Утепленный фундамент: УФФ утепленный финский фундамент — что это такое, обзор технологии устройства

УФФ утепленный финский фундамент — что это такое, обзор технологии устройства

Каркасные конструкции на малозаглубленных ленточных фундаментах (МЗЛФ) являются сегодня одним из самых перспективных направлений развития малоэтажного строительства. Значительное снижение веса одно- или двухэтажного дома позволяет применять эффективные инженерные решения, характеризующиеся небольшой трудоемкостью. Утепленный финский фундамент (УФФ) появился в отечественной практике 8 — 10 лет назад. Распространенная в скандинавских странах технология была воспринята поначалу с недоверием. Любые инновации, связанные со снижением объема работ, сталкиваются с неприятием значительной части строительного сообщества. Но за несколько лет здания, построенные с применением технологии УФФ, хорошо зарекомендовали себя в плане энергосбережения и комфорта. При этом не было замечено никаких проблем с прочностью и жесткостью несущих конструкций.

Что такое УФФ?

Термин стал известным благодаря строительным форумам, но официальным не является. В соответствии с категориями СНиП речь идет о сочетании МЗЛФ и пола по грунту, при устройстве которых применена внешняя теплоизоляция.

Набирающая популярность в РФ схема фундамента от финской строительной компании Omatalo предусматривает:

  1. Мелкозаглубленный ленточный фкндамент, состоящий из бетонной подошвы сечением 600×200 и фундаментных блоков толщиной 200 мм, составляющих цоколь необходимой высоты. Обязательна тщательная трамбовка грунта обратной засыпки.
  2. Армированную цементно-песчаную стяжку толщиной 80 мм, отлитую поверх 150-миллиметрового слоя экструдированного пенополистирола (ЭППС). Перед заливкой укладывается разводка труб водяного теплого пола. Изоляционные плиты покоятся на мелкофракционном противокапиллярном щебне. Под щебнем расположена песчаная засыпка.
  3. Конструктивное разделение цоколя и плиты пола слоем ЭППС. Плита толщиной 50 — 70 мм примыкает к внутренней стороне цоколя и расположена на всю его высоту, упираясь снизу в подушку фундамента.
  4. Обустройство утепленной подмостки с помощью 120-миллиметровых плит ЭППС, установленных по внешнему периметру цоколя на глубине верха фундаментной подушки.

Принципиальная схема устройства УФФ — утеплённого финского фундамента

Застройщики варьируют эту схему, изменяя толщины слоев, теплоизоляционные материалы и некоторые другие компоненты. Например, вместо ЭППС под стяжкой могут быть установлены плиты ПСБ-С (наиболее прочные сорта пенопласта), а при устройстве теплого пола в некоторых случаях предпочтение отдается электрическим системам. В климатических зонах с индексом мороза более 70 000 цоколь предпочитают отливать в несъемную опалубку из экструдированного полистирола. Общим же для всех модификаций уфф остается соблюдение трех принципов:

  • МЗЛФ располагается в траншее с утрамбованным грунтом обратной засыпки;
  • теплоизоляционные слои расположены под стяжкой пола, а также между цоколем и стяжкой;
  • обязателен монтаж утепленной подмостки с примыканием к подошве фундаментной ленты.

В европейской и североамериканской практике эта схема не выделяется в особую категорию, но входит в группу противоморозных или утепленных МЗЛФ. В основном, встречаются два термина:

  • Frost Protected Shallow footing/foundations (FPSF) и
  • Insulated Shallow footing.

Диапазон применения и особенности схемы

Каждый проект требует индивидуального расчета фундамента в зависимости от характеристики грунта, веса дома, соотношения площади постройки к длине периметра, особенностей климатической зоны и других факторов.

Если максимально обобщать, то финский фундамент рассмотренной конструкции можно рекомендовать к применению во всех климатических зонах РФ для всех категорий грунтов при ориентировочной нагрузке 1 — 3 тонны на погонный метр МЗЛФ.

Указанный диапазон нагрузок соответствует большинству проектов каркасных домов с этажностью 1 — 2 и одноэтажных коттеджей без ограничения типа их конструкции. Впрочем, адаптация УФФ под более тяжелые дома не составляет проблемы: изменение конструкции в этом случае идет путем увеличения сечений подушки и цоколя ленточного фундамента.

Типовая конструкция МЗЛФ — мелкозаглубленного ленточного фундамента

В экономическом плане схема подходит лишь к строениям без подвалов.

Среди преимуществ УФФ можно отметить:

  • Изящное и простое решение противоморозной защиты
  • Высокие показатели энергоэффективности, лишь незначительно уступающие схеме типа утепленной шведской плиты (УШП).
  • Хорошая адаптационная способность к изменениям проектов по нагрузкам, высоте цоколя, последовательности выполнения отдельных этапов, ремонтопригодности проложенных коммуникаций.
  • Возможности вести работы малыми силами и небольшими средствами, делая значительные перерывы по времени (например, можно обойтись без опалубки, а заниматься разводкой отопления и отливать плиту пола допустимо уже после монтажа крыши).
  • Вариант лучше, чем УШП адаптируется к уклонам участка.
  • Схему допустимо применять при высоком уровне грунтовых вод
[blockquote_gray»]Особенности технологии устройства УШП и отличия от УФФ, узнайте в этом подробном материале по ссылке[/blockquote_gray]

Недостатки (во многом, условные) фундамента данного типа связаны с недостаточной энергоэффективностью применительно к концепции «пассивного дома» и значительным объемом земляных работ. Стоимость цикла при реализации схем, близких к технологии Omatalo, составляет 100 — 120 $/м² плана постройки.

Вариант по цене дороже стандартного нулевого цикла. Однако, если учитывать утепление и разводку коммуникаций, финская схема выходит немного дешевле.

Технико-экономическое сравнение с УШП дает следующие результаты: при высоте цоколя 80 см и выше вариант дороже утепленной шведской плиты на 10% — 15%. Высота цоколя значительно влияет на расходы, так как прямо пропорционально связана с объемами доставляемых на объект засыпных материалов.

Следует отметить, что замена экструдированного пенополистирола пенопластом (при сохранении толщины теплоизолирующего слоя) не дает ощутимого удешевления проекта (итоговая сумма снижается не более, чем на 2% — 3%). Если же исходить из одинакового уровня энергоэффективности, учитывающего влагопоглощение, то утепление пола плитами ПСБ-С обходится дороже, чем с помощью ЭППС.

Технология устройства УФФ

Рассмотрим пошагово комплекс работ, исходя из оптимизации (уменьшения) времени на их выполнение.

  1. Выполняется определение места постройки на участке (если это не было определено индивидуальным проектом дома). Учитываются все естественные преграды, наружные коммуникации, границы участка, подъездные пути и проч.
  2. Разметка котлована обносками (колышками с прикрепленными на них планками) производится с учетом запаса (0,3 — 0,5 м) относительно наружного периметра утепляемой отмостки.
  3. Полностью удаляется плодородный слой.
  4. Под несущими стенами роется траншея согласно глубине залегания подушки и необходимой высоте слоя подсыпки.

    Плодородный слой снимается и в траншею под несущие стены укладывается песок и щебень слоями по 20 см

  5. Вынутые пучинистые грунты вывозятся со стройплощадки, если иное не предусмотрено планами по ландшафтному дизайну.
  6. Создается дренажный уклон, выполняется дренажная засыпка на геотекстиль и уплотняется виброплитой.
  7. Под подушку ленты выкладывается рулонная гидроизоляция в 2 — 3 слоя с запасом, позволяющим загнуть материал до примыкания к боковым поверхностям цоколя. Гидроизоляцию наружной поверхности цоколя можно провести позднее (если она необходима). Затем выполняется утепление подушки плитным материалом (если предусмотрено проектом).
  8. Выполняется армирование подушки. Используется арматура периодического сечения диаметром 8 — 14 мм. При толщине подушки не более 25 см, как правило, обходятся двумя поясами армирования. Если иное необходимо по расчету, либо толщина достигает 30 см, выполняется третий пояс армирования. Пояса связываются вертикальными перемычками. Нижний пояс укладывается на полимерные или бетонные подкладки.
  9. Монтируется опалубка и производится заливка бетона. Демонтаж опалубки производится после 50%-ного набора прочности (в зависимости от погодных условий и марки бетона период составляет 2 — 7 дней).

    Опалубка и гидроизоляция утеплённого финского фундамента. Хорошо видно армирование и гидроизоляция.

  10. Выкладывается лента из фундаментных блоков.
  11. Внутренняя поверхность ленты утепляется плитами ЭППС или ПСБ-С. Утепление подмостки и ее засыпку не обязательно координировать по времени с другими видами работ.

    Выполнена обратная засыпка. Вдоль внутренней поверхности ленты хорошо виден установленный предварительно утеплитель. Как вариант, часто используют пенопласт.

  12. После утепления ленты производится засыпка внутренней части. Используется песок и мелкофракционный щебень. Каждые 10 см высоты производится уплотнение виброплитой. Для исключения перемешивания разнородных слой используется геотекстиль.
  13. Выкладывается утепление пола. Если предусмотрено проектом, поверх плит укладывается фольгированный утеплитель.
  14. Производится монтаж труб водяного теплого пола, либо электрических кабельных матов. Осуществляется установка закладных для всех предусмотренных коммуникаций.

    Смонтированная система утеплённого пола в конструкции УФФ

  15. Заливка стяжки реализуется с использованием металлической сетки в соответствии со всеми стандартами работ такого типа.

    Поверхность УФФ плиты после заливки бетоном

Заключение


Самым впечатляющим результатом устройства фундамента с теплоизоляцией по данной схеме можно считать двойную выгоду от выполнения одной манипуляции. А именно: утепляющий слой, с одной стороны, является преградой на пути тепла из помещения в землю, с другой — аккумулирует восходящее от недр геотермальное тепло, предохраняя бетон и грунт от промерзания.

Вторым важным бонусом технологии является сравнительная простота и известность всех приемов работы для подавляющего большинства отечественных строительных бригад.

Видео в тему: процесс устройства финского фундамента УФФ

Утепленный Финский Фундамент

Утепленный Финский Фундамент  

Начнем серию статей о современных фундаментах c наиболее часто применяемого нашей компанией в работе – Утепленный Финский Фундамент (УФФ). О нем и будет идти речь в этой публикации.

Корни термина и популяризации УФФ, как и ставшей очень популярной Утепленной Шведской Плиты (УШП), ведут на площадку Форум Хаус. Скромно отметим наш вклад в этот процесс, так как активное обсуждение финского фундамента начиналось на уровне самостроя с ветки форумчанина Tim1313 в 2011 году. Под данным ником скрывается один из основателей TIMATALO – Темур Чантурия. 

Отметим, что и до 2011 года в России применялись точные копии финского фундамента, что видно по тому же Форум Хаусу, но именно активное обсуждение конструктивных решений, а далее и популяризация начались в указанной ветке на Форуме.


В самом начале разберемся в терминологии, понятной в России.
  
Утепленный финский фундамент – это мелкозаглубленный «Т» — образный ленточный фундамент с полами, организованными по грунту, комплексом инженерных решений и финишной стяжкой пола. Под совокупностью инженерных решений подразумеваются такие мероприятия как: ливневая канализация и дренаж с наружной стороны фундамента, утепление, холодное горячее водоснабжение по проектным точкам, магистрали канализации, водяной теплый пол, интегрированный в стяжку пола и другие, во внутреннем периметре фундамента. Основной перечень мероприятий входящих в объем работ по финскому и шведскому фундаменту отражен в разделе услуг на нашем сайте.

По большому счету, разница нашего классического понимания ленточного фундамента с полами по грунту с УФФ именно в комплексе решений, связанных с утеплением и коммуникациями, входящими в финский фундамент, которое и обеспечивает так называемый «готовый нулевой цикл».

Цокольная часть финского фундамента представляет из себя кладку блоков, чаще всего керамзитобетонных, или изготовлена из бетона.


Преимущества Утепленного Финского Фундамента.
 
Отметим преимущества утепленного финского фундамента в контексте сравнения именно с бетонными «братьями», такими как утепленная шведская плита и классическая ЖБ плита. Рассматривать в разрезе фундаментов на основе винтовых свай, столь популярных у нас, в этот раз не станем, так как такое сравнение не будет ограничиваться только техническими показателями. Пожалуй, посвятим ему отдельную статью в будущем.

Готовый нулевой цикл, реализуемый на фундаментных работах при возведении УФФ, обеспечивает более глубокую подготовку к последующему строительству дома. По сути, на последующих этапах строительства нет необходимости тратить деньги и думать об утеплении пола в доме, о реализации финишной стяжки, отопления первого этажа и других коммуникациях на первом этаже, о скрытой ливневой канализации и утепленной отмостке дома. Все эти мероприятия реализованы на фундаментных работах.

При прочих равных, в базовом варианте высота видимой части цоколя от финишной отметки отмостки дома до фасада равна 300 – 400 мм , что все еще является комфортным для человека, так как от уровня условного нуля ландшафта до уровня пола в доме всего лишь одна или две ступеньки, но уже достаточно для большей по времени эксплуатации фасадов относительно более низких цоколей.


Объективное преимущество финского фундамента по сравнению с плитными фундаментами – это комфортность применения на участках с большими перепадами под пятном застройки именно за счет вариативности в высоте цоколя. То есть, при наличии перепада под пятном застройки, можно легко увеличить высоту фундамента за счет увеличения количества рядов кладки блоков, с базовых трех до необходимого количества, продиктованного величиной перепадов и посадкой дома на ландшафте. Или же может поступить пожелание Заказчика получить более высокий цоколь, например как и сделано на одном из наших объектов после того, как такое предпочтение было озвучено будущими жильцами.

Потенциал финского фундамента, относительно той же УШП выходит за пределы легких каркасных и брусовых домов. На финском фундаменте можно реализовывать кирпичные дома с монолитными перекрытиями на широком спектре грунтов.


При необходимости, существует возможность разнесения во времени возведения конструктивной части фундамента, на которую опираются наружные и несущие стены и полов по грунту с инженерией. Данный вариант весьма популярен в той же Финляндии и весьма удобен при производстве фундаментных работ в дождливое или холодное время года.

Есть еще один критерий о котором необходимо сказать в качестве преимущества в сравнении с плитными решениями — лучшая ремонтопригодность и даже проведение глубокой реновации. По сути, в связи с тем, что конструктивно стяжка пола не связана с силовой частью фундамента можно реализовать глубокую перепланировку дома которая влечет за собой изменения и в инженерных коммуникациях фундамента. Отметим, что данное преимущество скорее актуально после 20-30 лет эксплуатации дома, когда появляется необходимость реконструкции, например после смены собственника.

Так же есть ряд технологических преимуществ ,связанных скорее со строительными тонкостями, которые не заметит простой обывательский взгляд. Например, более качественное утепление дверных проемов, путем интеграции в цоколь утеплителей с высокими теплотехническими показателями.
 
Такие показатели, как высокая энергоэффективность, отсутствие зыбкости у полов, монтаж коммуникаций вне зоны промерзания, обеспечиваются при строительстве УШП и могут быть обеспечены при реализации классической ЖБ плиты.

   
Недостатки финского фундамента.

На участках без больших перепадов стоимость УФФ в среднем дороже УШП на 10%. Это связанно с большей материалоемкостью и трудоемкостью возведения данного типа фундамента.

На слабонесущих основаниях, основаниях с возможной неравномерной осадкой под различными нагрузками, строительство плитных фундаментов предпочтительнее ленточных, к которым и относится УФФ.

Объективно большие вложения на фундаментных работах, именно за счет обеспечения готового нулевого цикла. Разумеется, в случае реализации простой ЖБ плиты, данные траты все равно необходимо понести, но уже на более поздних стадиях строительства. Часто, совокупные затраты на возведение простой железобетонной плиты при разделении будут больше, чем одновременные при строительстве УФФ.

Обратим внимание, что не стоит путать утепленный финский фундамент с утепленной финской плитой. Второй тип так же есть у финнов, но встречается очень редко и представляет из себя именно плитное решение. Поговорим о нем в общей статье по различным фундаментам в малоэтажном строительстве Финляндии, которая выйдет позже.



Как возвести финский фундамент

Начинающие строители загородного дома сталкиваются с проблемой укладки фундамента. Они не могут определиться какой лучше фундамент выбрать. Так как в мире существует большое количество видов основания под дом.


Сегодня я расскажу, как укладывать утепленный финский фундамент. Такой тип основания как раз подходит для сибирских зим.

Что из себя представляет утепленный финский фундамент

Утепленный финский фундамент – это мелкозаглубленный ленточный фундамент с утепленной монолитной плитой по грунту в качестве финишной стяжки пола дома. Цокольная часть финского фундамента представляет собой кладку блоков, чаще всего керамзитобетонных, либо изготовлена из бетона.

Перед заливкой УФФ, вы должны будете подготовить:

с наружной стороны здания – ливневую канализацию и дренажную систему вокруг фундамента;

по площади периметра – утепление, вмонтированный в стяжку теплый водяной пол, канализационные трубы, холодное и горячее водоснабжение.

Внимание! По своему многолетнему опыту укладки УФФ, скажу, что финское основание хорошо подходит для малоэтажного каркасного строительства без подземного этажа. И построенные за последние несколько лет здания с применением технологии УФФ отлично зарекомендовали себя, поэтому сегодня всё больше набирают популярность в России.

Основные преимущества и недостатки утепленного финского фундамента

Давайте посмотрим на плюсы, которые дает постройка дома на данном основании:

  • возможность применения на любом типе почвы и при высоком уровне грунтовых вод;

  • хорошая адаптация к изменению нагрузок и устройству инженерных коммуникаций;

  • снижение уровня теплопотерь и экономия средств на отоплении здания, за счет утепленной подушки пола и отсутствия подвального помещения;

  •  устройство теплого пола и черновой стяжки на этапе заливки фундамента до возведения стен и монтажа кровли;

  • возможность проведения ремонта или замены стяжки пола без изменения в инженерных коммуникациях фундамента;

  • высокий цоколь не менее 40-50 см;

  • возможность возведения на участке с большим перепадом высот при неровном рельефе. На склонах можно увеличить высоту цокольной части лены (для тяжелых кирпичных коттеджей ширина фундамента в подошве увеличивается до 60-80 см).

А теперь посмотрим на главные недостатки:

  • высокая себестоимость материалов и работ на первом этапе строительства дома;

  • проведение земляных работ. Рытье траншеи под ленточный фундамент по всему периметру дома;

  • покупка песка, гравия и щебня для отсыпки фундамента дома;

  • необходимость уплотнения каждых 10 см слоя обратной отсыпки.

Учитывая технические характеристики утепленного финского фундамента, вы сможете использовать его во всех климатических зонах России при любом типе грунта для частного малоэтажного строительства с весовой нагрузкой до 3-х тонн на 1 погонный метр ленточного фундамента. При необходимости повышения весовой нагрузки до 4-5 тонн просто увеличивайте опорную подушку фундамента.

Пошаговая технология устройства УФФ

В первую очередь вы подготавливаете котлован и траншею для мелкозаглубленного ленточного фундамента.

Согласно подготовленному проекту, проведите точную разметку котлована под будущий фундамент. Размечайте с запасом примерно в 50 см относительно наружного периметра утепляемой отмостки. Глубину траншеи не зарывайте ниже 60 см, а ширину ленты фундамента оставляйте на 60-80 см.

Не заливайте бетон на плодородный слой, так как разложившаяся органика за 2-3 года даст усадку. Поэтому грунт и плодородный слой с намеченной территории удалите, а дно траншеи выровняйте и уплотните.

Обустройство дренажной системы

На дне траншеи сделайте дренажный уклон от 40 до 70 см в сторону отведения ливневых вод и отсыпьте щебнем и песком. Толщину слоя доведите до 20 см поверх заранее уложенного слоя геотекстиля. Я посоветую сделать так: каждый слой песка пролейте водой и утрамбуйте при помощи виброплиты. 


Таким образом вы усилите жесткость и прочность основания. Перехлесты соседних полотен геотекстиля делайте не менее 15 см. Если уровень грунтовых вод достаточно высок, то усильте дренажную систему, уложив на край дна траншеи трубу с мелкими отверстиями, обмотанную в геотекстиль.

Установка опалубки, гидроизоляция и армирование

Для опалубки, я посоветую, выбрать толстую ламинированную фанеру, деревянные доски и щиты. Если у вас нет дерева, но есть металлические листы, профнастил или съемная опалубка из синтетического пластика, то так будет даже лучше. Для съемной опалубки используйте бетонные блоки, которые после застывания ленты фундамента подойдут для кладки верхней части ленты.

После установки опалубки, в полученный каркас уложите плотную пленку или специальный гидроизоляционный материал для водоотведения. Рулонную гидроизоляцию выложите в 2-3 слоя с таким расчетом, чтобы боковые края заходили на боковые стены опалубки.


Для армирования бетона возьмите металлические прутья диаметром 8-14 мм. При толщине ленты не более 25 см, сделайте два пояса армирования. Если толщина ленты значительно больше, то обвяжите третьим поясом.

Металлические прутья свяжите между собой вертикальными перемычками и стальной проволокой, дополнительно усиливая углы ленты фундамента. Нижний пояс арматуры уложите на специальные полимерные или бетонные подставки таким образом, чтобы прутья были полностью погружены в бетон.

Не рекомендую фиксировать арматуру сваркой, так как вы нарушите целостность металла, что приведет к коррозии и к быстрому разрушению конструкции.

Заливка бетоном малозаглубленного фундамента и выкладка ленты

После укладки арматуры приступайте к заливке фундамента бетоном. Используйте раствор бетона из цемента марки М400 и М500. Заливку бетона начинайте с угла. Не уменьшайте высоту ниже 20-30 см.

Демонтаж опалубки проводите после набора бетоном запаса прочности не менее 50%. Процесс застывания бетона зависит от погодных условий и марки бетона. Этот период имеет длительность от 2 до 7 дней. Если фундамент вы заливаете в жаркую погоду, то накройте его пленкой, чтобы обеспечить равномерное застывание бетона.

После снятия опалубки бетонной ленты приступайте к выкладке верхней части фундамента из строительных блоков на высоту цоколя. При значительной высоте цоколя проводите укладку армирующей сетки через каждые 3 ряда блоков. Для строительства утепленного финского фундамента я советую использовать пустотелые строительные блоки, так как они более теплоемкие и их легче укладывать в ленту. Горизонталь ленты проверяйте при помощи нивелира либо строительного уровня. Если имеется перепад, то его выровняйте его слоем цементного раствора.

Отсыпка внутренней части фундамента

Внутреннюю часть ленточного фундамента изолируйте от влаги и тепла. Для этого внутренний периметр обработайте битумом, и обклейте плитами экструдированного пенополистирола. После этого проведите обратную засыпку котлована песком, каждый десятисантиметровый слой которого уплотните виброплитой. Для засыпки советую использовать обычный песок, ПГС, ОПГС или щебень фракции 5/20. Только не вынутый грунт с органическими включениями не подходит для этой цели. Последний даст просадку. Чтобы исключить перемешивание разнородных слоев под песчаную подушку уложите геотекстиль.
На песчаную подушку уложите плиты экструдированного пенополистирола слоем не менее 20 см. Плиты склейте между собой специальным клеем на основе битума, который не разъедает полистирол. При необходимости на слой утеплителя выложите слой фольгированного утеплителя.

Армирование, проводка коммуникаций и обустройство теплого пола

На поверхность утеплителя уложите армирующую сетку, либо связанные между собой металлические прутья с размером ячейки не более 15 см. При несущественных нагрузках на конструкцию пола оптимальная толщина плиты составляет 10-15 см, и соответственно достаточно одного армирующего пояса. Под арматурную сетку положите специальные подкладки, чтобы металл оказался внутри бетонной плиты.

Систему теплого пола закрепите к арматурной сетке. Трубопровод в каждом отдельном контуре делайте длиной не более 90 метров при диаметре трубы 14 мм, и 120 метров при диаметре 16 мм. Поэтому в зависимости от общей площади дома иногда лучше сделать несколько греющих контуров, чтобы потом не возиться в поисках поломки по всей длине. Проведите установку закладных узлов для ввода всех необходимых коммуникаций:

Все коммуникационные трубы протестируйте под давлением перед тем, как приступать к заливке пола бетоном.

Заливка бетона под черновой пол

Бетонную смесь заливайте за один прием без перерыва в работе. После чего поверхность залитой смеси уплотните с помощью погружного вибратора или виброрейки. Этот процесс позволит удалить пузырьки воздуха и пустоты, которые могли образоваться в процессе заливки бетона.
Во время застывания поверхность, рекомендую, накрыть пленкой, чтобы обеспечить защиту от ветра и осадков. При необходимости периодически увлажняйте ее. После того, как бетонная подушка наберет немного прочности, поверхность подушки затрите цементом.

