Теплоизоляционный материал это – Теплоизоляция. Виды, свойства, характеристики, область применения. Теплоизоляционные, кровельные, фасадные, демонтажные, покрасочные, общестроительные работы в Красноярске. ООО ПСК «Стевин»

Теплоизоляционные материалы: виды,описание,фото,свойства | Строительные материалы

 

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалы — горные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются  специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

Какие задачи решает теплоизоляционный материал

Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.

Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.

Теплоизоляционные материалы виды и свойства

Все виды материалов для теплоизоляции

Строительная индустрия предлагает множество различных видов теплоизоляционных материалов. Несмотря на разнообразие, их можно разделить на несколько основных типов. Наиболее применяемые материалы для теплоизоляции:

  • минераловатные утеплители;
  • пенополистирол и его экструдированная модификация;
  • вспененный полиэтилен с металлизированным покрытием;
  • пенополиуретан.

Каждый из перечисленных вариантов утепления имеет свои сильные и слабые стороны и оптимальную область применения.

Свойства минераловатных утеплителей

Минеральная вата является современной модификацией стекловаты и лишена многих недостатков последней. Она производится из отходов металлургической промышленности с добавлением обработанных базальтовых пород. Выпускается в виде матов и рулонов различных размеров.

К минусам минераловатных утеплителей следует отнести значительный удельный вес, постепенное проседание под действием собственной тяжести и «пыление» при монтаже.

Эти материалы для теплоизоляции имеют следующие достоинства:

  • высокая теплоизолирующая способность;
  • хорошее шумопоглощение;
  • огнестойкость;
  • невысокая стоимость.

Широко применяются при утеплении полов, стен, крыш, чердачных и подвальных помещений. Используются в качестве теплоизолятора систем вентилируемых фасадов.

Пенополистирол - характристики утеплителя

Представляет собой вспененный полимерный материал с высокими теплоизолирующими характеристиками. Применяется, как и базальтовые утеплители, при обработке всех конструкционных элементов дома.

Положительные отличия:

  • малый вес;
  • высокая звукоизоляция;
  • хорошая пароизоляция и стойкость к сжатию;
  • устойчивость к действию влаги, химических и биологических факторов;
  • простота монтажа.

Недостатки: хрупкость, низкая огнестойкость и способность выделять токсичные соединения при возгорании.

    В продаже имеется экструдированный аналог ППС, обладающий лучшими характеристиками по плотности, пластичности и влагоустойчивости. Экструдированный пенополистирол – современный утеплительный материал. Он более долговечен и стабилен, удобен в обработке, но стоимость его выше, чем обычного пенопласта. Области    применения обеих разновидностей аналогичны.            

Вспененный пенополиэтилен

Современный теплоизолятор, состоящий из вспененного полиэтилена и алюминиевой фольги. Выпускается множество разновидностей, различающихся по толщине, наличию самоклеящейся пленки и количеству отражающих слоев (их может быть один или два).

    Достоинства утеплителя:

  • Малая толщина при высокой теплоизолирующей способности. Лист пенофола соответствует эффективности минераловатной плиты, превосходящей его по толщине в 20 раз.
  • Хороший пароизолятор;
  • Защищает от внешнего воздействия влаги и ветра;
  • Универсальность. Благодаря отражающей способности фольги, защищает от всех видов потерь тепла: конвекции, теплопроводности и излучения;
  • Экологическая чистота;
  • Простота раскроя и монтажа.

Успешно используется везде, где востребованы материалы для теплоизоляции: в строительстве, промышленности, автомобилестроении, оборонной сфере. В жилом секторе применяется в качестве изоляции любых элементов зданий, трубопроводов водоснабжения и водоотведения, систем вентиляции и кондиционирования. Незаменим как отражатель, устанавливаемый между радиатором отопления и стеной.

Минусом можно считать высокую цену утеплителя.

Пенополиуретан для теплоизоляции

Прогрессивный метод утепления, заключающийся в напылении жидкого состава на утепляемую поверхность. Затвердевший и расширившийся полимер создает надежную защиту от холода. Такие материалы для теплоизоляции как вспененный полиэтилен и пенополиуретан являются самыми эффективными техническими решениями.

    К достоинствам ППУ относятся:

  • низкая теплопроводность;
  • бесстыковая технология, не образующая мостиков холода;
  • хорошая адгезия к большинству строительных материалов;
  • доступность самых сложных мест;
  • антикоррозионные свойства;
  • устойчивость к действию влаги, грибков и плесени;
  • шумозащитные свойства;
  • долговечность.

Слабым местом является неустойчивость к прямому действию солнечных лучей. Предотвратить это можно окрашиванием, либо использованием ППУ в качестве теплоизолятора в навесных фасадах.  Поэтому пенополиуретан применяется везде, где и перечисленные выше материалы.   

Нанесение пенополиуретана производится с помощью сложного оборудования, работающего под высоким давлением, и с использованием дорогостоящих компонентов. Производить эти работы могут только квалифицированные специалисты. Это объясняет дороговизну данного метода.

Представленные выше технологии – далеко не все варианты утепления жилых домов. Существуют и другие материалы для теплоизоляции: керамзит, утеплительная штукатурка, вспененный каучук, перлит, утеплитель из переработанных конопли и льна, нетканое изоляционное волокно, пеностекло и прочие. На них приходится менее 5% от общего объема применяемых теплоизоляторов. Основные виды используемых материалов были рассмотрены выше.

Материалы для теплоизоляции – это изделия для проведения строительства, которые имеют низкий уровень теплопроводности. Они предназначены для утепления зданий, технической изоляции и защиты холодных камер от нагревания.

Чтобы определиться с выбором материала для теплоизоляции, необходимо знать её свойства и характеристики. Важно, чтобы материал обладал низкой теплопроводностью. Последняя обеспечивается за счёт движения молекул, которые переносят тепло. Теплоизоляционные материалы способствуют замедлению их движения.

Важные свойства утеплительных материалов

Теплоизоляторами называются строительные материалы с невысоким коэффициентом тепловодности. В случае, если теплоизоляция используется для внутреннего удержания тепла в здании, материалы носят название утеплители.

Материалы для теплоизоляции должны обладать рядом свойств:

  • низкая теплопроводность;
  • пористая структура;
  • плотность;
  • паропроницаемость;
  • водопоглащение;
  • биоустойчивость;
  • огнеупорность;
  • пожаробезопасность;
  • устойчивость температуры;
  • теплоёмкость;
  • морозостойкость.

Распространённые виды утеплителя

Разновидностей материалов для теплоизоляции довольно много, один из них – это утеплитель с волокнистой структурой, к которому относится минеральная вата. Она обладает высокой пористостью, примерно 95% её объёма составляет воздух. Именно поэтому минеральная вата обладает хорошими теплоизоляционными свойствами и её часто используют для утепления зданий. Её производство довольно доступное, а значит и цена тоже. К преимуществам минеральной ваты относят:

  • не удерживает в себе влагу;
  • не поддаётся горению;
  • обеспечивает шумоизоляцию;
  • долгий срок эксплуатации.

Стоит отметить, что при попадании влаги на материал, он теряет свои теплоизоляционные свойства. При монтаже минеральной ваты необходимо использовать гидро- и пароизоляционную плёнку.

Стекловата производится из волокон, которые получают из кварцевого песка, соды, и извести. Материалы для теплоизоляции можно приобрести в виде рулона, плиты или скорлупы. По своим характеристикам она напоминает минеральную вату, но немного прочнее и в большей мере гасит шум. Из недостатков – низкий уровень температурной устойчивости.

Пеностекло изготавливают при помощи спекания газообразователей со стеклянным порошком, он выпускается в виде плит или блоков. Его структура имеет пористость до 95%, что обеспечивает отличные теплоизоляционные свойства. Пеностекло - довольно прочный материал для теплоизоляций, обладающий такими характеристиками:

  • морозостойкость;
  • водостойкость;
  • несгораемость;
  • прочность;
  • длительный срок службы.

Недостатки - высокая цена и паронепроницаемость

Целлюлозная вата – древесноволокнистый материал с мелкозернистой структурой, который на 80% состоит из волокон древесины, на 12% - из антипирена и на остальные 8% - из антисептика. Материал для теплоизоляции укладывают двумя методами: сухим и мокрым. Для мокрого метода укладки используют специальную установку, с помощью которой выдувают влажную целлюлозную вату. Таким образом, активируются клейкие свойства пектина. Сухой метод можно осуществить вручную или при помощи специального оборудования. Целлюлозная вата засыпается и трамбуется до определённой плотности. Вата довольно доступна и обладает хорошими утеплительными свойствами.

Материалы для теплоизоляции довольно разнообразны, поэтому необходимо изучить из свойства, чтобы определиться с выбором. Ведь для каждого здания требуется определённый материал.

Теплоизоляционные материалы | Строительный портал

Решили сделать свое жилище энергоэффективным, чтобы тратить меньше средств на его отопление, или просто утеплить стены, чтобы сделать проживание в нем более комфортным, но при этом не знаете, на каком материале остановить свой выбор? Ведь хочется, чтобы он был качественным, не пропускал воду, не слишком утяжелял конструкцию, был паропроницаемым, не боялся грибка и плесени и при этом – желательно не слишком дорогим, не оказывал негативных влияний на жизнедеятельность человека, а лучше – был натуральным. Представленные на современном рынке теплоизоляционные материалы поражают своим разнообразием, среди которого нелегко сделать правильный выбор. В рамках данной статьи мы определимся, на какие характеристики следует обратить внимание, какие достоинства и недостатки имеют те или иные виды материалов и из чего они сделаны.

Содержание

  1. Характеристики теплоизоляционных материалов
  2. Теплоизоляционные материалы для стен
  3. Сравнение теплоизоляционных материалов

Для начала давайте выясним, для чего нужны такие материалы и что они собой представляют.

Основной функцией теплоизоляционного материала является предотвращение потери тепла из изолируемого помещения, например, в холодное время года, и проникновению тепла внутрь – жарким летом. Передача тепла обусловлена движением молекул, которое невозможно остановить полностью, но можно снизить. Так, в неподвижном сухом воздухе молекулы движутся медленнее всего. Именно это свойство и было взято в основу производства теплоизоляционных материалов, представляющих собой воздух, упакованный различными способами: в порах, ячейках, капсулах.

 

Характеристики теплоизоляционных материалов

 

Выбирая тот или иной изоляционный материал, следует обратить внимание на несколько основополагающих характеристик.

Коэффициент теплопроводности (лямбда – λ) – главный показатель для теплоизоляционных материалов. Он показывает количество теплоты, которое проходит сквозь материал, имеющий толщину 1 м и площадь 1 м2 , за один час при условии, что разница температур на противоположных поверхностях составляет 10 °С. Например, коэффициент теплопроводности сухого воздуха составляет 0,023 Вт/(м*С). На величину теплопроводности влияют другие характеристики материала: пористость, влажность, температура, химический состав и другие.

Пористость – процент воздушных пор в общем объеме изделия. Может составлять 50% и более. В некоторых ячеистых пластмассах доходит до 90 – 98 %. Поры могут быть открытыми, закрытыми, мелкими или крупными. Очень важным является их равномерное распределение внутри материала.

Влажность – количество влаги, содержащейся в материале. Данный параметр влияет на теплопроводность. Так как вода очень хорошо проводит тепло, материал, насыщенный водой – мокрый, не будет выполнять свои функции.

Водопоглощение – способность материала впитывать воду при прямом контакте с ней. Очень важный момент для наружной изоляции, которая может находиться под осадками, для внутренней изоляции в помещениях с повышенным уровнем влажности. Если материал будет впитывать воду, его свойства будут падать.

Паропроницаемость – количество водяного пара, проходящее через материал, толщиной 1 м и площадью 1 м2, за 1 час при условии, что температура одинакова с обеих сторон материала, а разность парциального давления пара равна 1 Па. Данный параметр влияет на необходимость обустройства дополнительной пароизоляции.

Плотность материала влияет на его массу. По ней можно высчитать, насколько будет утяжелена конструкция, если использовать тот или иной материал определенной толщины.

Биостойкость определяет, возможно ли развитие грибков, плесени и другой патогенной флоры на поверхности или внутри структуры материала.

Теплоемкость материала важна в регионах с частой сменой температур. Она показывает количество тепла, которое может аккумулировать теплоизоляция.

Существуют и другие характеристики: огнестойкость, прочность, морозостойкость, прочность на изгиб и показатели пожарной безопасности. При выборе материала на них также стоит обратить внимание, а также на еще один показатель, не имеющий прямого отношения к конкретному теплоизоляционному материалу:

Коэффициент U – способность конструкции пропускать тепло. Будь то стены, потолок или пол, в зависимости от материалов, из которых они выполнены, могут пропускать тепло в разном количестве и с разной скоростью. Данный коэффициент является комбинированной величиной, в расчет которой входят все использованные послойно материалы и воздушные промежутки между ними. От значения коэффициента U конкретного здания или конструкции будет зависеть, какой теплоизоляционный материал можно использовать, и какая требуется толщина этого материала.

 


Теплоизоляционные материалы для стен

 

На сегодняшний день производство теплоизоляционных материалов налажено, как из неорганического сырья, так и органического. Рассмотрим их отдельно по причине их различного влияния на окружающую среду и человека, а также условий утилизации.

 

Теплоизоляционные материалы из неорганического сырья

Минеральная вата является, пожалуй, самым распространенным материалом на данный момент. Производится из минерального сырья: доломитов, базальтов и других ископаемых. Полученные в результате расплавления минералов волокна скрепляются связующим веществом, в качестве которого часто выступает фенолформальдегидная смола. Легкость производства обусловила низкую цену на данный материал.

Преимущества минеральной ваты:

  • Хорошие теплоизолирующие свойства.
  • Практически не впитывает влагу.
  • Морозостойкая.
  • Может служить дополнительной звукоизоляцией.
  • Не горит.
  • Долговечная.
  • Не меняет своих характеристик.
  • Не подвержена гниению.
  • «Дышит».

Недостатки:

  • Недостаточно прочная.
  • Требует пароизоляции.
  • Требует гидроизоляции.
  • Фенолформальдегид – токсичное вещество.
  • Требует специальной утилизации.

Форма выпуска: рыхлая вата, маты, цилиндры, плиты с разной плотностью (легкие, мягкие, полужесткие, жесткие).

Каменная вата производится из горной породы диабаза путем расплавления и превращения жидкой массы в волокна. Такой материал на 99 % состоит из воздуха и только на 1 % из горной породы. Используется для утепления стен и других конструкций повсеместно.

Преимущества каменной ваты:

  • Обеспечивает звукоизоляцию.
  • Не горит.
  • Не подвержена гниению.
  • Препятствует распространению огня. Плавится при температуре 1000 °С.

Недостатки:

  • Энергоемкий процесс производства.
  • Требует специальной утилизации.

Пеностекло (ячеистое стекло) производится из стеклянного порошка путем его спекания с газообразователями. Воздух занимает 80 – 95 % материала.

Преимущества пеностекла:

  • Прочное. Можно вбивать гвозди.
  • Водостойкое.
  • Морозостойкое.
  • Не горит.
  • Не подвержено гниению.
  • Долговечное.

Недостатки:

  • Не «дышит» (требуется дополнительная вентиляция).
  • Дорогое.

Перлит – вулканическая порода. При нагревании увеличивается в несколько раз, из-за чего процесс производства напоминает создание попкорна. Используется для теплоизоляции с середины прошлого века.

Преимущества перлита:

  • Экологически чистый материал.
  • Не горит.
  • Не поглощает влагу.
  • Не оседает.
  • Устойчив к гниению и влиянию патогенной флоры
  • Прост в использовании (можно засыпать или задувать в пустоты).
  • Утилизируется компостированием (улучшает качества почвы).

Недостатки:

  • Может высыпаться из пустот во время прокладки в стенах труб или кабелей.

 

К теплоизоляционным материалам из неорганического сырья также относятся различные теплоизоляционные бетоны: газобетон, ячеистый бетон, пенобетон. А также бетоны с заполнителями: керамзитобетон, перлитобетон, полистиролбетон.

 


Полимерная теплоизоляция

Экструдированный пенополистирол имеет цельную, прочную микроструктуру. Ячейки закрыты, непроницаемы и заполнены воздухом. Ни вода, ни воздух не могут проникать из ячейки в ячейку.

Преимущества экструдированного пенополистирола:

  • Хорошие показатели теплопроводности.
  • Инертен по отношению к большинству веществ.
  • Не впитывает влагу.
  • Прочнее пенопласта.

Недостатки:

  • Горючий (в процессе горения выделяет токсичные вещества).
  • Не «дышит».

Полистирольные пенопласты представляют собой маленькие шарики, скрепленные между собой. Могут производиться как прессовым, так и беспрессовым способом.

Преимущества полистирольных пенопластов:

  • Недорогие.
  • Прочные.
  • Хорошо теплоизолируют.
  • Удобны в монтаже.

Недостатки:

  • Под действием солнечных лучей желтеют и распадаются.
  • Не «дышат».
  • Горят.
  • При проникновении влаги разрушается структура.

Пенополиуретан представляет собой жидкий теплоизолирующий материал. При смешении ингредиентов с воздухом образуется мелкодисперсный аэрозоль, который можно напылять на поверхность с любой геометрией.

Преимущества пенополиуретана:

  • Потрясающая эластичность материала.
  • Устойчив к грибкам и плесени.
  • Можно утеплять неровные поверхности.
  • Легкий монтаж, не занимающий много времени.
  • Не имеет стыков.

Недостатки:

  • Горит, выделяя токсичные вещества.
  • Не «дышит».
  • Для монтажа требуется специальная установка.

 

Теплоизоляционные материалы из органического сырья

Бумага используется для утепления с середины прошлого столетия. Такие материалы представляют собой гранулы, полученные из газет и другой макулатуры. Для задувания этих гранул в пустоты в стенах необходима помощь специалистов.

Преимущества теплоизоляционных материалов на основе бумаги:

  • Не горят (обрабатываются нейтральными солями).
  • Отталкивают воду.
  • Хорошо заполняют полости.
  • Легкие в использовании.
  • Не приносят вреда окружающей среде.
  • Утилизируются обычным компостированием.
  • Устойчивы к грибкам.
  • Не требуют дополнительной пароизоляции.

Недостатки:

  • Ограниченная сфера применения из-за специфической формы изделия – гранул.

Лен используется в качестве утеплителя довольно редко, в основном теми, кто заботится об окружающей среде и своем здоровье. Причина неповсеместного распространения материалов из льна – высокая цена. Хотя со временем прогнозируют ее снижение.

Преимущества льняных утеплителей:

  • Превосходные изоляционные качества.
  • Не требуют дополнительной пароизоляции.
  • Утилизируются сжиганием или компостированием.
  • Абсолютно натуральные.
  • Устойчивы к грибкам и микроорганизмам.

Недостатки:

  • Трудно режутся.
  • Необходима дополнительная противопожарная защита.

Древесное волокно (целлюлозная вата) на данный момент считается одним из самых известных органических теплоизоляционных материалов. Представляет собой древесный материал, измельченный до состояния ваты. Производится как в сыпучем виде, так и в плитах. Используется для задувания в полости стен.

Преимущества целлюлозной ваты:

  • Повышенные теплоизоляционные свойства.
  • Служит звукоизоляцией.
  • Проста и удобна в применении.
  • Компостируется.

Недостатки:

  • Подвержена гниению и грибку.
  • Не может быть использована для изоляции полых стен старых зданий.
  • Для повышения огнеупорных качеств добавлен полифосфат аммония.

Пробковая теплоизоляция производится из коры пробкового дуба без использования синтетических веществ. Пробка является еще одним абсолютно натуральным утеплителем, как и лен.

Преимущества пробки:

  • Не гниет.
  • Не поддается усадке.
  • Прочная на сжатие и изгиб.
  • Легкая.
  •  Долговечная.
  • Инертна к большинству веществ.
  • Не горит (но тлеет).
  • Во время тления не выделяет вредных веществ.

Недостатки:

  • Обработана противогорючими пропитками.

 

Сравнение теплоизоляционных материалов

 

Перед тем как выбирать материал для утепления, желательно проконсультироваться со специалистами. Исходя из материала стен, их толщины и условий эксплуатации (климата), они посоветуют, какие материалы могут подойти в конкретном случае и какова должна быть их толщина. Если Вы не услышали в списке предложенных вариантов тот материал, которые хотели бы использовать, уточните этот нюанс. Возможно, данный материал просто выпал из внимания специалиста, а может он категорически не подходит для данной конструкции.

Выделить однозначно лучший теплоизоляционный материал невозможно. Все они в той или иной степени хороши для конкретных целей. Выбор зависит в первую очередь от теплоизоляционных свойств и от личных предпочтений и финансовых возможностей.

Например, обустраивая абсолютно экологичный дом из дерева, будет абсурдным использовать для утепления пенополистрол или пенопласт. Имеет смысл обратить внимание на натуральные материалы: лен, бумагу, целлюлозу и пробку.

В строительстве современных многоэтажных домов повсеместно используется пенопласт и другие полимерные материалы, так как их цена невелика, они просты в монтаже и имеют хорошие показатели теплопроводности. Но о влиянии таких материалов на жизнедеятельность человека в основном никто не задумывается. Застройщикам достаточно того, что производитель заверил в безопасности продукта.

В представленной таблице использования теплоизоляционных материалов:

Серым цветом обозначен правильный выбор;

Желтым цветом обозначены варианты, которые следует осуществлять с учетом пожарной безопасности;

Красный цвет - нельзя использовать.

Как видно из таблицы, любой из представленных в статье материалов хорош на своем месте: некоторые лучше использовать для утепления стен, другие – полов, третьи – чердаков и крыш. Даже для устройства теплоизоляции внутри здания или снаружи подойдут разные материалы.

Виды и свойства теплоизоляционных материалов. -

Следующая информация, вряд ли будет интересна строителям, это теоретическая статья по видам теплоизоляции, наверное подойдет больше для реферата или какой нибудь научной работы, в качестве теоретической части. Забираем, читаем, вникаем.

Теплоизоляционными называют материалы, применяемые в строительстве жилых и промышленных зданий, тепловых агрегатов и трубопроводов с целью уменьшить тепловые потери в окружающую среду. Теплоизоляционные материалы  характеризуются  пористым  строением  и, как следствие  этого, малой плотностью (не более 600 кг/м3) и  низкой теплопроводностью (не более 0,18 Вт/(м*°С).

Использование теплоизоляционных материалов позволяет уменьшить толщину и массу стен и других ограждающих конструкций, снизить  расход основных  конструктивных  материалов, уменьшить транспортные расходы и соответственно снизить стоимость строительства. Наряду с этим при сокращении потерь тепла отапливаемыми зданиями уменьшается расход топлива. Многие теплоизоляционные материалы вследствие высокой пористости обладают способностью поглощать звуки, что позволяет употреблять их также в качестве акустических материалов для борьбы с шумом.

Теплоизоляционные  материалы  классифицируют  по  виду  основного сырья, форме и внешнему виду, структуре, плотности, жесткости и теплопроводности.

Теплоизоляционные материалы по виду основного сырья подразделяются на неорганические, изготовляемые на основе различных видов минерального сырья (горных пород, шлаков, стекла, асбеста), органические, сырьем для производства которых служат природные органические материалы (торфяные, древесноволокнистые) и материалы из пластических масс.

По форме и внешнему виду различают теплоизоляционные материалы штучные жесткие (плиты, скорлупы, сегменты, кирпичи, цилиндры) и гибкие (маты, шнуры, жгуты), рыхлые и сыпучие (вата, перлитовый песок, вермикулит).

По структуре теплоизоляционные материалы классифицируют на волокнистые         ( минераловатные, стекло — волокнистые), зернистые (перлитовые, вермикулитовые), ячеистые (изделия из ячеистых бетонов, пеностекло).

По плотности теплоизоляционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

В зависимости от жесткости (относительной деформации) выделяют материалы мягкие (М) — минеральная и стеклянная вата, вата из каолинового и базальтового волокна, полужесткие (П) — плиты из шпательного  стекловолокна на синтетическом связующем и др., жесткие (Ж) -плиты из минеральной ваты на синтетическом связующем, повышенной жесткости (ПЖ), твердые (Т).

По теплопроводности теплоизоляционные материалы разделяются на классы: А — низкой теплопроводности до 0,06 Вт/(м-°С), Б — средней теплопроводности — от 006 до 0,115 Вт/(м-°С), В — повышенной  теплопроводности -от 0,115 до 0,175 Вт/(м.°С).

По назначению теплоизоляционные материалы бывают теплоизоляционно-строительные (для утепления строительных конструкций) и теплоизоляционно-монтажные (для тепловой изоляции промышленного оборудования и трубопроводов).

Теплоизоляционные материалы должны быть  биостойкими  т. е. не подвергаться загниванию и порче насекомыми  и грызунами, сухими, с малой гигроскопичностью так как при увлажнении их теплопроводность значительно повышается, химически стойкими, а также обладать тепло  и огнестойкостью.

Органические теплоизоляционные материалы.

Органические теплоизоляционные материалы в зависимости от природы исходного сырья можно условно разделить на два вида: материалы на основе природного органического сырья (древесина, отходы деревообработки, торф, однолетние растения, шерсть животных и т. д.), материалы на основе синтетических смол, так называемые теплоизоляционные пластмассы.

Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими. К жестким относят  древесносткужечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные, к гибким — строительный войлок и гофрированный картон. Эти теплоизоляционные материалы отличаются низкой  водо — и  биостойкостью.

     Древесноволокнистые теплоизоляционные плиты получают из отходов древесины, а также из различных сельскохозяйственных отходов (солома, камыш, костра, стебли кукурузы и др.). Процесс изготовления плит состоит из следующих основных операций: дробление и размол древесного сырья, пропитка волокнистой массы  связующим, формование, сушка и обрезка плит.

Древесноволокнистые плиты выпускают   длиной 1200-2700, шириной 1200-1700 и толщиной 8-25 мм. По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250-350 кг/м3). Теплопроводность изоляционных плит 0,047-0,07, а изоля-ционно-отделочных-0,07-0,08 Вт/(м-°С). Предел прочности  плит   при изгибе  составляет  0,4-2  МПа. Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами.

Изоляционные  и  изоляционно — отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции концертных залов и театров (подвесные потолки и облицовка стен).

    Арболит изготовляют из смеси цемента, органических  заполнителей, химических добавок и воды. В качестве органических  заполнителей используют  дробленые отходы  древесных  пород, сечку  камыша, костру конопли или льна и т. п. Технология изготовления  изделий  из  арболита  проста и включает операции  по подготовке органических  заполнителей, например дробление отходов  древесных пород, смешивание заполнителя с цементным раствором, укладку полученной  смеси  в формы и ее уплотнение, отвердение  отформованных  изделий.

     Теплоизоляционные материалы из пластмасс. В последние годы создана довольно большая группа новых   теплоизоляционных материалов из пластмасс. Сырьём для их изготовления служат термопластичные (полистирольные;

поливинилхлоридные, полиуретановые)

и термореактивные   (мочевино — формальдегидные)   смолы, газообразующие и вспенивающие вещества, наполнители, пластификачоры, красители и др. В строительстве наибольшее распространение в качестве тепло- и звукоизоляционных   материалов получили пластмассы пористо-ячеистой структуры. Образование в пластмассах ячеек или полостей, заполненных  газами или воздухом, вызвано химическими, физическими или механическими процессами или их сочетанием.

В  зависимости от структуры теплоизоляционные пластмассы могут быть разделены на две группы: пенопласты  и  поропласты. Пенопластами называют ячеистые пластмассы с малой плотностью и наличием  несообщающихся между собой полостей или ячеек, заполненных  газами или воздухом.Поропласты-пористые  пластмассы, структура которых характеризуется сообщающимися между собой полостями. Наибольший интерес для  современного  индустриального строительства  представляют пенополистпрол, пенополивинилхлорид, пенополиуретан  и  мипора . Пенополистирол — материал в виде белой твердой пены с равномерной  замкнутопористой  структурой . Пенополистирол  выпускают марки ПСБС в виде плит размером 1000х500х100 мм и плотностью 25-40 кг/м3. Этот материал имеет теплопроводность 0,05 Вт/(м-°С), максимальная температура его применения 70 °С. Плиты из пенополистирола  применяют для утепления стыков крупнопанельных зданий, изоляции промышленных холодильников, а также  в  качестве  звукоизолирующих  прокладок.

Сотопласты — теплоизоляционные материалы с ячейками, напоминающими форму пчелиных сот. Стенки ячеек  могут быть выполнены  из  различных листовых  материалов ( крафт — бумаги, хлопчатобумажной ткани, стекло — ткани  и др.), пропитанных  синтетическими полимерами. Сотопласты изготовляют в виде плит длиной 1-1,5м,  шириной  550 — 650 и толщиной 300 — 350 мм. Их плотность

30-100 кг/м3, теплопроводность 0,046-0,058 Вт/(м-°С). прочность при сжатии 0,3-4 МПа. Применяют сотопласты  как  заполнитель  трехслойных панелей. Теплоизоляционные свойства  сотопастов повышаются в результата заполнения сот крошкой мипоры.

Неорганические теплоизоляционные материалы .

К  неорганическим теплоизоляционным материалам относят минеральную вату, стеклянное волокно, пенс стекло, вспученные перлит и вермикулит, асбестосодер жащие теплоизоляционные изделия, ячеистые бетоны , и  др.

    Минеральная вата и изделия из нее. Минеральная  вата  волокнистый теплоизоляционный материал, получаемый из силикатных  расплавов. Сырьем для ее производства  служат  горные  породы (известняки, мергели, диориты и др.), отходы металлургической промышленности (доменные и топливные шлаки) и промышленности  строительных  материалов (бой глиняного и силикатного кирпича).

Производство минеральной ваты состоит из двух основных технологических процессов: получение силикатного расплава и превращение этого расплава в тончайшие волокна. Силикатный расплав образуется  в  вагранках  шахтных плавильных печах, в которые загружают минеральное сырье и топливо (кокс). Расплав  с  температурой 1300-1400°С непрерывно выпускают из нижней части печи.

Существует  два  способа  превращения  расплава  в минеральное волокно: дутьевой и  центробежный. Сущность дутьевого способа заключается в том, что на струю жидкого  расплава, вытекающего из летки вагранки, воздействует  струя водяного пара или  сжатого  газа . Центробежный способ основан на использовании центробежной силы для превращения струи расплава в тончайшие минеральные волокна толщиной 2-7 мкм и длиной 2-40 мм. Полученные волокна осаждаются в камере  волокна осаждения на движущуюся  ленту  транспортера. Минеральная  вата  это  рыхлый материал, состоящий  из  тончайших переплетенных минеральных волокон  и небольшого количества стекловидных включений ( шариков, цилиндриков  и  др.), так называемых корольков.

Чем меньше  в  вате  корольков, тем  выше   ее  качество.

В  зависимости  от  плотности   минеральная  вата  подразделяется на  марки 75, 100, 125 и 150. Она огнестойка, не гниет, малогигроскопична и имеет низкую  теплопроводность  0,04 — 0,05 Вт (м.°С).

Минеральная   вата  хрупка, и при ее  укладке  образуется  много  пыли, поэтому вату  гранулируют т.е. о превращают в рыхлые комочки — гранулы. Их используют в качестве  теплоизоляционной  засыпки пустотелых  стен  и  перекрытий. Сама минеральная  вата  является  как  бы  полуфабрикатом,  из которого  выполняют разнообразные теплоизоляционные  минераловатные  изделия: войлок, маты, полужесткие и жесткие плиты, скорлупы, сегменты и др.

    Стеклянная вата  и  изделия из нее. Стеклянная  вата  материал, состоящий из  беспорядочно расположенных  стеклянных  волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служит сырьевая шахта  для  варки  стекла (кварцевый песок, кальцинированная сода и сульфат натрия) или  стекольный  бой. Производство  стеклянной  ваты  и изделий из нее состоит из следующих технологических процессов :  варка  стекломассы  в  ванных печах  при  1300-1400 °С, изготовление  стекловолокна и формование изделий.

Стекловолокно из расплавленной  массы  получают способами вытягивания или дутьевым. Стекловолокно вытягивают штабиковым (подогревом стеклянных палочек до расплавления с последующим их вытягиванием в стекловолокно, наматываемое на вращающиеся  барабаны) и фильерным (вытягиванием волокон из расплавленной стекломассы через небольшие отверстия-фильтры  с последующей намоткой волокон на вращающиеся барабаны) способами. При дутьевом способе расплавленная стекломасса распыляется под действием струи сжатого воздуха или пара.

В зависимости от  назначения  вырабатывают  текстильное  и теплоизоляционное (штапельное) стекловолокно. Средний диаметр текстильного волокна 3-7 мкм, а теплоизоляционного 10-30 мкм.

Стеклянное  волокно значительно большей длины, чем волокна минеральной ваты и  отличается большими  химической  стойкостью  и  прочностью. Плотность стеклянной  ваты 75-125 кг/м3, теплопроводность  0,04-0,052 Вт/(м/°С), предельная температура  применения  стеклянной  ваты 450 °С. Из стекловолокна  выполняют маты, плиты, полосы и другие изделия, в том  числе  тканые.

     Пеностекло — теплоизоляционный материал ячеистой структуры. Сырьем для производства изделий из пеностекла (плит, блоков) служит смесь тонкоизмельченного  стеклянного боя с газообразоватслем (молотым известняком). Сырьевую смесь засыпают в формы и нагревают в печах до 900 «С, при этом происходит плавление частиц и разложение газообразователя. Выделяющиеся газы вспучивают стекломассу, которая при охлаждении превращается в прочный материал ячеистой структуры

Пеностекло обладает  рядом  ценных  свойств,  выгодно  отличающих  его  от  многих  других теплоизоляционных  материалов: пористость  пеностекла 80-95 %, размер пор 0,1-3 мм, плотность  200-600 кг/м3, теплопроводность 0,09-0,14 Вт/(м, /(м* °С),  предел прочности при сжатии пеностекла 2-6 МПа. Кроме того, пеностекло  характеризуется водостойкостью, морозостойкостью, несгораемостью, хорошим звукопоглощением, его легко обрабатывать режущим инструментом.

Пеностекло в виде плит длиной 500, шириной 400 и толщиной 70-140 мм используют в строительстве для  утепления стен, перекрытий, кровель и других частей  зданий, а в виде полуцилиндров, скорлуп и сегментов — для изоляции тепловых агрегатов и теплосетей,  где  температура не превышает 300 °С. Кроме того, пеностекло служит  звукопоглощающим и одновременно отделочным  ма-териалом  для  аудиторий, кинотеатров и  концертных  залов.

    Асбестосодержащие материалы и изделия. К материалам и изделиям из асбестового волокна без добавок или с добавкой связующих веществ относят асбестовые  бумагу,  шнур, ткань, плиты и др. Асбест может быть также частью композиций, из которых изготовляют разнообразные теплоизоляционные материалы ( совелит  и др). В рассматриваемых материалах и изделиях использованы  ценные  свойства асбеста: температуростойкость,  высокая  прочность, волокнистость и др.

    Алюминиевая фольга (альфоль)-новый теплоизоляционный материал, представляющий собой ленту гофрированной бумаги с наклеенной на гребне гофров алюминиевой фольгой. Данный вид теплоизоляционного материала в отличие от любого пористого материала сочетает низкую теплопроводность воздуха, заключенного между листами алюминиевой фольги, с высокой отража-тельной способностью самой поверхности алюминиевой фольги. Алюминиевую фольгу для целей теплоизоляции выпускают в рулонах шириной до 100, толщиной 0,005- 0,03 мм.

Практика использования алюминиевой фольги в теплоизоляции показала, что оптимальная толщина воздушной прослойки между слоями фольги должна быть 8- 10 мм, а количество слоев должно быть не менее трех. Плотность такой слоевой конструкции из алюминиевой (фольги  6-9 кг/м3,    теплопроводность — 0,03 — 0,08 Вт/(м* С ).

Алюминиевую фольгу употребляют в качестве отражательной изоляции в теплоизоляционных слоистых конструкциях  зданий  и сооружений, а также для теплоизоляции поверхностей промышленного оборудования и трубопроводов при температуре 300 °С.

(Visited 1 989 times, 1 visits today)

Похожие статьи на сайте

Возможности применения, виды и характеристика утеплителей

Хорошая теплоизоляция стен дома поможет удержать тепло независимо от времени года. Большое разнообразие теплоизоляционных материалов затрудняет выбор. Все виды утеплителей имеют свои достоинства и недостатки, отличаются по стоимости и долговечности, требуют различных затрат на установку и обслуживание.

Классификация

Основным свойством любого утеплителя является его теплопроводность. Добиться хороших показателей этой характеристики можно двумя способами: отразить тепло, и предотвратить его передачу стене дома. По этому признаку все эти виды утеплителей делятся на две большие группы:

Теплоизоляция стен дома

  • в термоизоляторах предотвращающего типа применяются материалы с низкими значениями теплопроводности;
  • термоизоляторы отражающего типа в разы снижают уровень инфракрасного излучения.

Рассмотрим для начала теплоизоляцию предотвращающего типа. В зависимости от используемого при изготовлении сырья, их разделяют на органические и неорганические.

Органические ТИМ

При изготовлении органических ТИМ используется сырье естественного происхождения. Обычно это отходы деревообрабатывающего и аграрного сектора. Иногда для усиления тех или иных характеристик в состав добавляются некоторые виды пластика или же цементные смеси. Основные преимущества таких ТИМ:

Органические ТИМ

  • химическая инертность. Материал практически не реагирует на агрессивное воздействие внешней среды;
  • высокая пожаробезопасность. Даже при температурах свыше 100°С органические материалы не плавятся и не возгораются;
  • хорошие гидроизоляционные свойства.

Органические утеплители часто монтируются во внутренние слои многослойных строительных конструкций – например, сендвич-панелей или оштукатуренных фасадов.

Ниже рассмотрены виды утеплителей органического типа, которые потребителю может предложить современный рынок стройматериалов.

Арболит

Данный стройматериал изготавливается из древесной стружки и опилок, нарезанного камыша и измельченной соломы. Основанием служит цементная основа и некоторые химические добавки. На последнем этапе изготовления арболита полуготовый изолятор обрабатывают минерализатором.

Арболит

Обладает такими характеристиками: плотность до 700 кг/м3 и теплопроводность до 0,12 Вт*м/К. Поскольку до 90% состава занимают древесные отходы, арболит крайне чувствителен в повышенной влажности, потому его нужно применять в связке с хорошими гидроизоляторами.

Продается арболит в виде блоков, толщина которых достигает 20 см. Этот утеплитель достаточно просто изготовить своими руками.

ППВХ

Пенополивинилхлоридный ТИМ состоит из различных органических смол, которые в процессе обработки приобретают пенистую структуру. Выбор утеплителя такого типа оптимален: этот материал является универсальным теплоизолятором и может применяться на всех этапах строительства.

ППВХ

Плотность ППВХ не превышает 0,1кг/м3 . Выпускается ППВХ в эластичном и твердом виде.

ДСП и ДВИП

Древостружечные плиты – еще один вид теплоизоляции, изготавливаемый из отходов деревообрабатывающей промышленности. Стружка составляет более 95% от всего объема ДСП. На остальные 5% приходится склеивающие смолы и гидрофобизаторы. Для повышения сопротивления воздействию внешней среды, ДСП обрабатываются антисептиками – против различных микроорганизмов и насекомых.

Древостружечные плиты

Древесноволокнистая изоляционная плита (ДВИП) по своему составу и характеристикам напоминает ДСП, но отличается от него своей плотностью (ДВИП гораздо легче) и более низкой прочностью. Теплопроводность древесных плит немного ниже, чем у арболита – до 0,07 Вт*м/К. И ДСП и ДВИП широко применяются при утеплении жилых и хозяйственных помещений.

ППУ

Пенополиуретаны имеют в своей основе полиэфир с добавками эмульгаторов, дизоцината и воды. Под воздействием катализаторов химическая реакция исходных компонентов дает новое вещество, получившее название пенополиуретан (ППУ). К достоинствам ППУ нужно отнести высокое шумопоглощение, химическую пассивность, влагостойкость.

ППУ

ППУ относится к теплоизоляции, которая напыляетсяя на поверхность: так он покрывает даже сложные и труднодоступные участки потолков и стен. Плотность ППУ достигает 80кг/м3, коэффициент теплопроводности — один из самых низких среди различных ТИМ — 0,028 Вт*м/К.

Фибролит

Древесной шерстью называются небольшие узкие отрезки древесной стружки. Именно древесная шерсть является основой для фибролита.

Фибролитовая плита

Этот изолятор выпускается в виде плит и не боится воздействия внешней среды.

Благодаря специальным пропиткам фибролит обладает необычайно высокой влагостойкостью и может использоваться в помещениях со стабильно высокой влажностью – например, в бассейнах.

Плотность этого материала составляет от 300 до 500 кг/м3 , а теплопроводность достигает значения 0,1 Вт/м на Кельвин.

Эковата

Целлюлозный утеплитель или эковата – это природный материал, в состав которого входят отходы бумажно-картонного производства и макулатура. Выпускается в виде больших пакетов, набитых бумажными отходами. К несомненным преимуществам эковаты относятся ее хорошие свойства теплоизоляции и способность поглощать различные шумы.

Эковата

Существует несколько способов укладки этого термоизолятора, наиболее эффективным из которых является напыление. Какие бывают трудности в эксплуатации? К недостаткам целлюлозного утеплителя относится снижение своих качеств с течением времени. После нескольких лет эксплуатации эковата теряет 20% своего объема, тем самым ухудшая теплоизоляцию жилища.

Неорганические варианты

Наряду с органическими ТИМ, широко применяются и изоляторы неорганического типа. В основе своей они имеют различные минеральные составляющие – стекло, шлак, горные породы, асбест и другие. В результате переработки этих элементов получаются различные теплоизоляторы. Лидеров в сфере неорганических утеплителей, конечно же, является минеральная вата.

Минеральная вата

Этот материал выпускается в двух разновидностях. Шлаковая минвата изготавливается из различных отходов черной и цветной металлургии. Каменная вата в своей основе имеет различные горные породы – известняк, базальт и прочее. Для связывания элементов применяются фенолы или карбамиды. Выпускается минеральная вата в виде рулонов или блоков.

Минеральная вата

К положительным свойствам этого изолятора можно причислить:

  • низкую плотность при отличных теплоизоляционных характеристиках;
  • нулевую горючесть;
  • высокий уровень шумопоглощения;
  • длительный строк эксплуатации.

Минвата

К недостаткам этого материала нужно отнести высокую паропроницаемость. Поэтому укладывать ее нужно непременно в связке с качественным слоем пароизолятора.

Стекловата

Сырьем для стекловаты служит стекло и отходы стекольного производства. Благодаря своим толстым и длинным волокнам, стекловата более прочная и упругая, чем минеральная вата.

Стекловата

При нагревании стекловата не выделяет вредных веществ, обладает хорошими характеристиками шумопоглощения и теплопроводности, а также устойчива к воздействию агрессивных веществ. Выпускается в рулонах.

Керамическая вата

Окись алюминия, кремния или циркония подарили потребителю отличный теплоизоляционный материал, называемый керамоватой. Изготавливается она с помощью центрифуги. При высоких оборотах раздуваются исходные материалы, которым после остывания придают форму рулонов.

Керамическая вата

Керамическая вата не боится высоких температур, поэтому ее можно класть на крыши или же в помещения с большими температурными перепадами. Она не деформируется, не горит и не боится химически активных воздействий. Плотность этого ТИМ — около 350кг/м3 , теплопроводность – до 0,16 Вт/м на Кельвин.

Смешанный тип

Утеплители смешанного типа имеют в основе асбестовое основание с добавками органических перлитов и доломитов. В готовом виде имеют консистенцию негустого теста. Какие бывают изоляторы такого типа? Наиболее известны вулканит и совелит.

Совелитовая плита

Таким изолятором замазывают проблемные места и ждут полного отвердевания материала. Относительно низкий показатель теплопроводности и термостойкость говорят о достоинствах, но низкая влагостойкость, безусловно, относится к недостаткам.

Асбестовая пыль вредна для человека, поэтому с такими утеплителями нужно применять средства защиты.

Отражающего типа

ТИМ отражающего (рефлекторного) типа – продукт относительно новый на нашем рынке. Наиболее разрекламированными из теплоизоляторов данного типа являются пенофол, армофон, порилекс, экофол. Пенофол толщиной 4 мм может заменить классический утеплитель, например, минеральную вату, толщиной 8 см.

Пенофол

Чтобы избежать досадных ошибок в применении этого материала, нужно знать основные принципы применения изоляторов отражающего типа. Принцип работы рефлекторных ТИМ – замедление тепловой конвекции. Как известно, любой материал может принимать и отдавать тепло. Потери тепла создаются за счет инфракрасного излучения. В материалах рефлекторного типа имеется отражательная поверхность, способная задерживать до 97% тепла.

Порилекс

Кроме этого, такая поверхность может служить отличным пароизолятором. Поэтому изоляторы с отражающей поверхностью хорошо подходят для отделки бань и саун. В остальных случаях рефлекторные утеплители лучше всего рассматривать как вспомогательные средства.

Сфера применения

Отражающие ТИМ нужно использовать как вспомогательный материал для отделки стен и потолков внутри помещений. Особенно актуальным является их использование при утеплении потолка. Это объясняется тем, что теплый воздух устремляется вверх, а благодаря отражающей поверхности падение температуры воздушной массы существенно уменьшится. Отражающий изолятор нельзя устанавливать в помещениях, где нет хорошей вентиляции: без постоянного притока свежего воздуха в помещении будет душно.

Устанавливая отражающую тепловентиляцию нужно помнить о ее основном свойстве: она активно работает лишь при наличии воздушной прослойки. Монтировать такой изолятор на стену или потолок, а потом закрасить или забелить его не получится. Можно сделать вывод, что выбор утеплителя отражающего типа хорош лишь для определенных участков поверхности и при условии его правильной установки.

Органические теплоизоляционные изделия и материалы.

Органические теплоизоляционные изделия и материалы

Данная статья носит информационный характер

Органические теплоизоляционные материалы и изделия производят из различного растительного сырья: отходов древесины (стружек, опилок, горбыля и др.). камыша, торфа, очесов льна, конопли, из шерсти животных, а также на основе полимеров. Многие органические теплоизоляционные материалы подвержены быстрому загниванию, порче различными насекомыми и способны к возгоранию, поэтому их предварительно подвергают обработке. Поскольку использование органических материалов в качестве засыпок малоэффективно в силу неизбежной осадки и способности к загниванию, последние используют в качестве сырья для изготовления плит. В плитах основной материал почти полностью защищен от увлажнения, а следовательно, и от загнивания, кроме того, в процессе производства плит его подвергают обработке антисептиками и антипиренами, повышающими его долговечность.

Теплоизоляционные материалы и изделия из органического сырья

Среди большого разнообразия теплоизоляционных изделий из органического сырья наибольший интерес представляют плиты древесноволокнистые, камышитовые, фибролитовые, торфяные, пробковая теплоизоляция натуральная, а также теплоизоляционные пенопласты. Плиты древесноволокнистые применяют для тепло- и звукоизоляции ограждающих конструкций. Изготовляют их из распушенной древесины или иных растительных волокон - неделовой древесины, отходов, лесоперерабатывающей промышленности, костры, соломы, камыша, хлопчатника. Наибольшее распространение получили древесноволокнистые плиты, получаемые из отходов древесины. Процесс производства изоляционных древесноволокнистых плит состоит из следующих основных операций: дробления и разлома древесного сырья, проклеивания волокнистой массы, формования и термической обработки, Для уменьшения сгораемости древесноволокнистые плиты пропитывают специальными огнезащитными составами-антипиренами, а для придания водостойкости в состав волокнистой массы вводят парафиновые, смоляные, масляные и другие эмульсии.

Изоляционные древесноволокнистые плиты имеют объемную массу 250 кг/м3, предел прочности на изгиб - 1,2 МПа и коэффициент теплопроводности — не более 0,07 Вт/м-°С, длину 1200-3000, ширину 1200-1600 и толщину 8-25 мм.

Наряду с изоляционными применяют плиты изоляционно-отделочные, имеющие лицевую поверхность, окрашенную пли подготовленную к окраске. Камышитовые плиты, или просто камышит, применяют для теплоизоляции ограждающих конструкций зданий HI класса, при постройке малоэтажных жилых домов, небольших производственных помещений, в сельскохозяйственном строительстве. Это теплоизоляционный материал, спрессованный из стеблей камыша в виде плит, которые затем скрепляются стальной оцинкованной проволокой. Для изготовления камышитовых плит используются зрелые однолетние стебли обыкновенного тростника. Наилучшими являются стебли диаметром 7-15 мм, так как они хорошо прессуются. Помимо обыкновенного тростника может быть использован камыш озерный, рогоз и другие растения. Заготовку стеблей этих растений следует делать в осенне-зимний период. Прессование плит осуществляют на специальных прессах. В зависимости от расположения стеблей камыша различают плиты с поперечным (вдоль короткой стороны плиты) и продольным расположением стеблей. По объемной массе плиты различают трех марок: 175, 200 и 250 с пределом прочности на изгиб - не менее 0,18-0,5 МПа, коэффициентом теплопроводности - 0,06-0,09 МПа, влажностью-не более 18% по массе. Камышитовые плиты производят длиной 2400-2800, шириной 550-1500 и толщиной 30-100мм.

Торфяные теплоизоляционные изделия изготовляют в виде плит, скорлуп и сегментов и используют для теплоизоляции ограждающих конструкций зданий III класса и поверхностей промышленного оборудования и трубопроводов при температуре от -60 до +100° С. Сырьем для их производства служит малоразложившийся верховой торф, имеющий волокнистую структуру, что благоприятствует получению из него качественных изделий путем прессования. Плиты изготовляют размером 1000x500x30 мм путем прессования в металлических формах торфяной массы с добавками (или без них) и с последующей сушкой при температуре 120- 150° С. В зависимости от начальной влажности торфяной массы различают два способа изготовления плит: мокрый (влажность 90-95%) и сухой (влажность около 35%). При мокром способе излишняя влага в период прессования отжимается из торфяной массы через мелкие металлические сетки. При сухом способе такие сетки в формы не закладываются.

Торфяные изоляционные плиты по объемной массе делят на М !70 и 220 кг/м3 с пределом прочности па изгиб - 0,3 МПа, коэффициентом теплопроводности в сухом состоянии 0,06 Вт/м-°С, влажностью не более 15%. Цемёнтно-фибролитовые плиты представляют собой теплоизоляционный и теплоизоляционно-конструктивный материал, полученный из затвердевшей смеси портландцемента, воды и древесной шерсти. Древесная шерсть выполняет в фибролите роль армирующего каркаса. По внешнему виду тонкие древесные стружки длиной до 500, шириной 4-7, толщиной 0,25-0,5 мм приготовляют из неделовой древесины хвойных пород на специальных древесношерстяпых станках. Шерсть предварительно высушивают, пропитывают минерализаторами (хлористым кальцием, жидким стеклом) и смешивают с цементным тестом по мокрому способу или с цементом по сухому (древесная шерсть посыпается или опыляется цементом) в смесительных машинах различного типа. При этом следят, чтобы древесная шерсть была равномерно покрыта цементом. Формуют плиты двумя способами: прессованием и на конвейерах, где фибролит формуют в виде непрерывно движущейся ленты, которую затем разрезают на отдельные плиты (подобно вибропрокату железобетонных изделий). При прессовании плит удельное давление для теплоизоляционного фибролита принимают до 0,1 МП а, а для конструктивного -до 0,4 МПа. После формования плиты пропаривают в течение 24 ч при температуре 30-35° С. По объемной массе цементно-фибролитовые плиты делят на М 300, 350, 400 и 500 с пределом прочности при изгибе соответственно не менее 0,4 0,5, 0,7 и 1,2 МПа, коэффициентом теплопроводности-0,09-0,15Вт/м-°С, водопоглощением-не более 20%. Длина плит 2000-2400, ширина 500-550, толщина 50, 75, 100 мм.

Фибролитовые плиты на портландцементе применяют в качестве теплоизоляционного, теплоизоляционно-конструктивного и акустического материала для стен, перегородок, перекрытий и покрытий зданий. Фибролитовые плиты получают также формованием и тепловой обработкой (или без нее) органического коротковолокнистого сырья. В качестве такого сырья может быть использована дробленая станочная стружка или щепа, сечка соломы или камыша, опилки, костра и др. Вторым компонентом при изготовлении фибролитовых плит является портландцемент. Объемная масса в сухом состоянии составляет 500 кг/м3, предел прочности при изгибе -не менее 0,7 МПа, коэффициент теплопроводности в сухом состоянии - не более 0,12 Вт/м-°С, влажность-не более 20% по массе. Плиты формуют длиной и шириной 500, 600 и 700 мм, толщиной 50, 60 и 70 мм.

Пробковые теплоизоляционные материалы и изделия (плиты, скорлупы и сегменты) применяют для теплоизоляции ограждающих конструкций зданий, холодильников и поверхностей холодильного оборудования трубопроводов при температуре изолируемых поверхностей от минус 150 до плюс 70° С, для изоляции корпуса кораблей. Изготовляют их путем прессования измельченной пробковой крошки, которую получают как отход при производстве закупорочных пробок из коры пробкового дуба или так называемого бархатного дерева, растущего в Дальневосточном крае, в Амурской области и на Сахалине. Пробка вследствие высокой пористости и наличия смолистых веществ является одним из наилучших теплоизоляционных материалов. Из нее изготовляют плиты, скорлупы и сегменты.
Пробковые теплоизоляционные материалы и изделия могут быть изготовлены с добавкой органического связующего (органического клея, желатины, битума, смол и т. п.) и без него. В первом случае пробковую крупу, покрытую тонким слоем органического клеящего вещества, спрессовывают в виде плит, имеющих длину 500-1000, ширину 500 и толщину 20-80 мм. Такие плиты называют "импрегнированными". Во втором случае плиты изготовляют таких же размеров с запрессовкой пробковой крупы под давлением 0,7 МПа, но без связующих добавок, путем термической обработки при температуре 250-300° С. При этом происходит возгонка смолистых веществ, содержащихся в пробке, вследствие чего пробковая крупа спекается в монолитную массу. Плиты, полученные по второму способу, известны под названием "экспанзита". Остывшие после горячего прессования плиты распиливают нa требуемые размеры.
Пробковые теплоизоляционные материалы и изделия по объемной массе в сухом состоянии делят на М 150-350 с пределом прочности при изгибе соответственно 0,15-0,25 МПа, коэффициентом теплопроводности в сухом состоянии при температуре 25° С-0,05-0,09 Вт/м-°С.

К положительным свойствам плит следует отнести также то, что они не горят, с трудом тлеют, не подвержены заражению домовым грибком и не разрушаются грызунами. Пробковые материалы упаковывают в клетки объемом 0,25- 0,5 м3 и хранят в сухом закрытом помещении, а перевозят в крытых вагонах.

Теплоизоляционные пенопласты. Теплоизоляционные материалы на основе полимеров в виде газонаполненных пластмасс и изделий, а также минваты стекловатных изделий производят на полимерном связующем. По физической структуре газонаполненные пластмассы могут быть разделены на три группы: ячеистые или пенистые (пенопласты), пористые (поропласты) и сотовые (сотопласты). Пенопласты и сотопласты на основе полимеров являются не только теплоизоляционным, но и конструктивным материалом (см. гл. XV). Теплоизоляционные материалы из пластмасс по виду применяемых для их изготовления полимеров делят на: полистирольные -пористые пластмассы на основе суспензионного (бисерного) или эмульсионного полистирола; поливинилхлоридные - пористые пластмассы на основе поливинилхлорида; фенольные - пористые пластмассы на основе формальдегида.

Поризация полимеров основана на применении специальных веществ, интенсивно выделяющих газы и вспучивающих размягченный при нагревании полимер. Такие вспучивающиеся вещества могут быть твердыми, жидкими и газообразными. К твердым вспенивающим веществам, имеющим наибольшее практическое значение, относятся карбонаты, бикарбонаты натрия и аммония, выделяющие при разложении СО2 и Nh4, азодниитрилы, эфиры азодикарбоновой кислоты, выделяющие смесь абиетиновой кислоты с углекислым кальцием, выделяющая СО2. К жидким вспенивающим веществам относятся бензол, легкие фракции бензола, спирт и т. п. К газообразным вспенивающим веществам относятся воздух, азот, углекислый газ, аммиак. Для придания эластичности пористым пластмассам в полимеры вводят пластификаторы: фосфаты, фталаты и др. Пористые и ячеистые пластмассы можно получать двумя способами - прессовым и беспрессовым, При изготовлении пористых пластмасс прессовым способом тонкоизмельчепный порошок полимера с газообразователем и другими добавками спрессовывается под давлением 15-16 МПа, после чего взятую навеску (обычно 2-2,5 кг} вспенивают, в результате чего получают материал ячеистого строения.

При изготовлении пористых пластмасс беспрессовым способом полимер с добавками газообразователя, отвердителя и других компонентов нагревается в формах до соответствующей температуры. От нагревания полимер расплавляется, газообразователь разлагается, и выделяющийся газ вспенивает полимер. Образуется материал ячеистого строения с равномерно распределенными в нем мелкими порами. Плиты, скорлупы и сегменты из пористых пластмасс применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 70° С. Изделия из пористых пластмасс на суспензионном полистироле по объемной массе в сухом состоянии делят на М 25 и 35 с пределом прочности на изгиб не менее 0,1-0,2 МПа, коэффициентом теплопроводности - 0,04 Вт/м °С, влажностью - не более 2% по массе. Такие же изделия па эмульсионном полистироле по объемной массе имеют М 50-200 предел прочности на изгиб соответственно - не менее 1,0-7,5 МПа, коэффициент теплопроводности -не более 0,04-0,05, влажность не более 1% по массе. Плиты из пористых пластмасс изготовляют длиной 500-1000, шириной 400-700, толщиной 25-80 мм.

Наиболее распространенными теплоизоляционными материалами из пластмасс являются полистирольный поропласт, Отпора и др. Полистирольный поропласт -отличный утеплитель в слоистых панелях, хорошо сочетающийся с алюминием, асбестоцементом и стеклопластиком. Широко применяется как изоляционный материал в холодильной промышленности, судостроении и вагоностроении для изоляции стен, потолков и крыш в строительстве. Полистирольный поропласт, изготовленный из бисерного (суспензионного) полистирола, представляет собой материал, состоящий из тонкоячеистых сферических частиц, спекшихся между собой. Между частицами имеются пустоты различных размеров. Наиболее цепными свойствами полистирольпого поропласта является его низкая объемная масса и малый коэффициент теплопроводности. Полистирольный поропласт выпускают в виде плит или различных фасонных изделий. Полистирольный поропласт производят объемной массой до 60 кг/м3, прочностью на 10%-ное сжатие -до 0,25 МПа и коэффициентом теплопроводности-0,03-0,04 Вт/м-°С. Наиболее распространенный размер плит 900x650X100 мм. Поропласт полиуретановый применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 100° С. Получают его из полиэфирных полимеров с введением парообразующих и других добавок.

Полиэфирные полимеры — это большая группа искусственных полимеров, получаемых при помощи конденсации многоатомных спиртов (гликоля, глицерина, пентаэритрита и др.) и главным образом двухосновных кислот - фталевой, малеиновой и др. Для повышения эластичности изготовляемых изделий во время конденсации многоатомных спиртов и двухосновных кислот приготовляют жирные кислоты или растительные масла. По объемной массе в сухом состоянии маты из пористого полиуретана делят на М 35 и 50, коэффициент теплопроводности в сухом состоянии - 0,04 Вт/м-° С, влажность - не более 1% по массе. На основе пористого полиуретана выпускают также твердые и мягкие плиты объемной массы 30-150 кг/м3 и коэффициентом теплопроводности 0,022-0,03 Вт/м-°С. Маты из пористого полиуретана изготовляют в виде плит длиной 2000, шириной 1000, толщиной 30-60 мм. Мипора представляет собой пористый материал, получаемый на основе мочевино-формальдегидного полимера. Сырьем для производства мипоры является мочевино-формальдегидный полимер и 10%-ный раствор сульфопафтеновых кислот (контакт Петрова), а также огнезащитные добавки (раствор фосфорно-кислого аммония 20%-ной концентрации). Мипору применяют для теплоизоляции строительных конструкций промышленного оборудования и трубопроводов при температуре до 70° С.

Для получения мипоры в аппарат с мешалкой загружают водный раствор мочевино-формальдегидного полимера и вспениватель, которые энергично перемешивают. Полученную пену спускают в металлические формы, которые направляют в камеры, где масса при температуре 18-22° С отвердевает за 3-4 ч. Полученные блоки направляют на 60-80 ч в сушила с температурой 30-50е С. Мипору выпускают в виде блоков объемом не менее 0,005 м3, пределом прочности на сжатие - 0,5-0,7 МПа, удельной ударной вязкостью - 0,4 кГ-см/см2, водопоглощением 0,11% за 24 ч, коэффициентом теплопроводности - 0,03 Вт/м -° С.

Войлок строительный применяют как прокладочный и теплоизоляционный материал для теплоизоляции отдельных мест конструкций (концов балок в каменных стенах, оконных и дверных коробок в наружных стенах, стыков щитов в сборных домах) и поверхностей промышленного оборудования и трубопроводов при температуре до 100° С. Войлок используют для подшивки потолков под штукатурку. Войлок изготовляют в виде штучных изделий прямоугольной формы путем сваливания шерсти, отходов шерстеперерабатывающей и меховой промышленности и других производств и противомольной пропитки. Объемная масса войлока в сухом состоянии 150 кг/м3, коэффициент теплопроводности в сухом состоянии 0,048 Вт/м-С, влажность сухого войлока не более 20% по массе. Выпускают войлок в виде полос длиной 1000-2000, шириной 500-2000, толщиной 12 мм. Войлок не горит, но способен тлеть, а также способен поглощать влагу.

© 2006 Teplomat.ru
Каталог WebZona.RU

Утепление стен домов жидким утеплителем - пеноизол.в Москве. Теплоивизионное обследование

    Иные времена, иные нравы - гласит пословица. В том числе и в строительстве с приходом XXI века изменились требования к качеству возводимого жилья. Федеральный закон 2009 года «Об энергосбережении и о повышении энергетической эффективности …» резко изменил правила игры во всех отраслях экономики и самым непосредственным образом затронул строительную индустрию, регламентируя её жёсткими нормативами энергоэффективности возводимых зданий. Новые стандарты не допускают возведение отапливаемых, но не утеплённых зданий.

   Для удовлетворения современных строительных требований и в соответствии с новыми нормами энергоэффективности, все вновь возводимые отапливаемые сооружения должны хорошо теплоизолироваться.

 

 

   Задача и предназначение теплоизоляции:

снизить потери тепла зимой, уменьшить нагрев зданий летом;

защитить несущие конструкции от агрессивных воздействий окружающей среды;

уменьшить вредное влияний тяжелых температурных перепадов и прямое их следствие – деформации силовых элементов, что объективно увеличивает срок службы здания в целом;

   Теплоизоляционные материалы.

    Теплоизоляционные материалы делятся по типу исходного сырья на органические, неорганические и смешанные. Самые распространённые утеплители, органические и неорганические, при сопоставимых плотностях находятся в одном ценовом сегменте.

Неорганические утеплители это различные минеральные ваты и плиты из них (например, каменная вата),вспученный перлит, веримикулит, минеральная вата (стекловата),газобетон и т. д.

Неорганические волокнистые утеплители, пожалуй, самые востребованные в строительстве. Ценны такие их качества, как высокая огнестойкость и хорошая паропроницаемость, в то же время воздух между волокнами находится в статичном состоянии, что препятствует конвективному переносу тепла и делает их хорошими теплоизоляторами.

 

    Минеральная вата (стекловата) хороший, проверенный временем утеплитель, с теплопроводностью между 0,035 и 0,045 Вт/мК, по этому показателю один из лучших теплоизоляционных материалов. Утеплитель минерального происхождения, применяемый для тепловой, звуковой и противопожарной изоляции в строительстве, промышленности и судостроения. Минеральная вата самый востребованный материал на рынке, широко используемый для теплоизоляции домов и сооружений. Не горюч, с хорошими диэлектрическими свойствами и прекрасной паропроницаемостью.

 

 

   Из недостатков (про прочность – чего нет, того нет),можно отметить гигроскопичность. Минералловатные утеплители, не имея капиллярной структуры, сами боятся влаги.Это общий недостаток всех минералловатных утеплителей. Что бы его уменьшить, производители проводят гидрофобизацию волокна. С течением времени минвата дает усадку, особенно в вертикальных конструкциях зданий, для устранения этого негативного эффекта, для стен применяют минераловатные утеплители плотностью от 120кг/м3  и выше. Еще одним существенным недостатком утеплителей на основе минваты является не стойкость к воздействию грызунов, которые устраивают ходы и норы практически во всех конструкциях здания, где находится минвата.

 

    Каменная вата, паропроницаемый материал, высоко ценится её стойкость к воздействию огня (до 1000 °С). Устойчива к старению – распаду и к воздействию микроорганизмов и насекомых. Используется во всех внешних конструкциях зданий в качестве тепловой защиты, а в перегородках служит звукоизолятором. Единственное место, где её не рекомендуют применять - это изоляция стен подвалов и цокольных этажей. Коэффициент теплопроводности каменной ваты в промежутке от 0,035 до 0,039 Вт/мК. В то же время, большие вариации плотности от 30 кг/м³ до 250 кг/м³ позволяют использовать высокоплотные модификации и там, где присутствуют большие распределённые нагрузки, к примеру для звуко-теплоизоляции полов.

 

 

 

   Существенным недостатком утеплителей на основе каменной ваты так же как и стекловаты является не стойкость к воздействию мышей и крыс, которые в ней основательно обосновывают свои жилища.

 

 

    Кроме минеральной и стекловаты, большим спросом пользуются и органические утеплители, такие, как пенополистирол и экструдированный пенополистирол. Благодаря низкому коэффициенту теплопроводности от 0,035 до 0,040 Вт/мК, низкой стоимости и простоте монтажа, эти утеплители одни из самых практичных изоляционных материалов на нашем рынке. Применяются для теплоизоляции внешних стен зданий, утепления полов подвалов, цокольных этажей и плит перекрытий под цементно-песчаной стяжкой.

    Основные недостатки: пожароопасен, а продукты горения сильно токсичны, пароизолятор, что также необходимо учитывать, особенно при утеплении деревянных домов.

Основное направление использования пенополистирола и экструдированного пенополистирола – утепление стен подвалов, цокольных этажей, утепление полов по грунту, утепление отмосток и придомовых территорий.

 

 

 

 

Так же существенным недостатком пенопласта (в том числе и экструдированного пенополистирола) является нестойкость к воздействию мышей и крыс. Даже будучи оштукатуренным, пенопласт остается беззащитным перед грызунами, в котором они делают множество ходов и нор, тем самым разрушая теплоизоляционный слой здания.

 

 

   Пенополиуретан так же широко применяется в строительстве, и, в первую очередь, для утепления стен и ремонта крыш. Имеет даже лучшие теплоизоляционные свойства, чем пенополистиролы и минваты. Коэффициент теплопроводности материала в интервале от 0,020 до 0,035 Вт/мК.  Пенополиуретан имеет низкую паропроницаемость, что относит его к гидроизоляторам, и это один из существенных недостатков при утеплении деревянных конструкций. Стоек к воздействию влаги и перепадам температур.

 

   Пожароопасен, при горении выделяет токсичные газы, что так же не способствует расширению сферы его применения. Технология утепления зданий при помощи ППУ довольно сложная и при несоблюдении технологических режимов работы оборудования существует большая вероятность получить некачественный материал с большой усадкой, особенно это касается утепления закрытых полостей, где крайне сложно проконтроллировать процесс заливки ППУ.

   Но главная причина, препятствующая его широкому использованию, высокая стоимость, намного превышающая цену минералловатных и пенополистирольных утеплителей.

   Полиуретан производится прямо на строительной площадке в виде пены и с помощью специального оборудования наносится на обрабатываемые поверхности и закрытые полости. Высокий коэффициент адгезии, монолитность и большая прочность полученного продукта делают его незаменимым для объектов со специальными требованиями к утеплителю.

   В быту и строительстве, для мелких ремонтных и теплоизоляционных работ, широко применяется его однокомпонентная модификация, так называемая монтажная пена, твердеющая на воздухе, в виде баллончиков с пенообразователем.

 

 

   Пеноизол - разновидность карбамидных пенопластов. Производится на строительной площадке непосредственно у объекта утепления, и в жидком виде под давлением закачивается в полости стен и перекрытий. Что позволяет добиться лучших результатов, чем утепление  традиционными теплоизоляционными материалами, так как пеноизол проникает во все полости, пустоты, трещины, создавая при этом эффективный теплоизоляционный слой. 

 

 

 

   Пеноизол имеет группу горючести Г2, при температуре выше 200°С обугливается, но при этом никак не поддерживает горение и не выделяет токсинов, в отличие от пенополистирола. Грызуны не живут в пеноизоле, чего не скажешь о пенопластах и минватах, в которых мыши устраиваются как дома.

 

 

 

 

 

 

 

     Пеноизол «дышащий» негорючий утеплитель, имеющий капиллярную микроструктуру (размерностью 20-30 мкм). Эта особенность делает его одним их лучших теплоизоляторов для деревянных строений и позволяет использовать его как утеплитель деревянных домов и конструкций без ограничений, не опасаясь появления плесени. В основе процесса влагопереноса внутри пеноизола - капиллярная структура, эффективно перекачивающая влагу через свою толщу в сторону более низких парциальных давлений пара. При этом капиллярная структура пеноизола не позволяет применять его для утепления тех частей зданий и сооружений где утеплитель будет контачить с грунтом (например подземная часть фундаментов, стяжка по грунту),т.к. влага будет поступать в материал, ухудшая его теплоизоляционные свойства.

 

         В связи с тем, что пеноизол производится непосредственно на строительном объекте, материал первоначально получается влажным (содержание воды в свежем материале до 75%) и высыхает и полимеризуется он уже в утепляемых полостях здания. Полости кирпичных и бетонных зданий пеноизол заливается под большим давлением, что нивелирует появление усадки материала в процессе сушки длящейся 2-3 недели.

    При утеплении каркасных строений,навесных фасадов и открытых поверхностей (чердаки, перекрытия),там где невозможно создать большое давление в стене при заливке, материал подвержен воздействию усадочных явлений (до 1%) во время сушки и финишном наборе прочности материалом.

Для успешной борьбы с усадкой в каркасных строениях специалисты компании Армопласт применяют комплекс мер:

- обязательное микро- и макро- армирование пеноизола в каркасных зданиях и открытых заливках

- недопустима быстрая сушка материала, т.к. пеноизол во время быстрой сушки не успевает достаточно полимеризоваться и набрать достаточную прочность, что приводит к высокому проценту усадки материала (пеноизол должен находиться между пароизолирующей и ветрозащитной паропрозрачной мембранами и высыхать в течении 2-4 недель)

- обязательное использование "правильных" компонентов, так называемой "пеноизольной" смолы ВПСГ и технологии Меттемпласт.

   Таким образом соблюдая несложные технологические требования, утепляя каркасные и деревянные здания пеноизолом на специально разработанных для него смолах, применяя армирование материала, закачивая пеноизол под гидроизолирующие и ветрозащитные мембраны (это требование обязательно так же и для утеплителей на основе минваты и эковаты),такое негативное явление как усадка полностью исключается, при этом получается прекрасный монолитный бесшовный теплоизолирующий слой дополнительно связанный по всему объему армирующими минеральными волокнами исключающими усадку в течении всего срока службы материала.

 

 

 

      Заливка пеноизола в стены с осевшей минеральной ватой

 

 

 

     Пеноизол позволяет аккуратно запенивать полости, обволакивая все элементы конструкций, лежащие на пути. Коэффициент теплового сопротивления пеноизола от 0,030 до 0,035 Вт/мК, что лучше, чем у минералловатных и пенополистирольных утеплителей  и позволяет получить меньшие теплопотери через ограждающие конструкции при всех прочих равных условиях.

 

 

   Эковата – рыхлое, легкое целлюлозное волокно, производимое из макулатуры (80%) с добавками антисептиков и антипиренов (до 20%). Экологически чистый материал, поскольку в основе целлюлоза. Очень практична (компактна) в транспортировке, поскольку производители формируют её в плотно упакованные брикеты (300 кг/м³),а на объекте с помощью специального оборудования её распушают до необходимой плотности.

   Применяют два основных способа укладки: сухой, с помощью воздуходувных установок, и влажная укладка. В обоих случаях распушённый в специальном бункере утеплитель с потоком воздуха задувается в утепляемые полости, где равномерно распределяется, проникая во все пустоты. Этот способ так же, как и заливка пеноизола под давлением позволяет ремонтировать или восстанавливать теплоизоляционные слои без полной разборки  фасада.

   Мокрый способ отличается лишь тем, что вата в момент задувки дополнительно смачивается водой или раствором воды с клеем.

 

    При утеплении эковатой плотностью ниже 50кг/м3 материал обладает существенной усадкой, особенно в вертикальных конструкциях.

   Характеристики эковаты:

утеплитель и шумоизолятор – плотностью от 30 до 75 кг/м³, с низкой воздухопроницаемостью;

теплопроводность - 0,032-0,041 Вт/мК – показатель, как  у лучших утеплителей;

группа горючести - Г2 – такая же, как у пеноизола, но в отличие от него, эковата умеренно горюча (пламя подавляется присутствующими в её составе антипиренами).

Материал отличается хорошей влагопроницаемостью,  легко аккумулирует и отдаёт влагу в соответствии с изменением влажности окружающей среды.

К плюсам данного утеплителя несомненно можно отнести высокую скорость монтажа, а сухим методом работы по утеплению можно вести и зимой.

 

    Пеностекло. Как утеплитель, обладает набором таких ценных в строительстве качеств, как прочность, жёсткость, не гигроскопичность, не горит, с высокой термической (450°С – начало деформации) и химической стойкостью. К тому же легко пилится – очень ценное свойство на строительной площадке. Пеностекло, натуральный материал - это на 100% обычное стекло, правда, вспененное по специальной технологии. Отсюда и его химическая и термическая стойкость.

   Пеностекло по структуре похоже на пемзу, с такой же закрытой  ячеистой структурой, высокой адгезией поверхности (хорошо клеится),с нулевой ветро и паропроницаемостью. В строительстве как утеплитель используется более полувека, а проведённые исследования образцов пятидесятых годов выпуска не выявили никаких значимых изменений внешнего вида (деструкции),и всего лишь на несколько процентов ухудшились теплоизоляционных свойств. Гомельский стекольный завод, единственный производитель теплоизолятора на постсоветском пространстве, гарантирует 100 летнюю эксплуатацию.

   Из положительных характеристик хотелось бы отметить, стабильность размеров утеплителя, с коэффициентом расширения близким к коэффициентам расширения основных строительных материалов, таких как бетон, металлы. 

   Основных недостатков два: непаропроницаемый утеплитель, характеристика, противоречащая современной строительной философии «стены и потолки должны дышать», то есть автоматически удалять накопившуюся влагу в окружающую среду. Второй и наверное главный, высокая стоимость, что переводит его, учитывая уникальные характеристики, в разряд специальных.

   Пеностекло получило широкое распространение как термоизолятор промышленных печей, дымовых труб, в пищевой, химической и атомной промышленности. Широко применяется в строительстве значимых общественных зданий в основном для термоизоляции крыш, утепления гостиниц, спортивных сооружений. Там где востребованы его уникальные прочностные, термические, гигроскопические, пожаробезопасные и санитарно-гигеенические качества.

 

   На рынке теплоизоляционных материалов под видом «экологически чистых» анонсируются и другие утеплители, иногда достаточно экзотические, в основе своей содержащие  целлюлозу, глину, перлит, вермикулит, камыш, лён, солому, овечью шерсть, кизяк и другие. У них достаточно высокий коэффициент теплопроводности по сравнению с вышеописанными утеплителями, поэтому дома нуждаются в более толстом слое теплоизолятора. Большинство таких, для нас экзотических утеплителей, используется локально в разных странах мира, в соответствии с наличием  источников сырья и сложившимися традициями строительства.

   Утепление  дома  «экологически чистыми» материалами.

   К сожалению, не редко под видом «экологически чистых» материалов рекламируются неэффективные, непроверенные, нестойкие утеплители или  утеплители вчерашнего дня.  По сути это недобросовестная эксплуатация модного тренда.

   Для достижения хорошего уровня теплоизоляции внешних стен, рекомендуется использовать величину коэффициента теплопередачи равную U = 0,35 Вт / м 2 К. Это равносильно в среднем 10 см слою минеральной ваты (280 кН / м 2 ) или 9 см слою пенополистирола (220 кН / м 2).

   Чем ниже коэффициент теплопроводности утеплителя, тем качественней теплоизоляция.

   Это определение совершенно не корректно при выборе утеплителя.

   Для грамотного выбора утеплителя и способа теплоизоляции необходимо иметь хорошие знания физических и химических свойств, знать преимущества, недостатки и ограничения в  применении того или иного вида утеплителя. Идеальный утеплитель - это термос, в реальности такого не существует. Хороший теплоизолятор – это всегда компромисс между желаемым и имеющимся набором свойств, ценой и качеством.

   Выбирая теплоизоляционный материал, кроме теплопроводности учитывают в комплексе и другие качественные характеристики, такие как: огнестойкость, коэффициент диффузии водяного пара, долговечность, устойчивость к воздействию влаги, микроорганизмов. Где будет применяться, в каких условиях работать, как взаимодействовать с элементами конструкции, какие ограждающие конструкции будут применены, где и какие ожидаются мостики холода и многое другое. Теплопотери дома зависят не только от коэффициента теплопередачи утеплителя, но и от архитектуры здания, состава и свойств его конструкций.

 

   Для утепления разных частей дома нужно выбирать утеплитель, оптимальный для данных условий эксплуатации.  К примеру, фундамент лучше утеплить экструдированным пенопластом, несмотря на его высокую пожароопасность. Закопанный в землю он не загорится, а набор остальных его свойств лучше всего подходит для утепления фундамента. Внешнее утепление стен и потолков брусового дома лучше  сделать пеноизолом, как наиболее подходящего для деревянного домостроения и имеющего лучшее соотношение цена-качество.

   Знание теплофизических свойств строительных материалов, их взаимодействия, в том числе утеплителей - одно из необходимых условий для грамотного проектирования и строительства энергоэффективных зданий.

 

 

 

 

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *