиционной энергетики на схожую по назначению. Они считают, что такие переходы оказали существенное влияние на экономическую обстановку. Типичным фактором данного процесса является снижение стабильности поставок основного вида энергии в совокупности с сильным ростом цен на него.

Уголь как альтернатива древесине

Одним из основных видов топлива в средние века была древесина. Чрезмерное пользование материалом привело к сильному обезлесиванию, а следовательно нехватке источника энергии. Именно тогда люди нашли для себя нового спасителя - мягкий уголь. Вот как рисует ситуацию того времени Норман Ф. Кантор:

В ранние средневековье население Европы существовало рядом с большими запасами леса. После 1250 года человечество имело такой существенный опыт в работе с деревьями, что к 1500 году н.э. у них отсутствовало достаточное количество материала для житейских нужд... Таким образом, в это время население оказалось на грани топливной и пищевой катастрофы. Найти выход из ситуации помогло применение мягкого угля, а также освоение таких растительных культур как кукуруза и картофель.

Нефть как альтернатива китовому маслу

На старте 19 века китовое масло было доминирующим источником топлива для ламп, а так же являлось основным видом смазки . Однако к середине века постоянное вырезание животного привело к резкому подъему стоимости масла. Именно это стало ключевым фактором, после которого люди начали смотреть в сторону нефти.

Этанол против ископаемого топлива

Еще в начале 20 века Александр Грэхем Белл предлагал заменить традиционные ископаемые источники топлива на этанол из растительных культур, таких как кукуруза или пшеница. Он говорил, что привычные нам материалы для топлива могут закончиться достаточно быстро, а их основной недостаток - они не возобновляются.

В конце 20 века Бразилия запустила этанольную программу. За счет ее реализации страна начала экспортировать данного топливо больше всех в мире, а так же заняла вторую строчку международного рейтинга по объему его производства. В качестве исходного материала они решили использовать сахарный тростник - это дешевый вид растения, к тому же его отходы можно отправить в топку на получение дополнительной энергии. Сейчас в Бразилии больше нет транспортных средств, работающих на старом виде топлива, а найти этанол на любой заправке страны можно было еще в 2008 году.

Специальный целлюлозный этанол можно получить из разного сырья, а его создание подразумевает задействование полного объема урожая. Такой подход должен повысить сбор растительной продукции и понизить уровень углерода, который появляется из-за удобрений, требующих много энергии при производстве.

Газификация угля вместо нефти

В конце 20 века правительство США хотела избавиться от зависимости в дорогостоящей нефти из-за границы. В качестве альтернативы власти выбрали газификацию угля, но вскоре из-за падения стоимости нефти программу пришлось закрыть. Также стоит отметить, что данный метод имеет сильные загрязняющие последствия.

Вспомогательные технологии

Вспомогательные технологии - любые виды разработок, которые помогают снизить НЕ эффективность систем. Например, большинство техники выделяет огромное количество энергии в никуда, в воздух. Ваш компьютер или телефон вырабатывает тепло, которое можно было бы направить в правильное русло, тем самым увеличив полезность работы устройства.

Запасание термальной энергии

Кондиционирование холода в виде замерзшей воды, сохранение жара в источнике - это пути запасать энергию. Специальными разработками можно сохранить термальную энергию как на сутки, так и на целые сезоны. Виды источников различны:

  • естественные - солнечные коллекторы способны использовать тепловую энергию солнца, а сухие градирни применяются для запасения холода;
  • выработанная энергия - например, от различного рода устройств, процессов или деятельности электростанций. Самым простым примером послужит обычный компьютер, вырабатывающий при работе тепло, которое можно было бы использовать;
  • избыточная энергия - например, сезонные превышение нормы выработки от гидроэнергетики или ветропарков.

Примером послужит сообщество Drake Landing (Альберта, Канада). Тепло, запасенное в скважине или любом изолированном источнике с помощью солнечных коллекторов, почти весь год обеспечивает их термальной энергией.

Рекуперация

Рекуперация - повторное задействование уже израсходованной энергии. Технологию часто еще называют регенерацией. В основном выделяют два пути рекуперации: тепла и кинетической энергии.

(Система рекуперации торможения bmw i3)

Компьютеры имеют свойство нагреваться во время работы, поэтому их необходимо постоянно охлаждать, дабы они не вышли из строя. Таким образом здесь описывается сразу два случая траты энергии: на понижение температуры устройства и нагрев воздуха, который в итоге и нужно охлаждать. Теперь представьте, что в одном месте собраны сотни и даже тысячи таких машин, и насколько большие затраты придется нести владельцу. А ведь именно с этой проблемой сталкиваются собственники дата-центров. Но некоторые фирмы находят пути снижения издержек - одним из них как раз и является рекуперация тепла. Дата-центр компании Яндекс в Финляндии использует естественный холод с улицы для охлаждения серверов, а выделяемое компьютерами тепло они отравляют на отопление домов близлежащего городка. Как все это работает, можно посмотреть в специальном ролике компании:

Но такие системы очень сложны и стоят больших денег, следовательно, могут позволить себе не все. Именно поэтому данной технологией пользуются лишь крупные фирмы, такие как Amazon, Facebook, Apple и некоторые другие.

Еще одним путем, помимо работы с теплом, является рекуперация энергии торможения. Транспортные средства, оборудованные системой регенерации при замедлении, способны поймать уходящую в никуда кинетическую энергию и направить ее в запасы аккумулятора.

«Автомобиль в сети» или V2G

Технология «автомобиль в сети» или V2G становится все более популярной с развитием электрических машин. Суть заключается в том, что электромобиль подключается к центральной сети, а запасом энергии батареи позволяется распоряжаться коммунальной службе. Таким образом, во время пиковых нагрузок из аккумулятора транспортного средства может быть извлечена необходимая мощность, а в любое другое время батарея заряжается.

Недавнее исследование показало, что в итоге электромобили с системой V2G позволят сэкономить огромные суммы денег даже если коммунальные службы будут платить собственникам за доступ к их машинам. К аналогичным выводом пришел BMW, который 3 года тестировал программу «ChargeForward» на автомобилях BMW i3. Автопроизводитель даже заявил, что машину можно превратить в «дойную корову». Стоит упомянуть компанию Tesla, которая в свое время отказалась от этой идеи, а сейчас думает поменять свою точку зрения. К тому же, данная технология улучшает использование возобновляемых источников энергии.

Виртуальные электростанции

Виртуальные электростанции начали появляться совсем недавно, и они никак не связаны с виртуальным миром. На самом деле, это лишь распределенные источники энергии подключенные в единую сеть. Их появлению способствовало широкое распространение домашних накопителей энергии в совокупности с солнечными установками.

Идея технологии проста. Солнечная система любого дома может быть подключена к центральной сети. Пиковые часы - проблема любой коммунальной электрической службы, так как нагрузка вырастает в разы. Однако, используя технологию виртуальной электростанции, недостающая мощность частично или полностью берется из домашних накопителей, которые сохранили излишки солнечной энергии. Владельцам жилищ на момент пика эта энергия может быть ни к чему, так как их дом питается от солнечных батарей или же просто нет необходимости в столь большом потреблении.

В темное время суток, когда солнечные панели не могут вырабатывать электричество, мощность берется из общей сети со скидкой или же за деньги, которые владельцы получили от взятой у них же энергии.

Примером реализации этой технологии служит Австралия. В мае 2018 года правительство страны договорилось с фирмой Tesla, что та поставит на 50 000 домов солнечные панели и систему запаса энергии Powerwall. Результатом должна получиться распределенная электростанция на 650 МВт-ч - это самая большая распределенная электростанция на текущий момент. Уже летом того же года первые 100 установок продемонстрировали свою пользу.

(Tesla Powerwall)

Другое интересное решение придумал дуэт фирм из Западной Австралии. Они создали альтернативу отдельным Powerwall для группы домов из одной мощной батареи Tesla Powerpack. Компании предоставляют энергетические возможности 52 семьям с солнечными установками в Медоу-Спрингс. Таким образом владельцы не тратятся на индивидуальные аккумуляторы и получают скидку на электричество из общей сети или того, что сохранил Powerpack.

Как видно, такие станции сильно способствуют распространению солнечной энергетики.

Балансировка сетей большими аккумуляторными батареями

Принципиально нового здесь ничего нет. Используется батарея в качестве резервного источника питания. Единственное исключение, что применяются такие аккумуляторы в крупных масштабах, начиная от небольших зданий/университетов и заканчивая целыми городами.

Одним из самых крупных представителей данной области является Tesla. Компания реализовала уже множество проектов различных масштабов:

Большинство клиентов отмечает превосходную работу техники Tesla и говорят, что их вложения быстро окупаются.

Видеоролик компании об установках Powerpacks в Бельгии:

Возобновляемая и не возобновляемая энергетика

Свет солнца, тепло земли, ветер - из всего этого мы можем получить энергию, которая постоянно пополняется за счет привычных нам закономерностей природы. Именно это отличает возобновляемые источники от не возобновляемых. Процессы получение этих двух разных типов энергии сильно отличаются. Добыча природных ископаемых, таких как нефть, уголь и газ - трудоемкие и высокотехнологичные процессы, которые требуют большого количества дорогого оборудования, сложных физических и химических процессов. С другой стороны, возобновляемую энергию можно широко использовать с применением естественных процессов и существующего оборудования.

Относительно новые концепции альтернативной энергетики

Углеродно-нейтральное и отрицательное топливо

Данный тип топлива является синтетическим. К нему относятся реактивное топливо, дизель, бензин и т. д. Такой вид топлива выделяют из источников, содержащих углерод, например дыма от электростанций или из автомобильных выхлопов. Компании рассчитывают, что у них получится сделать производство топлива коммерчески успешным при стоимости нефти на уровне $50-60.

Возобновляемый метанол - еще одно топливо, нейтральное по отношению к углеродным выбросам, так как его самого получают из данного элемента. Метанол используется как для питания различных машин, так и в качестве материала химических процессов.

Например, в Исландии есть перерабатывающий завод, первичным материалом которого является углекислый газ из дыма близлежащей электростанции. Его годовая выработка составляет более 5 млн. литров начиная с 2011 года.

Еще одним примером можно назвать фирму Ауди. Завод компании в Германии создает сжиженный природный газ, после использования которого остается только вода и кислород. Данное производство служит для получения облегченного источника энергии транспортных средств, таких как Audi A3 Sportback g-tron. Выпускаемое топливо выделяют из углеродосодержащих веществ, поэтому и выбросов в атмосферу фактически никаких нет.

Использование топлива не дает реального повышения содержания углекислого газа в окружающей среде, поэтому его и называют нейтральным. Оно облегчает ситуацию, связанную с заимствованием природных источников из-за рубежа, с поиском и разработкой аналогов и с другими проблемами, возникающими от использования ископаемого топлива. Также, отпадает большая необходимость в переходе на электромобили или альтернативный «чистые» машины, а следовательно нет необходимости замены существующих двигателей. Нейтральные к углероду топлива обеспечивают относительно низкое энергопотребление, уменьшают трудности падения активности ветровой и солнечной энергетики, а также в какой-то степени позволяют доставлять энергию возобновляемых источников по уже построенным газопроводам(энергия этих источников используется для производства газа, который передается по трубам).

Самая дешевая энергия получается благодаря ветру ночью. Вырабатываемое в это время электричество и направляют на синтез топлива. Это связано с тем, что кривая нагрузки на сеть резко возрастает, когда люди бодрствуют, а активность ветра в основном повышается в ночное время суток.

Водорослевое топливо

Еще одним источником биотоплива являются водоросли. Из школьного курса биологии нам известно, что растения во время фотосинтеза поглощают углекислый газ и солнечный свет, а в обмен создает кислород и биомассу. Во время фотосинтеза водоросли и другие фотосинтетические организмы захватывают углекислый газ и солнечный свет и превращают его в кислород и биомассу. Обычно процесс получения энергии начинается с того, что растение размещается между двумя стеклами, где оно выделяет три вида энергетического топлива: тепло (из его цикла роста), биотопливо (натуральное «масло») и биомасса (из самого растения, поскольку оно собирается после зрелости).

Тепло может использоваться для нагрева, например воды, или для производства энергии. Биотопливо - это масло, добытое из водорослей в зрелости и применяемое для создания топлива - аналогично биодизелю. Биомасса - это все то, что остается после извлечения масла и воды, и может быть выделено для получения горючего метана.

Кроме того, преимуществами биотоплива из водорослей будет то, что для его производства не нужно использовать пахотные земли и отбирать часть продовольственных культур, таких как соя, пальма и рапс.

Брикеты из биомассы

Брикеты из биомассы применяются в развивающихся странах в качестве альтернативы древесному углю. Данные подход подразумевает пресование разлиных растений в небольшие брикеты, содержащие более 65% энергетического запаса угля.

Найти примеры выпуска брикетов в крупных масштабах довольно тяжело. Одним из них служит Северный Киву, где уничтожение леса опасно для существования горной гориллы. Сотрудники Национального парка Вирунга успешно обучили местных жителей и оснастили более 3500 человек всем необходимым оборудованием для производства брикетов из биомассы. Таким образом удалось искоренить незаконное производство древесного угля в национальном парке, а также создать значительную занятость для людей, живущих в условиях крайней нищеты в районах, затронутых конфликтами.

Биогазовое расщепление

Биогаз получается из метанового газа, который выделяется, когда органические отходы разлагаются в анаэробной среде. Его можно обнаружить на мусорных свалках или в канализационных системах. Газ используется в качестве топлива для отопления или, чаще всего, для выработки электроэнергии.

Производство биологического водорода

Водородный газ является полностью чистым горючим топливом, а его единственный побочный продукт - вода. Он содержит высокое количество энергии по сравнению с другими видами топлива из-за его химической структуры. К сожалению, для получения газа требуется много энергии, что делает его коммерчески неэффективным. Однако есть вариант производства топлива с использованием биологических организмов, которые расщепляли бы воду на составляющие. К таким организмам относятся бактерии или чаще водоросли. Этот процесс известен как производство биологического водорода.

Теперь о самом процессе. Данный способ использует одноклеточных существ для создания газообразного водорода путем брожения. Без присутствия кислорода обычное клеточное дыхание невозможно, и тогда дело в свои руки берет ферментация или же просто брожение. Именно газообразный водород является основным побочным продуктом этого процесса.

Реализация данного метода в больших масштабах позволила бы получать достаточно водородного газа, чтобы считать его крупным источником энергии. Однако широкомасштабное производство оказалось трудным. Только в 1999 году получилось воссоздать необходимые анаэробные условия. Но брожение является эволюционным резервом, активизирующимся во время стресса, поэтому клетки умирали во время данного процесса уже через несколько дней. В 2000 году был разработан двухстадийный подход, позволяющий вводить клетки в анаэробное состояние, а затем выводить их из него, чтобы организмы оставались в живых.

В течение последних десятков лет поиски способа воссоздать данный процесс в крупном масштабе был главной целью исследований. До сих пор не получилось добиться каких-то значительных результатов в этой сфере, хотя многие ученые бьются над решением этой задачи. Некоторые считают, что как только мы найдем ключ к этой головоломке, то производство данного вида топлива сможет решить наши энергетические проблемы. Однако не стоит забывать, что сейчас мир активно переходит на электрические машины. Илон Маск когда-то уже делал заявление, что автомобили на водороде - глупость и опасная технология, к тому же добиться хорошей плотности энергии, как в случае литий-ионных аккумуляторов, тоже вряд ли получится. Но тогда можно использовать водород в качестве источника для подзарядки автомобильных батарей.

Малая гидроэнергетика

В 2015 году гидроэнергетика произвела 16,6% всей электроэнергии в мире и 70% от общего объема возобновляемой электроэнергии. Однако по статистике IRENA к 31 марта 2018 года доля данного источника по отношению к остальной возобновляемой электроэнергии снизилась до 53%. Несмотря на этот факт, выработка от гидроэнергетики увеличивается с каждым годом.

Популярной альтернативой крупным плотинам прошлого является русловая ГЭС(гидроэлектростанция), которая не требует хранения воды в дамбе, а выработка энергии варьируется в зависимости от осадков. Использование данной технологии во влажные сезоны в совокупности с солнечными станциями в засушливые времена может сбалансировать временные колебания для обоих. Альтернатива крупным плотинам также являются малые установки, которые ставят в начале притоке, где быстрое течение.

(Шексинская ГЭС - фотография русловой гидроэлектростанции)

Морской ветер

Морские(или оффшорные) ветровые электростанции подобны наземным, но расположены на берегу океана. Их погружают в воду на глубину до 40 метров, а плавучие турбины могут находиться в воде до глубины в 700 метров. Преимуществом таких станций является использование ветров из открытого океана, который не встречает на своем пути каких-либо препятствий, таких как холмы, деревья или здания. Морские ветра способны достигать в два раза большей скорости, чем в прибрежных районах.

(Схема крепления морских ветряков)

Сама по себе ветровая энергетика развивается огромными шагами во всем мире, с каждым годом отвоевывая все большую долю в выработке электроэнергии возобновляемыми источниками. Однако существенная генерация энергии на шельфе уже сейчас восполняет многие потребности Европы, Азии и Америки.

Традиционные оффшорные турбины прикрепляются к морскому дну в менее глубоких местах. По мере развития технологий, генерирующих энергию из океанского ветра, в более глубоких водах начинают все чаще использоваться плавающие структуры, где ветра еще сильнее.

(Плавучий морской ветряк)

В последнее время виден значительный рост данной отрасли в США и Европе. Но даже несмотря на это, до сих пор нет четкого понимания о том, как сильно ветроэнергетика влияет на природу и животных.

Морская и гидрокинетическая энергия

Сила океана или морская и гидрокинетическая (MHK) энергия относится к следующим проектам:

  • Использование силы волн - ветровые волны имеют огромный запас энергии, которую можно направить на выполнение полезной работы - например, на выработку электроэнергии или перекачивание воды в водоемы;
  • Энергия приливов - специальные турбины размещаются в прибрежных и устьевых районах, где суточные потоки воды достаточно сильны и вполне предсказуемы;
  • Расположение турбин в быстроходных реках;
  • Океанские турбины в районах сильных морских течений;
  • Океанские тепловые преобразователи энергии в глубоководных тропических водах.

Данная отрасль активно развивается и старается использовать новые технологи для повышения эффективности работы установок. Так к примеру, на приливную электростанцию Nova Innovation в Шотландии установили батарейный блок Tesla Powerpack, тем самым была создана первая приливная станция с базовой нагрузкой. Аккумулятор позволяет запасать излишки энергии и выдавать их, когда турбины бездействуют.

Управляемый термоядерный синтез

Термоядерный синтез - один из самых лучших вариантов выработки энергии. Это довольно безопасная технология, которая выделяет недолго живущие ядерные отходы. Однако есть одно большое НО. Чтобы управлять реакцией, необходимо поддерживать температуру в миллионы градусов. Именно поэтому реальный термоядерный реактор еще не был создан.

Попытки создать коммерчески успешную станцию есть. В настоящий момент на юге Франции продолжается создание огромного термоядерного реактора ITER. Однако до сих пор у них не получилось выработать больше энергии, чем ушло на ее создание. Если вам хочется узнать больше об этом проекте, посмотрите это видео:

Внедрение альтернативной энергии

Альтернативная энергетика не может быть принята просто так. Чтобы ее стали широко использовать, должны быть решены некоторые проблемы. Прежде всего, необходимо понять и добиться:

  1. насколько полезны эти альтернативы;
  2. системы и технологии для данных источников должны стать более доступны;
  3. время окупаемости необходимо уменьшать.

Сейчас большую популярность имеют электрические и гибридные транспортные средства. Будет ли отрасль развиваться зависит от инвестиций в общественную инфраструктуру, от взимания платы, а также от внедрения большего числа альтернативных источников энергии для будущих перевозок.

Во многих странах покупка чистых электрических машин субсидируется государством, а владение загрязняющей воздух машиной облагается дополнительными расходами. В России на текущий момент есть лишь отдельные группы, которые борются за принятие EV, а на правовом уровне данную тему лишь иногда вспоминают.

Законодательство в России не предусмотрено для чистого транспорта, ведь многие электрические машины имеют под капотом большую мощь. К примеру, у Tesla Model 3, самого дешевого на текущий момент автомобиля американской компании, 258 лошадиных сил, а в России самая большая налоговая наценка для машин с мощностью двигателя больше 250 л. с. А ведь транспортное средство не производит вредных выбросов, почему владельцы должны платить больше, непонятно.

Исследования и проекты в области альтернативной энергетики

В академическом, федеральном и коммерческом секторах существует множество организаций, проводящих широкомасштабные передовые исследования в области альтернативной энергетики. Эти работы охватывают несколько областей данной сферы, основная часть которых направлена на повышение эффективности технологий и снижения стоимости производства.

В последнее время внимание многих крупных организаций направлена на альтернативную энергию, например в США это Сандийские национальные лаборатории и Национальная лаборатория возобновляемых источников энергии. Обе организации получают деньги на свои нужды прямо от правительства страны в области энергетики, а так же от разных фирм-спонсоров.

Рост уровня расхода энергии прогнозирует, что к 2030 году потребление увеличится на 21%. Стоимость возобновляемых источников энергии дешевле примерно на 0,2 млн. долл. за 1 МВт. Это говорит о том, что их использование является отличным путем снижения затрат, к тому же не вызывающее проблем с окружающей средой.

Механическая энергия / сила человеческих мышц

Самый простой тип энергии - механическая. Она относится к такой деятельности человека как дыхание, ходьба, печатание и бег, вездесуща. К сожалению, обычно она просто теряется. Эта проблема привлекла огромное внимание исследователей со всего мира, которые пытаются найти методы для получения пользы от силы человеческих мышц.

Лучшим решением в настоящее время является использование пьезоэлектрических материалов, которые могут генерировать поток электронов при деформировании. Ключевую роль в производительности устройств на основе данной технологии играет пьезоэлектрическая постоянная материла. Вследствие этого, многие исследователи пытаются найти новый материал с большим пьезоэлектрическим показателем. Возможно, им окажется ниобат свинца-магния – титанат свинца (PMN-PT), представляющий собой пьезоэлектрический материал следующего поколения, который при достижении идеального состава и ориентации имеет сверхвысокое значение постоянной. В 2012 году даже были изготовлены PMN-PT-нанопроволоки с помощью гидротермического подхода, а затем собраны в единое устройство.

Многие пытаются задействовать механическую энергию для генерации чего-то полезного. Так в свое время в Лондоне появился тротуар, пройдя по которому, вы произведете некоторое количество электричества. Вот небольшой ролик об этом проекте:

А самым популярным решением использовать силу человека является выработка энергии при езде на велосипеде. На ютубе есть огромное количество видеозаписей о том, как сделать систему подзарядки для телефона на велосипеде своими руками, которую при желании можно с легкостью воспроизвести. Также есть умельцы, которые предлагают аналогичные решения, но для питания бытовых приборов. Таким образом, вы можете вырабатывать альтернативную энергию для дома без каких либо затрат, так еще и физическую форму подтяните. Вот один из таких примеров:

Солнечная энергетика

Солнечную энергию можно смело назвать самым массовым альтернативным источником. Она используется сразу несколькими путями: для отопления, кондиционирования или выработки электроэнергии.

Люди уже довольно давно научились использовать тепло солнца для нагревания необходимых объектов. Крупным примером централизованного теплоснабжения является уже упоминаемое нами солнечное сообщество Drake Landing Solar в Канаде: более 50 домов подключено к центральному теплоснабжению, которое использует тепло, создаваемое солнечными коллекторами на крышах сооружений и запасаемое в подземном термальном хранилище.

Если вам хочется понять, как работают солнечные коллекторы и узнать их эффективность, то вы легко можете найти множество видеозаписей на ютубе. К примеру вот довольно информативный ролик о производительности коллекторов зимой:

Что касается солнечной электроэнергии, то препятствиями для ее широкомасштабного внедрения называют недостаточную эффективность современных устройств преобразования света, а также высокую цену на них. На данный момент фотоэлектрические ячейки способны преобразовать около 17-20 % солнечного света.

В 2008 году сотрудники Массачусетского технологического института разработали метод хранения солнечной энергии, используя его для производства водородного топлива из воды. Такие работы нацелены на решение проблемы получения энергии в темное время суток, когда солнечные батареи бесполезны.

(новый фотоэлемент, вырабатывающий водород, помимо электричества)

В октябре 2018 года ученые из Германии и США сделали прототип необычного фотоэлемента. Так как огромное количество света просто-напросто не улавливается современными солнечными ячейками, они решили подключить к нижнему слою дополнительный электрод, который и будет отвечать за сбор водорода. Первый прототип сразу подтвердил теорию ученых и показал отличную эффективность. Принцип работы фотоэлемента показан на изображении выше.

(Изображение солнечной дороги в Китае)

Что касается проектов, то здесь тоже немало интересного. Например, Китай построил умную солнечную дорогу, которая будет заряжать электрические автомобили во время движения.

Внешность солнечных батарей тоже меняется. Многих людей раздражает видеть на домах уродливые и неказистые квадратные панели, которые абсолютно никак не вписываются в обстановку. Именно поэтому некоторые фирмы разработали специальные солнечные крыши, которые с привычной точки зрения ничем не отличаются от обычных. Самым популярным продуктом на данный момент является солнечная черепица Tesla, изображение которой можно найти ниже. На фото сразу становится заметно, как идеально вписывается крыша автопроизводителя в дизайн здания. Аналогичное решение предоставляет немецкая компания SolteQ. Принцип работы данной технологии на словах довольно прост, и его давно раскрыла Tesla, обнародовав свой патент. Кстати говоря, посмотреть, как выглядит Solar Roof вблизи, можно в нашей статье.

(Tesla Solar Roof - фото с официального сайта www.tesla.com)

Встроить фотоэлементы в транспортные средства давно пытаются многие компании. Например недавно Kia и Hyundai объединили усилия, чтобы создать солнечную крышу для зарядки батареи автомобиля.

Но куда интереснее проект Clean2Antarctica: голландская пара, ведущая образ жизни без вредных выбросов, решила доехать до южного полюса на машине, сделанной из пластиковых отходов и питаемая энергией солнца. В итоге, из их затеи получилась вот такая штука под названием Solar Voyager:

традиционная и альтернативная. Энергия будущего

Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Атомная энергетика

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические электростанции

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

В некотором смысле это подвид тепловой энергетики, но практически производственные показатели работы ядерных станций на порядок выше ТЭС. В России используют полные циклы выработки атомной электроэнергии, что позволяет генерировать большие объемы энергетического ресурса, но имеют место и огромные риски использования технологий обработки урановой руды. Обсуждением вопросов безопасности и популяризации задач данной отрасли, в частности, занимается АНО «Информационный центр атомной энергетики», имеющий представительства в 17 регионах России.

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Биомассовая энергия

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Геотермальные источники энергии

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Ветровая энергетика

Энергетические технологии будущего

По оценкам экспертов, к 2100 г совокупная доля угля и нефти в мировом балансе составит около 3%, что должно отодвинуть термоядерную энергетику на роль второстепенного источника энергетических ресурсов. На первое же место должны встать солнечные станции, а также новые концепции преобразования космической энергии, основанной на беспроводных каналах передачи. Процессы становления энергии будущего должны начаться уже к 2030 г., когда наступит период отказа от углеводородных источников топлива и перехода к «чистым» и возобновляемым ресурсам.

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Солнечная энергия

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Альтернативные источники энергии для частного дома: виды и проекты

В природе энергия присутствует практически везде – ветер, вода, земля и солнце – это альтернативные и возобновляемые источники энергии. Но основной задачей человечества является создание приспособлений, которые могут извлечь ее оттуда, именно этим занимается альтернативная энергетика.

альтернативные источники энергии

Человечество достигло невероятных успехов в этом направлении, на сегодняшний день такие установки можно изготовить самостоятельно для своего дома. Зачем нужны эти устройства, и что можно изготовить своими руками?

Необходимость использования новых источников энергии

Развитие энергетики и технологический прогресс привели к постоянному росту спроса на энергоресурсы. До 60-х годов прошлого века основным источником энергетики являлась нефть. Кризис 1973 года показал, что ориентация на один вид ресурса может повлечь за собой непредвиденные ситуации. Многие экономически развитые страны разработали новую энергетическую стратегию, которая основывается на диверсификации энергетических источников.

С этого времени ученые уделяют большое внимание проблемам всемирного энергосбережения и изучению возможностей применения нетрадиционных альтернативных источников энергии.

альтернативные источники энергии

Освоение нетрадиционных источников

К нетрадиционным источникам энергии относятся:

  • энергия солнца;
  • энергия ветра;
  • геотермальная;
  • энергия морских приливов и волн;
  • биомассы;
  • низкопотенциальная энергия окружающей среды.

Их освоение представляется возможным благодаря повсеместной распространенности большинства видов, можно отметить также их экологическую чистоту и отсутствие эксплуатационных затрат на топливную составляющую.

Однако существуют и некоторые отрицательные качества, которые препятствуют применению их в производственных масштабах. Это – небольшая плотность потока, которая заставляет применять «перехватывающие» установки большой площади, также изменчивость во времени.

Все это приводит к тому, что подобные устройства обладают большой материалоемкостью, а значит, увеличиваются и капиталовложения. Ну, а процесс получения энергии из-за некоторого элемента случайности, связанного с погодными условиями, доставляет немало неприятностей.

Другой наиважнейшей проблемой остается «сохранение» этого энергетического сырья, так как существующие технологии аккумулирования электроэнергии не позволяют сделать это в больших количествах. Тем не менее, в бытовых условиях альтернативные источники энергии для дома пользуются все большей популярностью, поэтому ознакомимся с основными энергоустановками, которые можно установить в частном владении.

альтернативные источники энергии

Солнечные батареи

Солнечная панель состоит из комплекса соединенных элементов, которые преобразуют солнечный свет в поток электронов. Характерной особенностью является тот факт, что они не в состоянии генерировать ток высокого напряжения. Отдельный элемент вырабатывает ток напряжением до 0,55 В, а одна батарея вырабатывает ток напряжением до 21 В, который позволяет питать 12-вольтовую аккумуляторную батарею.

Естественно, для обеспечения дома электроэнергией потребуется система, насчитывающая десятки таких устройств. Также в ее состав входят следующие компоненты:

  • контроллер для управления зарядкой аккумуляторной батареи, предотвращает повторный заряд;
  • инвертор, преобразующий ток из низкого в высокое напряжение;
  • аккумулятор.

Все три элемента лучше приобрести в готовом виде, ну, а солнечную батарею можно изготовить самостоятельно.

Солнечные батареи

Процесс изготовления батареи

Батарея собирается из модулей, состоящих из 30, 36 или 72 фотоэлементов. Они соединяются последовательно с источником питания, его максимальное напряжение составляет 50 В.

Этапы работ:

  1. Из фанеры вырезается дно корпуса и вставляется в рамку, по периметру которой высверливаются отверстия. Они необходимы для обеспечения вентиляции и предотвращения перегрева во время работы.
  2. Подложка для солнечных элементов вырезается по размеру корпуса, здесь также необходимо предусмотреть наличие отверстий.
  3. Корпус окрашивается и высушивается, после этого на него выкладываются вверх ногами солнечные элементы и запаиваются.
  4. Элементы соединяются для начала рядами, затем они подключаются к токоведущим шинам.
  5. Перевернутые элементы фиксируются при помощи силикона.

Величина выходного напряжения должна составлять около 18-20 В, в этом нужно предварительно убедиться. Также в течение нескольких дней проверяется работоспособность батареи, только после этого выполняется герметизация стыков и собирается система электроснабжения.

Солнечные батареи

При установке панели следует обратить внимание на следующее:

  1. Не располагать батарею в тени деревьев или высоких сооружений.
  2. Произвести ориентацию батареи в сторону солнца.
  3. Правильно определить наклон.
  4. Обеспечить доступность для своевременного удаления пыли, грязи и слоя снега.
  5. Предусмотреть подставку, регулирующую угол наклона для зимнего и летнего сезона.

Ветрогенераторы

Альтернативные источники энергии для частного дома – это возобновляемые ресурсы, к которым можно отнести и энергию ветра. Наши предки умели строить мельницы, использующие воздушные потоки для вращения лопастей, сейчас же человек научился преобразовать их в электричество.

Существует несколько разновидностей ветряных генераторов, которые различаются в зависимости от основных параметров.

Ветрогенераторы

Размещение оси

Различают вертикальные и горизонтальные конструкции. Горизонтальные обеспечивают автоматический поворот основной части для поиска ветра, обладают более высоким уровнем КПД. Оборудование вертикальных генераторов расположено на земле, эксплуатация и обслуживание этого вида проще.

Количество лопастей

Существуют следующие виды:

  • однолопастные;
  • двухлопастные;
  • трехлопастные;
  • многолопастные.

Последний тип используется редко, в основном, при малой скорости ветра.

Материал для лопастей

Лопасти бывают жесткими и парусными, однако из-за быстрой потери своей функциональности, в результате резких порывов ветра, требуют частой замены.

Ветрогенераторы

Ветряная установка состоит из следующих основных элементов, которые можно изготовить собственноручно:

  1. Лопасти, которые в результате вращения обеспечивают движение ротора.
  2. Генератор, вырабатывающий переменный ток.
  3. Контроллер, преобразующий переменный ток в постоянный, необходимый для зарядки аккумуляторов.
  4. Аккумуляторы для накопления электроэнергии.
  5. Инвертор превращает постоянный ток в переменный, необходимый для функционирования всех бытовых приборов.
  6. Мачта для обеспечения поднятия лопастей до необходимой высоты с наиболее активными воздушными массами.

Тепловые насосы

Этот самая прогрессивная технология, в которой используются альтернативные источники энергии для дома своими руками, обеспечивающая значительную экономию средств на обогрев или охлаждение дома.

Принцип работы оборудования основан на цикле Карно: в результате резкого сжатия теплоносителя происходит повышение температуры. Противоположное действие наблюдается в функционировании холодильных и морозильных камер.

Для изготовления теплового насоса могут применяться некоторые узлы, использующиеся в данном оборудовании. Тепловая энергия, отбирающаяся из грунта, воздуха, воды, попадая в испаритель, превращается в газ, далее сжимается компрессором, а температура повышается.

тепловые насосы

Классификация насосов следующая:

  1. По количеству контуров:
    • одноконтурные;
    • двухконтурные;
    • трехконтурные.
  2. По виду источника.

Встречаются следующие разработки.

Грунт-вода

Применяются с успехом на территориях с умеренным климатом, где прослеживается равномерный подогрев почвы в любое время года. Скважины бурятся неглубоко, поэтому разрешающие документы оформлять не придется. В зависимости от типа грунта используют зонд или коллектор.

Воздух-вода

Такие установки используются в зонах с климатом, где зимняя температура не опускается ниже 15-20 градусов. Аккумулирующееся тепло из воздуха используется для нагрева воды.

Вода-вода

Применяются в условиях наличия водоема: рек, озер, скважин, отстойников, грунтовых вод. Как известна температура водных источников значительно выше температуры воздуха в зимнее время. Этим и обусловлена эффективность данных установок.

альтернативные источники энергии для частного дома

Вода-воздух

Тепло из водоемов посредством компрессора передается воздуху и используется для обогрева жилых площадей.

Грунт-воздух

Наиболее универсальная система, использующая в качестве переносчиков энергии незамерзающие жидкости. Тепло из грунта посредством компрессора передается воздуху.

Воздух-воздух

Наиболее дешевая система, которая не требует проведения земляных работ, а также прокладки трубопровода. Способна как обогревать, так и охлаждать помещение.

При выборе одной из систем следует учесть следующее:

  • геологию участка;
  • возможность проведения земляных работ;
  • наличие свободного пространства.

Эффективность установки зависит от правильности выбора источника альтернативной энергии.

Тепловые насосы

Биогазовые установки

Газ образуется в результате обработки продуктов жизнедеятельности домашних птиц и животных. Переработанные отходы используются для удобрения почвы на приусадебных участках. Процесс основан на реакции брожения, в котором участвуют бактерии, живущие в навозе.

Самым лучшим источником биогаза считается навоз КРС, хотя для этого также подходят отходы птиц или другого домашнего скота.

Брожение происходит без доступа кислорода, поэтому целесообразно использовать закрытые емкости, которые еще называют биореакторами. Реакция активизируется, если периодически перемешивать массу, для этого используется ручной труд или различные электромеханические приспособления.

Также потребуется поддерживать температуру в установке от 30 до 50 градусов для обеспечения активности мезофильных и термофильных бактерий и участия их в реакции.

Биогазовые установки

Изготовление конструкции

Самой простой биогазовой установкой является бочка с мешалкой, закрывающаяся крышкой. Газ из бочки поступает в резервуар через шланг, в крышке для этой цели проделывается отверстие. Такая конструкция обеспечивает газом одну или две газовые горелки.          

Для получения масштабных объемов газа используется надземный или подземный бункер, который изготавливается из железобетона. Всю емкость целесообразно разделить на несколько отсеков, для того чтобы реакция происходила со сдвигом во времени.

Процесс брожения при участии мезофильных культур занимает до 30 дней, поэтому такие условия оптимальны для бесперебойного выделения газа. Загружают навоз через загрузочный бункер, с противоположной стороны отбирается отработанное сырье.

Емкость заполняется массой не полностью, примерно на 20 процентов, остальное пространство служит для скапливания газа. К крышке емкости подсоединяются две трубки, одна отводится к потребителю, а другая к гидрозатвору – емкости, заполненной водой. Это обеспечивает очищение и осушение газа, к потребителю подается газ высокого качества.

Биогазовые установки

Мини гидроэлектростанции

Самодельные гидроэлектростанции – это дополнительные альтернативные источники энергии своими руками, их можно построить у ручья или водоема с плотиной. Основа этой конструкции – колесо, которое вращается потоками воды, а от скорости течения зависит мощность установки.

Самодельные гидроэлектростанции

Как самостоятельно изготовить конструкцию?

Для осуществления задуманного понадобятся следующие материалы:

  • автомобильные колеса;
  • генератор;
  • обрезки уголка и металла;
  • фанера;
  • медный провод;
  • магниты неодимовые;
  • полистироловая смола.

Колесо изготавливается из дисков размером 11 дюймов. Стальная труба разрезается на четыре части по вертикали, из получившихся сегментов получаются лопасти, их потребуется 16 штук. Лопасти крепятся сваркой, а диски – болтами.

Размеры сопла соответствуют ширине колеса, его изготавливают из обрезка металла. Придав соответствующую форму, края соединяют сваркой. Сопло должно быть настроено по высоте для регулирования водяного потока.

Далее, ось сваривается и на нее устанавливается колесо. Изготавливается генератор, который защищается металлическим крылом от брызг. Все элементы покрываются краской для защиты от влаги и коррозии.

Такое устройство не требует огромных капиталовложений, но оно способно значительно снизить расходы на электроэнергию.

Самодельные гидроэлектростанции

Геотермальная энергия

В недрах земного шара таятся неизведанные виды альтернативных источников энергии. Человечество знает, какова сила и масштабы природных стихийных проявлений. Мощность извержения одного вулкана несравнима ни с одной из рукотворных энергетических установок.

К сожалению, человек еще не умеет использовать эту гигантскую энергию во благо, но природная теплота Земли или геотермальная энергетика приковывает взгляды ученых, так как она представляет собой неисчерпаемый ресурс.

Известно, что наша планета ежегодно излучает громадное количество внутреннего тепла, которое компенсируется радиоактивным распадом изотопов в коре земного шара. Различают два типа источника геотермальной энергии.

Подземные бассейны

Это естественные бассейны с горячей водой или пароводяной смесью – гидротермальные или паротермальные источники. Ресурсы из этих источников добываются посредством буровых скважин, далее энергия используется для нужд человечества.

Геотермальная энергия

Горные породы

Тепло горячих горных пород может быть использовано для нагревания воды. Для этого ее закачивают в горизонты для дальнейшего применения в энергетических целях.

Одним из недостатков этого вида энергии является его слабая концентрация. Однако в условиях, где при погружении на каждые 100 метров, температура увеличивается на 30-40 градусов, можно обеспечить хозяйственное ее применение.

Технология использования этой энергии в перспективных «геотермальных районах» обладает явными преимуществами:

  • неисчерпаемость запасов;
  • экологическая чистота;
  • отсутствие больших издержек на разработку источников.

альтернативные источники энергии для частного дома

Дальнейшее развитие цивилизации невозможно без внедрения новых технологий в области энергетики. На этом пути стоят трудноразрешимые задачи, которые еще предстоит решить человечеству.

Тем не менее, освоение этого направления играет важную роль, и сегодня уже существует оборудование, способное существенно сэкономить ресурсы традиционные и альтернативные источники энергии являются отличной альтернативой им. Для воплощения таких идей требуется терпение, умелые руки, а также некоторые навыки и знания.

Видео

Ознакомиться с работой различных альтернативных источников энергии в частном доме вы сможете, посмотрев наше видео.

Отправить ответ

avatar
  Подписаться  
Уведомление о