Обустройство отмостки

Конструкция утепленного финского фундамента будет более эффективной при наличии утепленной отмостки по периметру дома. Качественная отмостка обеспечит дополнительную тепловую защиту фундаменту, а также обеспечит гидроизоляцию, что исключит подмывание конструкции водой, уменьшит воздействие грунтовых вод на основание фундамента и увеличит срок службы строительной конструкции.

Чтобы дом на утепленном финском фундаменте был надежным жилищем и прослужил долгие годы, кроме соблюдения технологии возведения, выбирайте только качественные материалы.
Так компания «УралСибМет» уже более 15 лет поставляет строительные материалы и металлопрокат высшего качества по доступным ценам и с возможностью доставки по Иркутской области, Бурятии, Забайкальскому краю.

 


Рекомендованые товары

Что такое Утепленная Шведская Плита (УШП) и Утепленный Финский Фундамент (УФФ)

Ведя разговор о финском загородном домостроении, нельзя пройти мимо такой важной вещи как строительство фундамента.

Технически, каркасный дом можно поставить на любой фундамент – начиная от бетонной ленты на глубину промерзания, заканчивая обычными валунами, чем собственно и развлекались в прошлом народы, обитавшие на территории нынешней Финляндии и Скандинавии.

Но тем не менее, в наше время, под каркасные дома в этих областях , в основном, используются 2 типа фундаментов.  Первый из них уже хорошо известен в России по аббревиатуре УШП (утепленная шведская плита) – на подобной плите в основном строят дома в Швеции и Норвегии.   В  Финляндии же более распространен другой тип фундамента, который пока не получил у нас широкого распространения и известен “посвященным” под аббревиатурой УФФ – Утепленный Финский Фундамент.  Строго говоря финским его назвать сложно, так как на подобном типе фундамента делают дома и в Норвегии, да и в России, его более простая модификация хорошо известна.

Теперь обо всем по-порядку.

УШП – Утепленная Шведская Плита

Вначале немного хвастовства :).  Многие знают, что в Россию информацию об УШП принес пользователь Форумхауса известный как Владимир “Таллин”.  Но вот совсем не многие при этом знают, что само название “Утепленная Шведская Плита” придумал именно я :).

А произошло это следующим образом.

Впервые про подобный фундамент заикнулся один товарищ из Германии, написавший на форумхаусе о том, что строительство подобного типа фундамента, идеально подойдет под каркасный дом .  Именно тогда, то что потом стали называть УШП, впервые был опродемонстрировано российской интернет общественности. Было это в июне 2008 года.

К сожалению, с подачи популярного тогда на Форумхаусе строителя, автора шЫдевра под названием Русский Силовой Каркас (Он же РСК, он же впоследствии – Рашен Страшен Каркашен)  –  товарищ из Германии был затравлен, а его идеи были провозглашены еретическими и для загадочной русской души – неподходящими (кстати впоследствии этот гениальный строитель получил срок, за мошенничество).

Второе пришествие УШП произошло в 2009 году. Тогда на форуме появился новый участник, ныне широко известный – Владимир “Таллин”.  В одной из тем форумхауса, он рассказал о фундаменте своего дома в Эстонии, который ему не то спроектировал, не то построил строитель из Швеции  (Родина  отечественной УШП – шведская фирма Dorocell).

Так уж получилось, что на эту тему наткнулся ваш нескромный слуга. То есть я :).  А так как я в то время впитывал все доступные знания по каркасному домостроению как губка и попутно был модератором на Форумхаусе, то оценив потенциал идеи, выделил сообщения Владимира “Таллина” в отдельную ветку и немного подумав, назвали ее “Утепленная Шведская Плита”. А затем всячески оберегал Владимира на начальных этапах, от попыток травли отечественными любителями заливать плиты по 40см толщиной.

Название к фундаменту прилипло,  а Владимир стал “гуру”,  к которому всем обращались за советом.  Про эту историю мне недавно напомнил сам Владимир Таллин, на том же Форумхаусе

Поэтому могу совершенно честно сказать – в том, что УШП получило такое распространение, есть определенная моя личная заслуга.  Но перейдем к делу

Общий принцип строительства УШП можно описать следующим образом: это некое огромное “корыто” из пенопласта “фундаментных” марок (способных выдержать большие нагрузки при небольшой относительной деформации). Корыто, представляющее из себя несъемную опалубку, собирается на подготовленной песчано щебеночной подушке обеспечивающей дренаж. Затем в этом корыте укладывается  арматурный каркас и сетка, к которой, согласно планировке помещений,  закрепляется труба для водяных теплых полов и раскидываются другие коммуникации – водоснабжение, канализация и иногда электрика.  Затем все это заливается бетоном и по хорошему, затирается “вертолетами” для получения максимально готовой под финишную отделку поверхности плиты.    Важно так же отметить, что плита не простая, а с ребрами жесткости под несущими стенами.  То есть толщина плиты отличается под несущими стенами от остальной поверхности.

Это было грубое, примерное, описание того, на что похожа УШП.  Ниже вы можете увидеть типичную конструктивную схему:

 

Оригинальная схема шведской фирмы Dorocell

 

Интерпретация от Knauf

Преимущества строительства УШП

  1. Мы получаем утепленный фундамент-плиту, с отделкой цоколя, подходящую для большинства грунтов
  2. При качественном исполнении, получаем готовое под финишную отделку перекрытие первого этажа
  3. Интегрированные в плиту коммуникации – разводка водопровода, канализации, части электрики и т.п.
  4. Система дренажа и водоотведения вокруг дома
  5.  Практически готовая комфортная, низкотемпературная система отопления водяными теплыми полами – к которой достаточно просто подключить котельное оборудование
  6. Утепление самой плиты и отмостки вокруг дома, убирает явления морозного пучения, которые могут стать большой проблемой для более традиционных лент и плит.
  7. Энергоэффективность. Это один из самых энергоэффективных вариантов фундаментов – позволяющий экономить на отоплении
  8. УШП является высокоэффективным теплоаккумулятором, убирая один из часто упоминаемых недостатков каркасных домов – низкую теплоемкость.

Другими словами, строительство УШП в том, что это комплексное решение.  Все то же самое можно получить и отдельно. Но делая все отдельно и сложив в совокупности затраты, с 90% вероятностью –  у вас получится более дорогое решение.

Недостатки УШП

Разумеется у УШП есть и недостатки, о которых стоит упомянуть.  Правда часть из них, относится и к другим плитным фундаментам.

  1. УШП идеально подходит для ровных участков. На участках с уклоном, строительство УШП как и любого другого плитного фундамента, может вылиться “в копеечку”
  2. УШП подходит для многих типов грунтов, но не для всех.  Например с очень большой осторожностью нужно подходить к строительству УШП на торфяниках и других грунтах с очень низкой несущей способностью.
  3. Требовательность к квалификации исполнителей.  Так как в плиту входит много коммуникаций, требующих грамотной разводки, то далеко не все “строители с опытом” смогут взяться за такой фундамент и не накосячить
  4. Низкий цоколь.  Недостаток условный, но тем не менее, многих напрягает то, что уровень пола  в доме практически с уровнем земли за стеной. Российский менталитет привык к высоким цоколям, тогда как в УШП вся толщина конструкции составляет 30см. из которых обычно над землей торчит дай бог 20.
  5.  Материалоемкость.  Особенно это актуально сейчас (осень 2014) – когда из за роста курсов валют и санкций, многие материалы имеющие в своей основе импортное сырье (тот же пенопласт) резко дорожают.
  6.  Не смотря на энтузиазм и примеры строительства даже достаточно тяжелых каменных домов на УШП, все таки это фундамент, рассчитанный в первую очередь на более легкие – каркасные и деревянные дома
  7.  Ощутимые разовые финансовые вливания  на первоначальном этапе.  Минус условный, так как делать все по отдельности, в итоге будет дороже. Зато можно растянуть затраты по времени.
  8. Ремонтопригодность коммуникаций. Минус условный, так как большинство материалов, используемых в современных системах инженерных коммуникаций, рассчитаны на сроки, явно превышающие наши с вами жизни.  Решения же для ремонтопригодности основных коммуникаций (канализация, водоснабжение) есть, но требуют дополнительных затрат. Так что нужно хорошо подумать, насколько оно надо

Сколько стоит построить УШП?

Опять же, частый вопрос – сколько все это удовольствие стоит.  В ценах лета 2014 года, средняя стоимость строительства УШП в Санкт-Петербурге составляла порядка 6-6,5тр за м2.  В Москве цены были подороже, в среднем 7,5-8тр за м2 в зависимости от степени “раскрученности” и квалификации исполнителей.  По другим регионам информации у меня нет.  К сожалению, учитывая резкое падение курса рубля и большое количество “имортозависимых” материалов в УШП, цена на нее в следующем году заметно повысится.

То есть строительство УШП 100м2 в среднем обошлась бы заказчику   в  600-800тр, в зависимости от региона и аппетитов подрядчика.   Сумма не маленькая. Но вернитесь к преимуществам УШП и прикиньте, сколько по отдельности будет стоить – плита, утепление фундамента, стяжка с теплым полом, дренаж,  коммуникации и т.п.  Возможно, когда вы сложите все затраты, цена УШП покажется уже не такой уж и огромной. Одна только система отопления в оценке “профильных специалистов” может потянуть на 300-400тр.

УШП перед заливкой бетоном, с разведенными трубами теплого пола

После заливки. Снаружи остались только выходы коммуникаций и коллектор теплого пола

УФФ –  Утепленный Финский Фундамент

Этот фундамент еще не так популярен как УШП, но уверен, что свое он возьмет.  Строго говоря, аббревиатура УФФ появилась на том же Форум хаусе, когда данный тип надо было как то отличить от всех других. Пробовали называть и утепленной финской плитой (УФП) и как то еще, но УФФ это не совсем плита.

Вообще то подобная конструкция хорошо используется в России давно и известна как “лента с полами по грунту”.  Правда, отличия УФФ от самых простых полов по грунту, практически такое же, как у УШП от “простой” железобетонной плиты.

Своим появлением УФФ обязана другому активному участнику форумхауса, известному под ником Tim1313, который решил ее “реконструировать” для своего дома, пользуясь информацией брата, строившего дома в Финляндии и хорошо знакомого с этой технологией.

Если УШП у нас, это корыто с пенопластом бетоном и теплыми полами, то УФФ – это утепленная лента с “пяткой”, выполняющей опорную и несущую роль, с обратной засыпкой хорошо утрамбованным грунтом, и хорошо утепленной стяжкой с теплыми полами.   Вариантов таких лент есть много,  я приведу схему от финского домостроительного концерна Оматало (Финндомо)

Оригинальная схема финского фундамента от фирмы Omatalo (finndomo)

Упрощенная, но рабочая схема от Tim1313

Реализаций строительства УФФ у тех же скандинавов может быть много –  в качестве “ленты”, могут использоваться как блоки, так и монолитный бетон, причем в несъемной опалубке из пенопласта.  При больших уклонах  и в некоторых других случаях, могут отказаться от обратной засыпки и сделать перекрытие ЖБ плитами, с дальнейшем обустройством утепленной стяжки по ним.  Могут использоваться разные схемы утепления ленты и периметра.   В Норвегии, из за особенностей скальных грунтов, часто делают ленту без пятки, на щебеночной подушке.

Преимущества  УФФ

Собственно все те же преимущества, что и у УШП, только к ним можно еще добавить то, что убирает часть недостатков УШП

  1. Может оказаться более выгодной и менее трудозатратой на участках с уклоном
  2. Возможность сделать “высокий цоколь” – собственно высота цоколя ограничена только вашими финансами.
  3.  Проще адаптировать под тяжелые дома (увеличивается размер пятки и сечение ленты, конфигурация ленты под несущие стены)
  4. Вариант с цоколем из блоков, позволяет практически на 100% отказаться от использования опалубки – что экономит и время и деньги.
  5. Как ни странно, этот тип фундамента “понятнее” отечественным строителям и соответственно проще найти исполнителей.
  6. Потенциально лучшая ремонтопригодность коммуникаций в отдаленном будущем, так как в отличии от УШП, несущую роль выполняет цоколь и пятка под ним, а стяжка с коммуникациями “развязана” относительно ленты.
  7. Возможность провести коммуникации, сделать теплый пол и стяжку уже после того, как дом “встанет под крышу” – кстати весьма популярный в скандинавии вариант

Недостатки и стоимость УФФ

Расписывать отдельно стоимость УФФ и ее недостатки смысла нет, так как это вещи взаимосвязанные.  Основным недостатком УФФ является бОльшее количество работ, в том числе земляных и большое количество “сыпучки” на обратную засыпку.  Соответственно это приводит к увеличению стоимости УФФ относительно УШП. Остальные недостатки – те же что и у “шведской” плиты, за исключением тех, которые решает УФФ.

Но увеличение по стоимости не драматическое.   В общем случае УФФ обойдется процентов на 10-15 дороже чем УШП.  Хотя в ряде случаев, может оказаться сравнима, если не дешевле.  Причем стоимость УФФ будет напрямую зависеть от высоты цоколя, который вы пожелаете. Чем выше – тем дороже.

 

Опорная пятка и цоколь из блоков

Обратная засыпка с внутренним утеплением

Раскладка теплого пола и заливка стяжки

Опалубка из ЭППС для монолитного цоколя, тоже популярный в скандинавии вариант

 

 

(Visited 56 813 times, 23 visits today)

4 1 голос

Оцените статью

Утепленный финский фундамент — особенности технологии

Утепленный финский фундамент

Фундамент — основа любого здания. От его жесткости, прочности и устойчивости к нагрузкам зависит долговечность всей конструкции. В настоящее время в частном домостроении существует целый ряд успешно зарекомендовавших себя технологий возведения фундамента. Среди них — малозаглубленные ленточные фундаменты, свайно-ростверковые, утепленная шведская плита. Помимо этого, сегодня набирает популярность и еще одна система — утепленный финский фундамент (УФФ). О преимуществах фундамента по типу УФФ, особенностях его устройства мы и поговорим в этой статье.

Конструкция УФФ уже давно пользуется успехом в Северной Европе, для которой так же, как и для России, характерны мерзлые грунты, воздействие сил морозного пучения. К тому же она в полной мере соответствует тренду на энергоэффективность. В странах ЕС сохранение ресурсов — вопрос не праздный, утечки тепла в буквальном смысле бьют по бюджету домовладельцев. По этой причине в Европе очень популярны энергоэффективные технологии возведения фундаментов: как, например, хорошо знакомая российским строителям утепленная шведская плита и пока еще малоизвестная система — утепленный финский фундамент.

Почему финский? Связь с этой северной страной объясняется просто. Несколько лет назад пользователь одного известного строительного форума решил поставить собственный дом на фундамент, о котором слышал от брата, занимавшегося строительством в Финляндии.

Особенности УФФ

Отличительной особенностью УФФ является сочетание нескольких хорошо знакомых профессионалам решений: малозаглубленного ленточного фундамента и утепленной фундаментной плиты со встроенной системой инженерных коммуникаций и теплых полов.

Наличие вертикального слоя теплоизоляции между ленточной частью фундамента и бетонным полом отвечает за высокий уровень энергоэффективности. Утеплитель укладывается от подошвы фундамента и до верхней границы ленточной части, замыкая тепловой контур. Для теплоизоляции вертикальной конструкции фундамента не требуются высокие показатели прочности XPS, как, например, под плитой, где утеплитель испытывает нагрузку от самой плиты, несущих конструкций, мебели и пр. Для утепления вертикальной части ленточного фундамента подойдут плиты XPS CARBON ECO. Он не боится влаги, защищает конструкцию от промерзания и сохраняет форму на протяжении всего срока эксплуатации.

  • Слой теплоизоляции позволяет избавиться от мостиков холода. В целом УФФ обладает большинством преимуществ утепленной шведской плиты, но имеет несколько уникальных особенностей. Для кого-то они станут принципиальными при выборе в пользу УФФ:
  • во-первых, УФФ служит идеальным решением для строительства на участках со сложным рельефом. Так, например, при возведении УШП допускается лишь небольшой перепад высот в зоне застройки, а это накладывает определенные ограничения на выбор участка под застройку либо влечет за собой дополнительные трудозатраты на подготовку участка под строительство;
  • во-вторых, утепленный финский фундамент позволяет возвести абсолютно любую высоту цоколя — в отличие от УШП, в которой высота ограничена размерами плиты;
  • в-третьих, УФФ — универсальное решение. Путем изменения геометрии подошвы фундамента и сечения ленты можно подобрать оптимальные параметры для возведения любых типов домов.

Варианты устройства УФФ

УФФ может иметь несколько вариантов исполнения. Малозаглубленный ленточный фундамент допускается возводить из монолитного бетона или из блоков. Возможность устройства фундамента из блоков и вовсе освобождает от забот, связанных с устройством деревянной опалубки.

При устройстве утепленного финского фундамента работы можно разделить на несколько этапов. Сначала установить ленточный фундамент, возвести теплый контур коттеджа, включая стены и кровлю, а только затем приступить к монтажу конструкции утепленного пола. После монтажа ленточного фундамента бетонная стяжка укладывается на слой прочной теплоизоляции, обладающей низким водопоглощением и высокой прочностью на сжатие. Таким характеристикам соответствует экструзионный пенополистирол марки ТЕХНОНИКОЛЬ CARBON ECO SP, он специально разработан для конструкций, испытывающих повышенные нагрузки.

Есть и второй вариант, он также очень распространен: когда процесс строительства делится на несколько этапов. Первоначально завершаются все работы по устройству фундамента, после чего можно приступать к возведению стен и кровли.

Для домов, в которых не предусмотрены подвалы и технические этажи, УФФ является отличной инвестицией в строительство энергоэффективного жилья. Благодаря продуманной системе теплоизоляции фундамент эффективно препятствует утечкам тепла. При условии грамотной
теплоизоляции стен, кровли, перемычек над оконными и дверными проемами, откосов можно добиться существенной экономии энергоресурсов на обогрев зимой и охлаждение летом.

Теги: уфф, утепление фундамента, carbon eco sp, утепленный финский фундамента

Утепленный финский фундамент: чек-лист для застройщика

Что такое УФФ?

Прочный, утепленный фундамент одновременно выполняет две важнейшие функции: служит надежной основой для дома и вместе с этим является настоящим теплоаккумулятором, сохраняя комфортный микроклимат внутри помещения. Утепленный финский фундамент (УФФ) — технология, которая оптимальным образом решает все поставленные задачи.

Когда УФФ оптимальный выбор

Любому строительству в обязательном порядке должно предшествовать подробное геологическое исследование. Необходимо оценить тип грунтов, глубину промерзания, уровень грунтовых вод. От полученных параметров будет зависеть и технология возведения фундамента. К этому стоит добавить еще и ландшафт участка, наличие перепадов высоты, а также тип будущего дома.

К тому же, фундамент должен быть прочным, жестким, выдерживать нагрузку от несущих конструкций дома и сил морозного пучения. Учитывая цены на энергоресурсы, особое значение в малоэтажной стройке также приобретает энергоэффективность.

Важно знать! Теплоизоляция фундамента позволяет снизить общие теплопотери дома на 15%, что в свою очередь влечет снижение затрат на отопление зимой.

Утепленный финский фундамент собрал воедино передовые технологии: устройство малозаглубленной ленты и утепленной фундаментной плиты. Это позволило объединить преимущества каждой из них. УФФ вполне можно возводить на участках с перепадом высот, фундамент выдержит нагрузки от пучинистых грунтов, а также от любых конструкций, в том числе построенных из кирпича и пеноблоков. При наличии любого из перечисленных факторов УФФ станет оптимальным решением, выполняя функцию энергоэффективного и прочного основания и одновременно с этим готового нулевого цикла первого этажа.

В конструкцию фундаментной плиты интегрирована система обогрева пола. Таким образом, утепление надежно предохраняет основание от промерзания, предотвращает утечки тепла, превращая фундамент в настоящий тепловой аккумулятор. Даже зимой после выключения системы обогрева пола фундаментная плита еще долгое время отдает тепло. Разберемся, из каких этапов состоит устройство фундамента по типу УФФ. 

Этапы возведения фундамента УФФ

На первом этапе на месте будущего фундамента производится снятие верхнего плодородного слоя. Следом необходимо выполнить выемку грунта до необходимой глубины.


Когда котлован готов, его дно и откосы выстилают слоем геотекстиля. Следите за тем, чтобы перехлесты соседних полотен были не меньше 15 см.


На уложенный геотекстиль слоями отсыпаются сначала щебень, а затем песок. Каждый слой песка следует пролить водой и тщательно утрамбовать при помощи виброплиты. Этот этап обеспечивает жесткость и прочность основания.


Все инженерные коммуникации, а также закладные пластиковых труб канализации монтируются сквозь толщу песчаной подушки. По периметру котлована укладывается дренажная система. Когда прокладка коммуникаций завершена, траншеи засыпаются песком, а поверхность выравнивается. 



Следующим этапом наступает укладка теплоизоляции под подошву ленточной части фундамента. В данном случае первоочередным критерием выбора материала становится его прочность, поскольку в ходе эксплуатации ему предстоит выдерживать серьезные нагрузки. Существуют специальные марки, разработанные для подобных конструкций, например, XPS ТЕХНОНИКОЛЬ CARBON ECO SP. 


Для устройства ленточной части фундамента монтируется несъемная опалубка из плит XPS. Подобный вариант, во-первых, позволяет избавиться от хлопот, связанных с закупкой, монтажом и последующим демонтажем деревянной опалубки. Во-вторых, дает возможность одновременно с устройством опалубки выполнить и качественное вертикальное утепление фундамента. Плиты XPS скрепляются между собой при помощи специальных универсальных стяжек.

После установки опалубки производится армирование. Стержни арматуры укладываются в специальные держатели, расположенные на универсальных стяжках, после чего обвязываются хомутами.

Расчет арматуры зависит от многих параметров: этажность дома, тип материалов для стен и перекрытий, вида крыши и пр. 


После того как опалубка полностью готова, арматура уложена, наступает этап укладки бетонной смеси.

В обязательном порядке мелкозаглубленный ленточный фундамент (или МЗЛФ) следует защитить от влаги. Предварительно вертикальная наружная поверхность очищается от пыли, на нее наносится праймер, после чего стены фундамента обрабатываются битумной мастикой или защищаются при помощи битумно-полимерных материалов в один или два слоя, в зависимости от типа гидроизоляции. 



С внутренней стороны ленточная часть фундамента утепляется при помощи плит экструзионного пенополистирола, например, XPS ТЕХНОНИКОЛЬ CARBON ECO. Для этого нет необходимости выбирать материал с повышенными показателями прочности. С поставленной задачей вполне может справиться утеплитель, на упаковке которого в графе «прочность» показатели при 10% линейной деформации варьируются в диапазоне 150-200 кПа в зависимости от толщины.

Крепление теплоизоляции производится при помощи специальной клей-пены для экструзионного пенополистирола или приклеивающей мастики.

Фундамент может быть и полностью монолитным, в этом случае несъемную опалубку необходимо поднять на заданную высоту и выполнить бетонирование ленты фундамента.


Котлован следует отсыпать песком, при этом по аналогии с первоначальным этапом песок укладывается слоями, каждый из которых проливается водой и трамбуется виброплитой. На утрамбованное песчаное основание монтируются плиты XPS со смещением стыков в соседних рядах. 



После того как укладка плит теплоизоляции завершена, можно приступать к монтажу арматуры. Вязать ее лучше всего на земле, а затем переносить на основную часть фундамента. Металлический каркас устанавливается на специальные подставки, известные в профессиональной среде, как «стульчики». 


Трубы теплого пола крепятся к уложенной армирующей сетке. Разводку, а также расположение контуров, необходимо производить в соответствии с заранее подготовленным расчетом.


Завершающим этапом в строительстве УФФ является укладка бетонной смеси. Ее рекомендуется провибрировать, для того чтобы удалить излишки воздуха и равномерно распределить. После высыхания бетона поверхность плиты можно обработать затирочной машиной с применением специальной сухой смеси.


На этом процесс устройства фундамента по типу УФФ вполне можно считать законченным. Следуя правилам, описанным выше, подрядчики быстро и качественно справятся с работой, а заказчики смогут самостоятельно проконтролировать все этапы работ. 


Теги: уфф, мзфл, утепленный финский фундамента, утепление фундамента, carbon eco sp

Утепленная шведская плита, фундамент по технологии УШП: плюсы и минусы

Фундамент по типу «Утепленная шведская плита» или УШП — это фундамент мелкого заложения, который представляет собой монолитную железобетонную плиту со встроенными коммуникациями и системой обогрева «теплый пол».

Первые такие фундаменты начали возводить американцы в начале ХХ века. Позже технологию переняли немцы и только после европейского опыта утепленной плитой заинтересовались скандинавы. Шведские инженеры доработали технологию и взялись за возведение ресурсосберегающих домов по всей территории страны. Понятие «шведская» плита прочно вошло в обиход благодаря тому, что в шведском королевстве началась активная разработка и выпуск термоизоляционных материалов для бетонных оснований по типу УШП.

Преимущества «Утепленной шведской плиты»

Строительство дома всегда ассоциируется с надежностью и долговечностью. Утепленный по такой технологии фундамент не только обеспечит зданию продолжительную эксплуатацию, но и со временем окупит затраты за счет экономии на содержании на возведение

Основные преимущества фундамента по типу «Утепленной шведской плиты»:

  • значительно снижаются расходы на строительство благодаря тому, что не нужно обустраивать цокольный этаж или подвальное помещение и выполнять работы по защите трубопровода и кабеля – все сети прокладываются в теле плиты;
  • работы по прокладке инженерных сетей и обустройству основания проводятся параллельно, что сокращает время строительства;
  • теплоизолированный фундамент защищен от цикла замораживания-оттаивания и это продлевает его эксплуатационный срок. Также защищены от промерзания инженерные сети;
  • утепление фундамента позволяет снизить затраты на отопление дома в осенне-зимний период;
  • ровное бетонное основание может служить черновым полом. Возможность укладки напольного покрытия непосредственно на фундаментную плиту снижает время и стоимость работ по обустройству чистового пола;
  • не требуется привлечение специальной строительной техники: кранов и большегрузных машин за исключением бетононасоса, и миксера с бетоном.

Если говорить об особенностях УШП, то можно назвать необходимость точных расчетов и высокую квалификацию мастеров – сделать такой фундамент самостоятельно, значит подвергнуть риску весь проект. «Утепленная шведская плита» требует строгого соответствия всем требованиям и нормам технологии. 

Материалы, область применения и этапы работ.

В качестве утеплителя применяется экструдированный пенополистирол. Этот материал выбран не случайно: он обладает практически нулевым водопоглощением, хорошо сохраняет тепло внутри дома, имеет малый вес и достаточную прочность для обустройства фундамента.

Пенополистирол ТЕХНОНИКОЛЬ CARBON ECO SP разработан специально для технологии утепленная шведская плита и выполняет следующие задачи:

  • работает в качестве амортизатора при морозном пучении почвы;
  • выполняет роль несъемной опалубки;
  • равномерно распределяет нагрузку на грунт;
  • отвечает за теплоизоляцию фудаментной плиты.

УШП применяется на слабых грунтах, в районах с суровыми климатическими условиями и в случаях близкого расположения грунтовых вод к поверхности. Подходит для щитового, каркасного, панельного, блочного строительства этажностью не более двух этажей с максимальной высотой не более 15 метров.

Возведение фундамента состоит из 5 этапов:

  1. Подготовка основания.
  2. Монтаж коммуникаций.
  3. Укладка утеплителя.
  4. Армирование.
  5. Устройство системы «теплый пол»
  6. Укладка бетонной смеси.

При подготовке основания производится разметка котлована, его механическая разработка и монтаж закладных под систему водоснабжения. Выполняется устройство дренажной системы. На дно котлована укладывается геотекстиль и насыпается подушка из щебня и песка.

На этапе прокладки коммуникаций монтируются закладные под электричество и прокладывается канализационная система.

Укладывается утеплитель: L- блоки или торцевые плиты XPS с минимальной толщиной 100 мм. Монтируется гидроизоляция и пленка ПВХ. Укладывается второй слой утеплителя.

При выполнении армирования изготавливаются каркасы и монтируются в опалубку.

Этап устройства системы «теплый пол» подразумевает прокладку труб, монтаж коллектора и подключение труб к коллектору. Далее следует опрессовка системы.

Бетонная смесь подается в опалубку, уплотняется глубинными вибраторами, разравнивается и после затвердевания затирается при помощи «вертолета» с использованием строительной смеси. 

После выполнения всех работ фундамент накрывают полиэтиленовой пленкой и оставляют на 7 дней. Это делается для беспрепятственного набора прочности и защиты бетона от преждевременного высыхания. После набора прочности бетоном можно переходить к следующим этапам работ.

Фундамент по типу «Утепленная шведская плита» — это выгодное решение: стройка только началась, а у вас уже есть готовый фундамент, добрая половина коммуникаций в т.ч. канализация, отопление, водопровод и основание под укладку ламината или плитки. Остается только возвести стены и крышу.

Монтаж системы занимает всего 2 недели, а это весомая экономия времени по сравнению с традиционными аналогами и результатом. Если говорить о финансовых затратах, то по итогу УШП выходит дешевле, чем строительство дома с подвалом и монтажом всех необходимых коммуникаций по отдельности.

Прочный, хорошо изолированный фундамент — прекрасное жилищное строительство

Каждый дом должен быть построен на прочном фундаменте, и дом FHB не является исключением. Фактически, как и другие элементы проекта, мы хотели, чтобы фундамент демонстрировал передовой опыт и работал как часть системы для этого ориентированного на производительность дома.

ICF соответствуют всем требованиям

Наклонный участок предполагал, что у нас будет подвал, который, по моему опыту, обычно означает залитые бетонные стены на опорах, ступенчатых, чтобы оставаться ниже линии замерзания, с жесткой изоляцией на внутренней или внешней стороне стен, чтобы соответствовать или превышать кодовые требования в зонах с холодным климатом.Обычно бетон держится относительно близко к отметке, а остальные стены построены с каркасными стенами.

Для дома FHB мы используем испытанную систему, которая, однако, нова для меня: ICFs — изолированные бетонные формы. Хотя залитые фундаменты толщиной обычно 8 дюймов, но иногда больше (а иногда меньше) требуют дополнительных усилий для изоляции и склонны к растрескиванию, когда формы удаляются до того, как вода в бетонной смеси успевает полностью гидратировать химическую реакцию, ICF обеспечивают интегральная изоляция из пенопласта и позволяет бетону затвердевать в течение длительного периода, удерживая влагу — большой плюс в моей книге ботаников по бетону.Что наиболее важно, это система, которую Майк Гертин может установить сам, обеспечивая гибкость графика и сводя к минимуму свои затраты на субподрядчиков. Ему не нужно покупать, хранить и накачивать фанерные или алюминиевые формы; по большей части ему просто нужно сложить ICF, как большие блоки Lego, а затем заставить бетонный грузовик готовой смеси заполнить формы. Мы используем линейку продуктов Amvic + 3.30 от Amvic.

Старт на твердой основе

Хороший фундамент должен стоять на хорошем основании.Согласно IRC 2012, на основании которого строительный кодекс Род-Айленда:

.

«Опоры должны опираться на ненарушенный естественный грунт или искусственную насыпь».

Поверх субстрата находится основание, размеры которого могут быть разных размеров в зависимости от ситуации. Основная причина использования фундамента — это распределение статических и динамических нагрузок на здание, но фундамент также создает плоскую ровную поверхность для размещения стеновых опалубок, а при привязке к стене с помощью стальной арматуры фундаменты также могут противостоять восходящие нагрузки, которые могут быть наложены на высокие узкие здания, когда их пытаются толкнуть сильный ветер или сейсмические нагрузки.Размер опор зависит от нагрузок на здание и несущей способности грунта, и часто они строятся больше, чем требуются нагрузки и нормы.

Опоры часто показаны и иногда сооружаются со шпоночными пазами, которые представляют собой траншеи, залитые в опору для «замков» стен после их заливки. Они предназначены для предотвращения бокового смещения, но даже при продвижении грунта снаружи, плиточном полу, залитом изнутри, и с арматурой, охватывающей холодный шов (где бетон заливается против уже затвердевшего бетона), обычно не требуется шпоночный паз.

Это — это необходимость разрыва капилляра, одна из тех деталей, которые некоторые строители все еще не учитывают, потому что преимущества трудно заметить. В плотном доме, когда пористый бетон может впитывать воду из почвы, возникают проблемы, связанные с влажностью, которых можно было бы легко избежать, добавив разрыв капилляров. Есть несколько продуктов, предназначенных для образования капиллярного разрыва между опорой и стеной наверху, чтобы уменьшить или исключить движение влаги от земли вверх в стену.Фундаменты иногда включают арматуру, но часто не включают в себя по той простой причине, что стена выше функционирует как гигантская балка (особенно если она включает горизонтальный арматурный стержень), поэтому дополнительная арматура, которую обеспечивает арматурный стержень в основании, просто не требуется.

Гибридный подход к опорам

Один из уникальных подходов к дому FHB — это выходная часть подвала, где из-за высокого уровня грунтовых вод было бы трудно достичь требуемого в соответствии с правилами минимума в 40 дюймов от уровня до нижней части основания.Майк Гертен предложил использовать в этом месте неглубокие детали фундамента, защищенные от замерзания. У нас с Майком есть опыт строительства неглубоких фундаментов, защищенных от замерзания, которые включают жесткую пену для улавливания тепла земли и защиты холодного воздуха от замерзания земли под фундаментом, построенным выше линии замерзания. Однако у этого подхода было две проблемы: строительные нормы и правила Род-Айленда ограничивают высоту зданий на защищенных от замерзания неглубоких фундаментах до одного этажа и включают ограничения на комбинирование защищенных от замерзания неглубоких фундаментов с другими системами фундамента.К счастью, Майк Гертин находится в хороших отношениях со своим местным сотрудником по соблюдению кодекса, который может по своему усмотрению отменить кодекс, когда это необходимо. После разговора с нашим инженером Дэвидом Маколини из Becker Structural Engineers и Майком Гертином официальный представитель кода разрешил нашу гибридную систему. По словам Майка, в июле Род-Айленд выпустит обновленный код, который разрешит создание такого фонда, как наш.

ICF: автономные формы

Выбранные нами блоки марки Amvic обладают самой высокой изоляционной способностью в отрасли.Каждая сторона формы имеет 3 ¼ дюйма пены при R-13,67 на каждую сторону; после добавления других компонентов типичной стены, вся стена получает рейтинг R-30, что превышает нормы и примерно такой же, как и наши стены с каркасом выше. (Кодекс требует непрерывной изоляции R-15 (или изоляции полости R-19) для стен подвала и R-20 для каркасных стен в климатической зоне Род-Айленда, 5.) Блоки изготовлены из EPS (пенополистирола), который имеет самый экологически чистый вспенивающий агент из всех жестких пен, а показатель R остается постоянным с течением времени.

Наше намерение состояло в том, чтобы использовать каркасные стены вместо ICF для надземных частей подвальных стен, что упростит обрамление оконных и дверных проемов и минимизирует использование энергоемкого бетона и пенопласта. Тем не менее, наш инженер-строитель подсчитал, что нам необходимо сделать большую часть фундамента ICF полной высоты, чтобы противостоять давлению грунта со стороны подъема. Мы спорили об этой детали, так как многие фундаменты имеют бетонные стены в половину высоты, но в конце концов инженер утвердил чертежи только с обрамлением небольшой части южной стены.Гидростатическое давление в почве оказывает огромное давление, и с двухэтажной структурой в зоне ветра 110 миль в час на вершине фундамента инженеру было неудобно экономить на том, что сводится к укреплению стен фундамента. Он также разработал довольно строгий график арматуры, который обеспечивает натяжной элемент, который работает с прочностью бетона на сжатие, создавая прочную фундаментную стену.

Хотя нам не нужен изоляционный аспект форм Amvic для входного крыльца и фундамента гаража, имело смысл использовать ту же систему, чтобы Майк и его команда могли выполнять работу одновременно, без необходимости привлечения субподрядчиков. .

Гидроизоляционные и отделочные штрихи

В будущих публикациях я напишу о том, как мы обрабатываем фундамент снаружи и как управлять ливневыми и грунтовыми водами.

Система утепленного фундамента KORE | КОРЕ Утеплитель

Что такое утепленная система фундамента KORE?

Система изолированного фундамента KORE полностью изолирует фундамент дома и предназначена для обеспечения одного из самых низких значений коэффициента теплопередачи, доступных на рынке, при этом практически устраняя критический мост холода между стенами и полом.По сути, система изолированного фундамента покрывает весь фундамент дома слоем пенополистирола, чтобы изолировать дом от земли.

Система изолированного фундамента

KORE обеспечивает тепловой разрыв между стеной и фундаментом, устраняя тепловые мосты на одном из наиболее распространенных стыков в здании. В сочетании с лучшими строительными практиками система изолированного фундамента обеспечивает воздухонепроницаемость, сверхизоляцию дома, разработанную с учетом требований строительных норм и высоких показателей энергопотребления, включая сертификацию пассивного дома и другие методы строительства с низким энергопотреблением.

Система изолированного фундамента

KORE полностью сертифицирована NSAI под номером сертификата 20/0424.

Как работает система утепленного фундамента?

Система изолированного фундамента

KORE состоит из трех компонентов KORE EPS: KORE Floor EPS100 White, KORE Floor EPS200 White и KORE Floor EPS300 White. Система обеспечивает эффективный изоляционный слой, снижающий коэффициент теплопередачи бетонных полов.Поверх утепленной системы фундамента КОРЕ заливается монолитная бетонная плита.

Профилированные по краям кольцевые балки EPS300 укладываются на заглушающий слой в их точных положениях и скрепляются U-образными штифтами или полиуретановым клеем. Это образует периметр фундамента. Блоки EPS300 затем размещаются под внутренними несущими стенами и / или стенами сторон. Листы EPS100 и EPS200 укладываются внутрь краевых профилей кольцевых балок, уложенных с плотным стыком. Последующие слои покрываются узором с разрывом и плотно прилегают по краям и вокруг любых рабочих проходов.

Между слоями пенополистирола или под слоями пенополистирола следует проложить гидроизоляционную мембрану (DPM) с проклеиванием стыков для предотвращения проникновения грунтовой влаги. Барьер должен подниматься вверх и над выступом кольцевой балки EPS300 до тех пор, пока он не встретится и не войдет в ступенчатый гидроизоляционный слой внешней стены.

Арматура устанавливается согласно чертежам и графикам, предоставленным инженером-проектировщиком, которые будут варьироваться в зависимости от слоя, надстройки и нагрузки.На изображении слева показаны различные компоненты завершенной фундаментной системы.

Запросить цену

Отправьте свои планы и получите бесплатное, без обязательств коммерческое предложение на систему изолированного фундамента KORE, соответствующую требованиям вашего проекта.

Технические характеристики изолированного фундамента KORE

Полная система фундамента из EPS

Все расчеты значения U производятся в соответствии с BS EN ISO 6946: 2007.Расчеты U-значения первого этажа отличаются от расчетов стен и крыш тем, что одной ссылки на детали конструкции недостаточно для расчета U-значения. Площадь пола, периметр внешней стены и толщина стены должны быть известны, чтобы правильно рассчитать коэффициент теплопередачи этажа. Для получения дополнительной информации о наших расчетных предположениях, пожалуйста, обратитесь к Сертификату соглашения NSAI.

9001 900

U-значения пола основаны на 300 мм EPS100 на грунте.

Преимущества системы изолированного фундамента

Пониженные требования к бетону
Система изолированного фундамента

KORE снижает количество бетона, необходимого для фундамента, на 50-60%. Это снижает ваши затраты как на материалы, так и на рабочую силу, делая изолированный фундамент экономически эффективным решением для вашего следующего нового строительства или расширения.

Устранение моста холода от стены к полу
Система изолированного фундамента

KORE практически устраняет критический мост холода между стенами и полом. EPS используется для обертывания стыка сплошным слоем изоляции, что обеспечивает устранение теплового моста между стеной и полом и отсутствие разрыва изоляции между неизолирующими материалами.

Обеспечивает очень низкие значения U
Система изолированного фундамента

KORE может достигать значений коэффициента теплопередачи, намного меньших, чем те, которые требуются в Части L 2019 и nZEB.Типичные значения коэффициента теплопередачи, обеспечиваемые системой фундамента, варьируются от 0,10 Вт / м2 · К до 0,11 Вт / м2 · К в зависимости от технических требований проекта. Наш технический отдел может предоставить расчеты U-value как часть процесса предложения.

Срок службы здания

Как и все изделия из пенополистирола KORE, система утепленного фундамента рассчитана на весь срок службы здания. Тепловые характеристики пенополистирола не ухудшаются со временем, он водо- и влагостойкий, а также исключает возможность конденсации, роста плесени и грибка за плинтусом.

Исключительная прочность на сжатие
Изолированная система фундамента

KORE работает так же, как традиционный плотный фундамент. Элемент EPS специально разработан и вырезан в соответствии с типом здания для установки. Исключительная прочность на сжатие делает этот продукт пригодным как для домашнего, так и для коммерческого использования.

Тяжелые внутренние нагрузки можно легко перенести на утепленный фундамент, утолщив плиту до 100 мм и установив EPS300 под утолщенной зоной плиты.

Подходит для большинства почв
Система изолированного фундамента

KORE подходит для самых разных грунтовых условий и специально разработана с учетом требований площадки. Систему фундамента можно использовать в условиях мягкого грунта, поскольку система позволяет переносить вес конструкции по всей плите.

Подходит для различных типов сборки
Система изолированного фундамента

KORE подходит для большинства типов строительства.Сюда входят утепленная бетонная опалубка (ICF), стальной каркас, традиционные блочные и деревянные каркасные дома. Изолированный фундамент KORE можно также использовать для застройки за пределами строительной площадки. Для получения дополнительной информации обратитесь к представителю нашего отдела продаж или технической поддержки.

В комплекте с экологической декларацией продукта

KORE EPS получил подтвержденную третьей стороной экологическую декларацию продукции от EPD Ireland и Ирландского совета по экологическому строительству. Этот анализ жизненного цикла можно использовать для достижения стандартов строительства с низким энергопотреблением, таких как LEED, BREEAM и Home Performance Index (HPI).

MMA Architects
Блэр Адамсон
Директор и архитектор

Tanner Structural Design
Hilliard Tanner
Управляющий директор

Glencore Construction
Марк О’Лафлин
Менеджер по строительству

360-градусный вид системы утепленного фундамента

Поверните трехмерное изображение ниже, чтобы изучить систему изолированного фундамента KORE.Изображение можно поворачивать по осям X и Y. За дополнительной информацией обращайтесь в наш технический отдел.

Технические загрузки

Ниже приводится образец технической документации, доступной для системы утепленного фундамента KORE. Чтобы получить полную библиотеку, присоединяйтесь к Ресурсному центру KORE.

Декларация экологической безопасности продукции KORE

опубликовано: 10 авг.2020

,

Изолированные системы фундамента | JLC Онлайн

опубликовано

Быстро сборные фундаменты

Фундамент Superior Wall обладает такой же прочностью, как и заливной фундамент, и к тому же… Более

DOE Фундаменты зданий Раздел 2-1 Изоляция

РАСПОЛОЖЕНИЕ ИЗОЛЯЦИИ

Рисунок 2-5.Возможные места для утепления подвала

Ключевым вопросом при проектировании фундамента является размещение изоляции на внутренней или внешней поверхности стены подвала (рис. 2-5). С точки зрения энергопотребления, нет существенной разницы между одинаковым количеством полной изоляции стены, нанесенной на внешнюю поверхность, и на внутреннюю часть бетонной или кирпичной стены. Однако стоимость установки, простота применения, внешний вид и различные технические аспекты могут быть совершенно разными.Индивидуальные дизайнерские решения, а также местные затраты и практика определяют лучший подход для каждого проекта.

Жесткая изоляция, размещенная на внешней поверхности бетонной или каменной стены подвала, имеет некоторые преимущества по сравнению с внутренним размещением в том, что она (1) может обеспечивать непрерывную изоляцию без тепловых мостов, (2) защищает и поддерживает гидроизоляцию и структурную стену при умеренных температурах. , (3) сводит к минимуму проблемы конденсации влаги, и (4) не уменьшает внутреннюю площадь пола подвала (рис. 2-6).Если внешняя изоляция расширяется, чтобы покрыть обод, а ее коэффициент сопротивления R достаточно высок, балки и подоконники можно оставить открытыми для осмотра изнутри на предмет термитов и гниения. С другой стороны, внешняя изоляция на стене может обеспечить путь термитам, если с ней не обращаться должным образом, и может помешать осмотру стены снаружи. Изоляция, выходящая за пределы допустимого уровня, должна быть защищена покрытием для предотвращения физического повреждения и деградации. Такие покрытия включают фиброцементную плиту, обрезки (материал типа штукатурки), обработанную фанеру или мембранный материал (Baechler et al.2005). Наружная изоляция помещает фундаментную стену в тепловую оболочку. Это означает, что зимой стена будет теплее, а влага не будет высыхать внутри. Из-за этого непроницаемые материалы, такие как масляная краска, полиэтилен или виниловые обои, не должны использоваться в качестве внутренней отделки.

Рисунок 2-6. Подвал с внешней изоляцией XPS или EPS

Изоляция наружных стен должна быть одобрена для использования в грунтовых условиях. Обычно используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна.(Baechler et al. 2005). Экструдированный полистирол (номинальное сопротивление R-5 на дюйм) является обычным выбором. Пенополистирол (номинал R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%. Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики после пятнадцатилетнего периода исследования.Это возможное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).

Жесткие панели из стекловолокна и жесткой минеральной ваты (R-4 на дюйм) не изолируют так же хорошо, как экструдированный полистирол, но являются единственными изоляционными материалами, которые могут обеспечить дренажное пространство для фундаментных стен из-за их пористой структуры. Использование этих материалов в качестве дренажного пространства работает только при наличии эффективных дренажных систем по периметру фундамента.

К сожалению, утеплить снаружи сложнее и дороже, чем утеплить фундамент изнутри; это особенно верно при модернизации.По этой причине чаще всего используется внутренняя изоляция. Однако фактические затраты могут быть выше, если требуется законченная, прочная поверхность. Кроме того, пенопластовые изоляционные материалы потребуют огнестойкого слоя для соответствия нормам. Экономия энергии может быть уменьшена с некоторыми системами и деталями из-за тепловых мостов. Изоляция может быть размещена на внутренней стороне балки обода, но с большим риском проблем с конденсацией и меньшим доступом к деревянным балкам и подоконникам для осмотра термитов изнутри.Системы внутренней изоляции не рекомендуются для бетонных фундаментов без полностью заполненных заполнителей из-за повышенного риска накопления влаги внутри стены. Системы внутренней изоляции также не рекомендуются в подвалах, которые имеют риск проникновения влаги из-за неадекватного дренажа, плохой почвы, высокого уровня грунтовых вод или других факторов из-за ограниченной способности этих систем высыхать внутрь. Не следует использовать внутреннюю изоляцию, если нет положительного разрыва капилляров между верхней частью фундаментной стены и системой деревянного каркаса из-за возможности накопления влаги в материалах деревянного каркаса.

При использовании внутренней изоляции она должна соответствовать следующим требованиям (Baechler et al. 2005):

  • Внутренняя изоляция не должна применяться к бетонным стенам из кирпичной кладки ниже уровня земли, если только сердцевины блока не заполнены полностью.
  • Применение внутренней изоляции поверх стен, где присутствует влага, вероятно, приведет к увеличению содержания влаги в стене из-за того, что она более холодная, и из-за ограничения возможности высыхания внутри.
  • Стена подвала должна сохранять некоторую способность к сушке изнутри, если происходит намокание, поскольку нижняя часть стены не может высохнуть снаружи. Это означает, что внутренние пароизоляционные материалы или любые непроницаемые внутренние покрытия стен, такие как виниловые покрытия для стен или системы масляной / алкидной / эпоксидной краски, должны быть установлены , а не .
  • Стеновая система должна быть герметично закрыта, чтобы влагосодержащий подвальный воздух не попадал в холодную фундаментную стену из-за переноса воздуха и конденсации.
  • Материал, контактирующий с фундаментной стеной и бетонной плитой, должен быть влагостойким. Необходимо использовать разрывы капилляров для предотвращения попадания влаги в материалы, чувствительные к влаге.

Рисунок 2-7. Подвал с внутренней полупроницаемой изоляцией XPS или EPS

Есть два хороших подхода к внутренней изоляции подвала: панели из жесткого пенопласта и аэрозольная пена. Системы жесткого пенопласта состоят из пенополистирольных панелей из вспененного или экструдированного пенополистирола, нанесенных на всю фундаментную стену, как показано на Рисунке 2-7 (BSC 2002).Нанесение распыляемой пены обычно включает распыление всей фундаментной стены и, как правило, краевой балки до соответствующей толщины. При желании к каркасной стене, возведенной внутри пенопласта, может быть добавлен дополнительный утеплитель из необлицованного войлока. Изоляционные материалы из пенопласта легко воспламеняются и должны быть защищены от возгорания. Если дополнительная изоляция не требуется, поверх пенопласта можно прикрепить деревянные планки обшивки, а к полосам обшивки можно прикрепить гипсокартон. Во всех низкосортных постройках рекомендуется использовать гипсокартон без бумажной облицовки, чтобы снизить риск повреждения, связанного с влажностью.Гипсокартон следует держать не менее чем на полдюйма выше пола подвала, чтобы избежать намокания (Baechler et al. 2005). Никакие замедлители образования пара, такие как полиэтилен, виниловые обои или краска на масляной основе, не должны использоваться где-либо в системе, чтобы гарантировать высыхание внутри.

Можно отказаться от использования гипсокартона в качестве барьера воспламенения. Это было сделано с использованием изоляционных панелей из полиизоцианурата с фольгой, некоторые из которых рассчитаны на использование в подвалах и подпольях в некоторых юрисдикциях.Однако обратите внимание, что неперфорированная фольговая облицовка полностью паронепроницаема, и через нее будет происходить очень незначительное высыхание. Многие юрисдикции также разрешают пенополиуритан высокой плотности покрывать обод и подоконник (но не всю стену) без дополнительной противопожарной защиты.

Модернизация внутренней изоляции сопряжена с дополнительными рисками: между фундаментом и каркасом может не быть разрывов капилляров; изоляция внутри будет способствовать накоплению влаги в каркасе.Между основанием и стеной может не быть разрыва капилляров, что потенциально увеличивает присутствие влаги из-за капиллярного капиллярного капилляра. Поскольку в старых домах гидроизоляционные и дренажные системы часто отсутствуют или не работают, возможно проникновение воды в большом объеме. Описание надежной стратегии модернизации внутренней изоляции см. В Ueno (2011).

В дополнение к более традиционному внутреннему или внешнему размещению, описанному в этом руководстве, существует несколько систем, которые включают изоляцию в конструкцию бетонных или кирпичных стен.К ним относятся (1) изоляция из жесткого пенопласта, залитая внутри бетонной стены (рис. 2-5c), (2) шарики из полистирола, гранулированные изоляционные материалы или распыляемая пена, залитые в полости обычных каменных стен, (3) системы из бетонных блоков. с изолирующими вставками из пенопласта, (4) сформированные, взаимосвязанные блоки из жесткой пены, которые служат в качестве постоянной изолирующей формы для монолитного бетона (изолированные бетонные опалубки, или ICF, рис. 2-5d), и (5) кирпичные блоки, изготовленные с полистироловыми шариками вместо заполнителя в бетонной смеси, что приводит к значительно более высоким R-значениям.Однако эффективность систем, которые изолируют только часть площади стены, следует тщательно оценивать, поскольку тепловые мосты вокруг изоляции могут значительно повлиять на общую производительность.

И, наконец, еще одна технология строительства подвала в новом строительстве — использование сборных бетонных фундаментных стен. Допустимы два типа. Первый — это бетонные стены со встроенными нижними колонтитулами, которые опираются на гравийную основу, которая позволяет осушать всю сборку.Это означает, что до тех пор, пока панели во время строительства правильно загерметизированы, эти стены останутся теплыми и сухими. Эти стены предназначены для утепления снаружи. Вторые — это сборные бетонные стены, которые имеют один дюйм жесткой пенопластовой изоляции, прикрепленной к внутренней части. Эти стены сконструированы так, чтобы можно было установить дополнительную изоляцию между отсеками стоек, и поставляются со встроенными деревянными гвоздями для крепления гипсокартона или обшивки (BSC 2002).

Для получения дополнительной информации посетите Фундаменты с водным управлением и Изоляционные фундаменты в Центре решений Building America.

Авторское право © 2013 Риджентс Миннесотского университета, Центр исследований в области устойчивого развития. Все права защищены.
Этот веб-сайт был разработан совместно Университетом Миннесоты и Национальной лабораторией Ок-Ридж.

Преимущества фундаментов с изоляцией из бетонных опалубок (ICF)

Ребята из TC Legend Homes на прошлой неделе в течение всего (2) дней возводили стены дома из изолированной бетонной опалубки (ICF) под дождем! Дэн сказал, что все прошло хорошо, так как грунт имел хорошую консистенцию, чтобы укладывать опору Form-a-Drain, и блоки, как обычно, быстро поднимались вверх, так как всем нравится складывать блоки Lego!

Дом Net-Zero изолирован со всех (6) сторон, а TC Legend строится из структурных изолированных панелей (SIP), поэтому у нас есть стены SIP R-29 по всему периметру, крыша SIP R-49 сверху и 4 ”R -20 пенопласт под плиту-на-класс.

Кромка плиты также нуждается в теплоизоляции, иначе будет слабое место, и тепло будет просачиваться через периметр плиты в стенки ствола (которые подвержены воздействию погодных условий).

Мы решаем эту проблему путем заливки стенок ствола в формы R-24 ICF, которые завершают изоляционную оболочку этого доступного дома Net-Zero.

Бетон заливают в опалубку стен из пенопласта с 80-х годов. Полые блоки соединяются вместе, как Lego, с необходимой арматурой, закрепленной внутри, и после заполнения бетоном пенополистирольный блок остается на месте, выполняя работу по изоляции и удерживая бетон, пока он влажный.Процесс быстрый и чистый, с меньшими трудозатратами по сравнению с традиционным формованием бетона.

Мы используем блоки NuDura R23.8 ICF для формирования стенок ствола и подпорных стенок, когда они нам нужны. Блоки NuDura великолепны, так как они гармонично сочетаются с транспортировкой. Блоки ICF доступны разной толщины с множеством вариантов для различных требований конструкции. Мы используем 6-дюймовые стены и обычно заказываем только внутренние углы, внешние углы и 8-дюймовые прямые блоки. Блоки NuDura имеют жесткие пластиковые структурные планки, на которые можно крепить шурупы для сайдинга и гипсокартона.

Блоки располагаются на канале шляпки, перекрывающем форму основания. На озере Стивенс мы использовали опалубку Form-a-Drain, которая, как и ICF, не требует разборки опалубки после заливки бетона. Form-a-Drain заменяет 8-дюймовые нижние доски, является полым и отводит воду от подошвы фундамента.

Дом на озере Стивенс имеет 4-х дюймовую подпорную стену с восходящим уклоном, а NuDura предлагает очень, очень липкий пароизоляционный барьер для водонепроницаемости стенки ствола. TC Legend Homes имеет систему металлической крышки / облицовки, которая оборачивает внешнюю пену ICF от подоконной плиты вниз под уровнем земли кровельным металлом, не оставляя визуально или термически обнаженного бетона.

ICF нам отлично подходят! Они выполняют две функции: (1) изоляцию и (2) бетонную форму, они являются разумным решением для нашего процветающего Net-Zero и все более и более позитивного SIP-жилья в штате Вашингтон!

TC Legend Homes: типичная стена из SIP-стен ICF Foundation

Оставьте старое и сделайте новое — почему система изолированного фундамента KORE заменит традиционные фундаменты

Пора сделать системы утепленных фундаментов стандартом при планировании, проектировании и строительстве новых домов и пристроек.

Хотя традиционные фундаменты из плотов, лент или бетонных плит могут показаться более простым и экономичным решением, на самом деле изолированные системы фундаментов предлагают множество дополнительных преимуществ при сопоставимой стоимости, а в некоторых случаях фактически могут стоить меньше, чем их традиционные аналоги. . Типичная трехмерная деталь, показывающая изолированную фундаментную систему KORE с полой стеновой конструкцией.

Помимо стоимости, система изолированного фундамента KORE, например, предлагает несколько преимуществ по сравнению с традиционными методами, такими как плотный и ленточный фундамент.

Высокие тепловые характеристики


Система изолированного фундамента KORE практически исключает возникновение теплового моста на стыке стены с полом. Завершенная конструкция первого этажа обернута сплошным слоем утеплителя из пенополистирола.

Это обеспечивает тепловой разрыв между цокольным этажом и любыми неизолированными материалами. В зависимости от соотношения периметра к площади, во многих проектах легко достигается коэффициент теплопроводности первого этажа 0,10 Вт / м2 · К, что легко превышает требования здания с почти нулевым потреблением энергии (часть L 2019) и других методов строительства с низким энергопотреблением.

Помимо обеспечения низкого коэффициента теплопередачи на первом этаже, система изолированного фундамента KORE в сочетании с полом с подогревом снижает потери тепла через возвышающиеся стены в среднем с 65 до 12 процентов.

Легко переносит тяжелые нагрузки


Конструктивная прочность системы утепленных фундаментов KORE является результатом сочетания пенополистирола, бетона и стали. Система может выдерживать большие внутренние нагрузки в таких областях, как внутренние несущие стены, утолщение бетонной плиты на 100 мм и установка EPS300 под утолщенной областью плиты.

Типичная деталь, показывающая бетонную плиту толщиной 150 мм с толщиной 100 мм для выдерживания больших внутренних нагрузок.

Типичные размеры нагрузки для двухэтажного дома, построенного из стандартных бетонных блоков, составляют 4,5-5,5 тонн на погонный метр по периметру.

Система изолированного фундамента может легко выдерживать эти нагрузки, обеспечивая при этом резервную мощность. Система может быть использована для бытовых и коммерческих применений при правильном планировании и проектировании квалифицированным инженером.

Подходит для большинства почв


Хотя грунт на площадке всегда должен оцениваться квалифицированным инженером, чтобы подтвердить его вероятную несущую способность, система изолированного фундамента может быть спроектирована для большинства грунтовых условий.

Это включает рыхлый, средний или плотный песок или гравий (или их комбинацию), рыхлый, средний или плотный песок, мягкие, твердые и жесткие глины, а также другие условия.

Наиболее распространенный подход к участкам с плохим состоянием грунта — увеличение глубины слоя проницаемого камня T2 под пенополистиролом со стандартной глубины, обычно 200 мм.

По мере того, как нагрузка распространяется по мере движения вниз, чем глубже хардкор, тем меньше нагрузка на нижележащий грунт. На более бедных почвах можно уложить геотекстиль на выкопанную поверхность перед укладкой твердого материала. Другие методы включают укладку, когда это необходимо.

Типовая компоновка из пенополистирола: EPS300 по периметру и EPS100 для изоляции пола.

Снижение материальных и трудовых затрат


Больше не нужно четыре недели или больше, чтобы установить фундамент для нового дома или пристройки.Система утепленного фундамента из KORE EPS может быть установлена ​​всего за несколько дней.

KORE предоставляет общий план размещения каждой поставляемой системы. Доставленный на объект пенополистирол профилируется на нашем производственном предприятии в соответствии с точными спецификациями, указанными инженером, и просто устанавливается на месте поверх слоя камня и заглушки.

Это приводит к снижению затрат на рабочую силу. Бетон, необходимый для плиты, также уменьшается на 60%, что приводит к дополнительной экономии затрат.

Полностью спроектированная система


Система изолированного фундамента KORE полностью спроектирована в соответствии со спецификациями каждого отдельного проекта. Сюда входят:
• Первоначальное обследование площадки (грунтовые условия) и проект
• Требования к подготовке земли
• Требования к основанию с гранулированным заполнителем и подушкой
• Требования к подземным сооружениям
• Требования к радоновой мембране
• Требования к армированию зависят от компоновки, надстройки и нагрузки
• Бетонирование

Система обеспечивает квалифицированным инженерам дополнительный источник дохода, поскольку система должна быть полностью спроектирована и проверяться на этапах в течение каждого проекта.

KORE работает с инженерами-строителями со всей Ирландии и постоянно ищет новых инженеров для сотрудничества. KORE может предоставить руководство в виде руководства по проектированию конструкций.

Вид с воздуха на систему со слоями EPS, стальной арматурой и системой теплых полов. Фотография предоставлена ​​Circa Design Ltd (архитекторы-дизайнеры) и Circa Design Construction (основные подрядчики).

Использование силы и преимуществ EPS


Пенополистирол — проверенный материал, который десятилетиями используется по всему миру.Он нетоксичен, химически инертен и на 98% состоит из воздуха.

Система изолированного фундамента

KORE использует EPS100 (теплопроводность 0,036 Вт / мК и прочность на сжатие 100 кПа при 10-процентном сжатии) и структурный класс EPS300 (теплопроводность 0,032 Вт / мК и прочность на сжатие 300 кПа при 10-процентном сжатии) и изготовлен так, чтобы служить в течение всего срока службы здания. По окончании срока службы его можно переработать и использовать для изготовления множества других продуктов.

KORE EPS не разрушается со временем, устойчив к гниению, плесени и воде, а также может быть установлен во влажных условиях — идеально подходит для климата Ирландии и Великобритании.

Пенополистирол

KORE имеет экологическую декларацию третьей стороны, принятую Ирландским советом по экологическому строительству и EPD Ireland, и может использоваться для получения сертификатов BREEAM, LEED и Home Performance Index.

Начните конструировать будущее уже сегодня


Высокопроизводительная тепловая оболочка начинается с фундамента.По мере того, как мы увеличиваем теплоизоляцию стен и крыши, часто упускают из виду фундамент.

При повышенной изоляции в других частях здания тепло будет уходить в зону наименьшего сопротивления, часто в место соединения стены с полом.

В результате может возникнуть повышенный риск образования конденсата вокруг плинтуса. Система изолированного фундамента KORE снижает этот риск, устраняя мост холода, внося свой вклад в общий рейтинг энергопотребления здания за счет универсального, безопасного и простого в работе и установки материала.

Для инженеров, стремящихся обеспечить будущее своего бизнеса и предлагать инновационные продукты для своих клиентов, система изолированного фундамента KORE — единственный выбор.

Система не только обеспечивает превосходные тепловые характеристики зданий при сопоставимой стоимости, но и добавляет дополнительный источник дохода для квалифицированных инженеров-строителей, желающих сотрудничать с KORE в коммерческих и внутренних проектах по всей стране.

Для получения дополнительной информации, запроса предложения или бронирования бесплатных курсов повышения квалификации по системе изолированного фундамента KORE посетите веб-сайт www.kore-system.com, электронная почта [email protected] или звоните +353 49 433 6998.

Изоляция жилого фундамента — InterNACHI®

Дома, возводимые сегодня, более энергоэффективны, чем те, что были построены всего несколько лет назад, в первую очередь благодаря значительным улучшениям в строительных изделиях и технологиях, а также разработке высокопроизводительных систем отопления и охлаждения и других приборов. В InterNACHI мы уверены, что преимущества утепления фундамента часто упускаются из виду.Потери тепла из неизолированного кондиционированного подвала могут составлять до 50% от общих тепловых потерь дома в плотно закрытом и хорошо изолированном доме. Изоляция фундамента используется в основном для снижения затрат на отопление и практически не способствует снижению затрат на охлаждение. Помимо снижения затрат на отопление, изоляция фундамента повышает комфорт, снижает вероятность образования конденсата и соответствующего роста плесени, а также повышает удобство жизни в помещениях, находящихся ниже уровня земли.


Типы фундаментов

Типы фундаментов: цокольный этаж, плита на уровне грунта или подвал.Глубокие морозы и низкий уровень грунтовых вод часто делают подвал основным фундаментом. Тем не менее, плита на уровне с возведением подвала с выходом на улицу является обычным явлением, а пристройки дома часто имеют фундамент для подполья.

Полные подвалы

Подвалы могут быть изолированы как внутри, так и снаружи. Для внутренней изоляции можно использовать обычный каркас 2×4 с войлоком или изоляцию методом мокрого напыления. Если покрытие из пароизоляции на изоляции войлока не является огнестойким, оно должно быть покрыто гипсокартоном.Жесткая пена также используется для внутренних помещений подвала. Полосы на меху используются для удержания пенопласта на месте. Также можно использовать изоляционные плиты из экструдированного или вспененного полистирола или полиизоцианурата. Нормы пожарной безопасности требуют, чтобы большинство изоляционных пенопластов было покрыто гипсокартоном.

Для внешней изоляции фундамента используется экструдированный или пенополистирол непосредственно на внешней стороне стен подвала. Изоляция, открытая выше уровня, должна быть закрыта, чтобы защитить ее от физического насилия и разрушительного воздействия солнца.Типичные материалы покрытия включают рулонный металл, соответствующий сайдингу, цементную плиту, прикрепленную к плите подоконника, или нанесение отделки, напоминающей штукатурку.

Третий вариант — использовать систему фундамента из пенопласта. Формы фундамента из полистирола устанавливаются на обычные опоры, как при строительстве стены из Lego®. Бетон укладывается в формы, где он застывает, образуя как структурные, так и тепловые компоненты стены подвала. Наружная пена, либо вспененные плиты, размещенные снаружи обычного фундамента, либо стеновая система в форме пены, может обеспечить скрытый входной путь для подземных термитов.Термиты могут проходить сквозь многие пенопласты и за ними. Если используется внешняя изоляция из пенопласта, необходимо использовать сплошной металлический щит от термитов между верхней частью фундамента и пластиной подоконника, чтобы вытолкнуть термитов из пенопласта в поле зрения. Даже в этом случае лечение обычными термитицидами, чтобы остановить заражение, может быть затруднено. Гидроизоляция фундамента, дренаж площадки и фундамента, а также обработка термитов для утепленных и неизолированных подвалов аналогичны. Однако, если будет использоваться внешняя изоляция из пенопласта, используйте гидроизоляционные материалы, совместимые с пеной.

Подвальные помещения
Во многих отношениях стены подвала — это всего лишь короткие стены подвала. Могут использоваться внешние пенопластовые и пенопластовые изоляционные системы. Однако изоляция стен внутреннего пространства для подвешивания обычно выполняется либо пенопластом, либо драпированной изоляцией. Если используется пенопласт, он простирается от верха фундамента до верха фундамента. Полость, образованная балкой по краю, должна быть заполнена войлоком из стекловолокна или вспененным материалом. Большинство норм пожарной безопасности допускают, чтобы до 2 дюймов полистирола было выставлено на внутренней части подполья, прежде чем потребуется покрытие.

Если рабочие места изолированы стекловолокном или войлоком из минеральной ваты, эти войлоки обычно прикрепляются к пластине порога и накидываются на пол. Батарейки шириной четыре фута, заключенные в пластиковый чехол, хорошо работают при горизонтальной установке. Обычные войлоки шириной 16 или 24 дюйма оставляют пустоты между войлоками и не работают так же хорошо.

В некоторых юрисдикциях требуется вентилируемое рабочее пространство для контроля влажности. Требования к вентиляции значительно снижаются, если пол в коридоре покрыт пластиковой пленкой с перекрытием краев и заклеен лентой, чтобы уменьшить влажность пространства для ползания.При необходимости установите работающие вентиляционные отверстия, чтобы их можно было закрыть. Не забудьте заполнить пространство балки обода стекловолокном или вспененной пеной, чтобы завершить изоляционную обработку.

Пол над подвесным помещением также можно утеплить. Это поднимает тепловую оболочку от стен подползника до пола. Хотя этот метод имеет много преимуществ, трубопроводы должны быть защищены от замерзания, а каналы отопления и охлаждения также должны быть изолированы.

Плита на поверхности
Потери тепла максимальны на уровне внешней поверхности или рядом с ней.Для снижения затрат на отопление и уменьшения синдрома холодного пола, характерного для монолитного строительства, критически важна изоляция. Наружная изоляция пеной, как и внешняя изоляция подвала, работает хорошо. Изоляция должна проходить от верха плиты до верха фундамента. Пенопласт внутри фундамента также является обычным явлением. Необходимо предусмотреть термический разрыв, чтобы предотвратить термическое растекание плиты наружу. Установка гвоздезабивателя, обработанного давлением, или скошенной кромки плиты обеспечивает термический разрыв, но при этом позволяет крепить напольное покрытие.Климат, стоимость топлива, эффективность отопительного оборудования и тип фундамента помогают определить рентабельный уровень изоляции.

Экономия при использовании утепленных фундаментов зависит от цены на топливо, производительности отопительного оборудования и климата. Стоимость полной изоляции фундамента подвала будет варьироваться, но строители сообщили о ценах от 800 до 1200 долларов. Если ипотека нового дома была увеличена на 1200 долларов, то увеличение жилищных выплат составило бы 106 долларов в год для 30-летней ссуды под 8%. Комбинированные расходы на отопление и ипотеку будут аналогичными, а дом станет более комфортным и обеспечит более здоровую внутреннюю среду.

Часто задаваемые вопросы

Если подвал еще не закончен, нужно ли утеплять его фундамент?

Да, если только верхний этаж не изолирован. Даже если подвал используется только для хранения, обогрева и охлаждения, он термически связан с остальной частью дома.

Является ли изоляция пола над подвалом или над подвальным помещением альтернативой изоляции фундамента?

Да, но имейте в виду, что трубы, воздуховоды и оборудование HVAC, расположенное в подвале, необходимо будет изолировать для защиты труб от замерзания.Иногда их можно сгруппировать на небольшом участке с изолированными стенами, в то время как пол над остальной частью подвала изолирован.

Не улучшает ли энергоэффективность внешняя изоляция?
Если в подвале используется пассивная солнечная конструкция со значительным количеством окон, выходящих на юг, будет полезна внешняя изоляция при условии, что стены подвергаются воздействию солнечной энергии. В типичном подвале экономия энергии незначительна.

Следует ли иметь внутри фундаментных стен пароизоляцию?
Если используется внутренняя изоляция, да.Бетону необходимо дать высохнуть, но влажный воздух подвала, типичный для лета Среднего Запада, не должен достигать прохладной стены, где он может конденсироваться. Изоляция из войлока, специально разработанная для внутренней части фундаментных стен, имеет перфорированную полиэтиленовую облицовку, которая предотвращает циркуляцию воздуха через войлок, но позволяет водяному пару от стены выходить.

Увеличит ли изоляция фундамента риск проникновения термитов?
Изоляция фундамента не увеличивает риск проникновения в термин.Если в почве обитают термиты, а в здании используется древесина, существует риск заражения. Наружная изоляция может снизить вероятность раннего обнаружения и препятствовать лечению при обнаружении.

При осмотре фундамента на предмет термитов неплохо было бы оставить открытую полосу или небольшую территорию, на которой не используется изоляция фундамента?
В некоторых южных штатах с высокой частотой заражения термитами, включая Флориду, Северную и Южную Каролину, Джорджию, Алабаму, Миссисипи, Луизиану, восточный Техас, южную и центральную Калифорнию, Джорджию, Теннесси и Гавайи, изоляция из жесткого пенопласта не применяется. допускается соприкосновение с почвой.В других областях требуется 6-дюймовый зазор между верхней частью теплоизоляции фундамента и любым деревянным элементом каркаса для визуального осмотра на наличие термитов. Инспектор InterNACHI может быть нанят для проведения необходимых проверок на вредителей. Будет ли гидроизоляция подвергать химическому воздействию изоляционные материалы наружного фундамента?
В может случиться. Всегда следуйте инструкциям производителя изоляции по влагозащите.

А как насчет гидроизоляции? Код
часто требует гидроизоляции вместо гидроизоляции, если стена примыкает к жилому пространству.Производители некоторых изделий из пенопласта предлагают конкретные рекомендации по гидроизоляции своих пенопластов.

Как долго прослужит наружная изоляция фундамента?
Правильно установленная изоляция фундамента должна служить столько же, сколько и изоляция, установленная в любом другом месте здания.

Следует ли защищать пенопластовую изоляцию над уровнем земли?
Пена выше уровня земли должна быть защищена как от солнца, так и от физических повреждений. Ультрафиолет разрушает и разрушает большинство пен.Кроме того, повреждение газонокосилкой, мячами и другим случайным контактом может ухудшить внешний вид и характеристики пены. Обычные материалы, используемые для защиты пены выше класса, включают двух- или трехслойную отделку штукатуркой, эластомерную или цементную отделку, наносимую кистью, вертикальный виниловый сайдинг, цементную плиту, алюминиевый рулонный материал и панели из стекловолокна.

Увеличит ли изоляция фундамента риск проблем с радоном?
Попадание радона в дом происходит через трещины и другие отверстия ниже уровня земли.Использование изоляции фундамента должно свести к минимуму термические нагрузки на фундамент и помочь свести к минимуму растрескивание, тем самым уменьшив проникновение радона.

Следует ли вентилировать рабочие места?
Кодекс CABO для одной и двух семей требует 1 квадратный фут вентиляции подзарядки на каждые 150 квадратных футов площади пола. При установке пароизоляции можно использовать рабочие форсунки, составляющие 1/10 от размера. Теплый, влажный летний воздух может конденсироваться на прохладной земле, даже если он покрыт поли-паровым замедлителем диффузии, что увеличивает риск проблем с влажностью в пространстве для ползания.Предпочтительнее установить пароизоляцию и закрыть рабочие форточки. Если в соответствии с местными правилами требуется вентиляция пространства для ползания, предпочтительнее изолировать пол и установить пароизоляцию.

Требуется ли противопожарная защита для установленных внутри изоляционных пенопластов?
Для всех пенопластов требуется тепловая защита, равная ½ дюйма гипсокартона при установке внутри здания, в том числе в подвесном пространстве. Единственным исключением является полиизоцианурат Celotex Thermax®, который может быть установлен без теплового барьера, если это одобрено местным должностным лицом строительных норм. Системы изоляционных бетонных опалубок (ICF) дешевле, чем изолированные монолитные бетонные стены?
ICF могут быть конкурентоспособными, но затраты зависят от проекта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *