Расчет досок в 1 кубе таблица: Сколько досок 6 метров в кубе? (таблица, формула, пример расчёта)

Сколько штук досок в 1 кубе: таблица и пример расчета

Главная | Статьи | Сколько досок в 1 кубе

Для упрощения счета, мы подготовили для Вас сводную таблицу. Таблица позволяет сразу узнать, сколько досок в 1 кубе, не уделяя время расчетам. Чтобы Вам было удобно.

Сколько штук обрезной и строганной доски в 1 кубе таблица

Размеры, мм Объём досок в 1 м3 Количество досок в м3 Количество досок в м2
20х100х6000 0,012 м3 83 шт. 50 м2
20х120х6000 0,0144 м3 69 шт. 50 м2
20х150х6000 0,018 м3 55 шт. 50 м2
20х180х6000 0,0216 м3 46 шт. 50 м2
20х200х6000 0,024 м3 41 шт. 50 м2
20х250х6000 0,03 м3 33 шт. 50 м2
25х100х6000 0,015 м3 67 шт. 40 м2
25х120х6000 0,018 м3 55 шт. 40 м2
25х150х6000
0,0225 м3 44 шт. 40 м2
25х180х6000 0,027 м3 37 шт. 40 м2
25х200х6000 0,03 м3 33 шт. 40 м2
25х250х6000 0,0375 м3 26 шт. 40 м2
30х100х6000 0,018 м3 55 шт. 33 м2
30х120х6000 0,0216 м3 46 шт. 33 м2
30х150х6000
0,027 м3 37 шт. 33 м2
30х180х6000 0,0324 м3 30 шт. 33 м2
30х200х6000 0,036 м3 27 шт. 33 м2
30х250х6000 0,045 м3 22 шт. 33 м2
32х100х6000 0,0192 м3 52 шт. 31 м2
32х120х6000 0,023 м3 43 шт. 31 м2
32х150х6000 0,0288 м3 34 шт. 31 м2
32х180х6000 0,0346 м³ 28 шт. 31 м2
32х200х6000 0,0384 м3 26 шт. 31 м2
32х250х6000 0,048 м3 20 шт. 31 м2
40х100х6000 0,024 м3 41 шт. 25 м2
40х120х6000 0,0288 м3 34 шт. 25 м2
40х150х6000 0,036 м3 27 шт. 25 м2
40х180х6000 0,0432 м3 23 шт. 25 м2
40х200х6000 0,048 м3 20 шт. 25 м2
40х250х6000 0,06 м3 16 шт. 25 м2
50х100х6000 0,03 м3 33 шт. 20 м2
50х120х6000 0,036 м3 27 шт. 20 м2
50х150х6000 0,045 м3 22 шт. 20 м2
50х180х6000 0,054 м3 18 шт. 20 м2
50х200х6000 0,06 м3 16 шт. 20 м2
50х250х6000 0,075 м3 13 шт. 20 м2

Формулы расчета доски

Примеры расчета доски размером 20х100х6000 мм

Формула расчета объема доски:
0,02 м · 0,1 м · 6 м = 0,012 м3

Формула расчета доски в кубе в штуках:
1 м3 / 0,012 м3 = 83 шт./м3

Формула расчета доски в кубе в квадратах:

1 м3 / 0,02 м = 50 м23

Чтобы решить, сколько досок в 1 кубе, сначала нужно знать основные параметры приобретаемого материала – толщину, ширину и длину. Также можно делать расчет для досок размером 3 метра, 4 метра, 5 метров.

Страница содержит ответы на простые вопросы людей:

  • Сколько досок
  • Сколько кубов доски
  • Сколько штук досок
  • Досок в кубе
  • Сколько кубов в досках
  • Сколько штук в одном кубе
  • Сколько в кубе обрезной доски
  • Как подсчитать сколько досок в 1 кубе

Зачем считать, сколько досок в 1 кубе?

Всего две причины для того, чтобы произвести расчеты:

  • Вы узнаете общую цену всего объема бруса, нужного для вашего проекта. Достаточно знать цену за 1 доску и сколько всего штук (определяется расчетным путем или из нашей таблицы для стандартных размеров досок).
  • Вы подсчитаете общее число досок, нужное для осуществления вашего проекта. И сделать расчет можно, зная, сколько нужно кубов материала для работы, и определив количество штук досок в 1 кубе.

Но если боитесь сделать неправильные расчеты, позвоните по телефонам +7 (495) 775-83-74 или 8 (800) 775-83-74 и наши специалисты помогут разобраться с правильным подсчетом!

колько досок в кубе. Количество досок в одном кубическом метре

Сколько досок в кубе? Количество штук доски в одном кубе зависит от размеров доски . Необходимое количество обрезных досок и сколько квадратных метров покрывает 1 кубический метр доски,  можно посчитать, используя  таблицы пилорамы “78 Досок”. Каталог пиломатериалов  и цены на них можно посмотреть по этой ссылке. 

Сколько 6-ти метровых досок в 1 кубе: таблица

Размеры доски, мм Количество в 1 кубе Площадь, покрываемая 1 м3 доски
Сколько досок толщиной 20мм в кубе («двадцатка»)
20×100×6000 83 шт. 49,8 м2
20×120×6000 69 шт.
49,7 м2
20×150×6000 55 шт. 49,5 м2
20×180×6000 46 шт. 49,7 м2
20×200×6000 41 шт. 49,2 м2
20×250×6000 33 шт. 49,5 м2
Сколько досок толщиной 25 мм в кубе  («двадцатьпятка»)
25×100×6000 66 шт. 39,6 м2
25×120×6000 55 шт. 39,6 м2
25×150×6000 44 шт. 39,6 м2
25×180×6000 37 шт. 40 м2
25×200×6000 33 шт. 39,6 м2
25×250×6000 26 шт. 39 м2
Сколько досок толщиной 30 мм в кубе («тридцатка»)
30×100×6000 55 шт. 33 м2
30×120×6000 46 шт. 33,1 м2
30×150×6000 37 шт. 33,3 м2
30×180×6000 30 шт. 32,4 м2
30×200×6000 27 шт. 32,4 м2
30×250×6000 22 шт. 33 м2
Сколько досок толщиной 32 мм в кубе («тридцатидвушка»)
32×100×6000 52 шт. 31,2 м2
32×120×6000 43 шт. 31 м2
32×150×6000 34 шт. 30,6 м2
32×180×6000 28 шт. 30,2 м2
32×200×6000 26 шт. 31,2 м2
32×250×6000 20 шт. 30 м2
Сколько досок толщиной 40 мм в кубе  («сороковка»)
40×100×6000 41 шт. 24,6 м2
40×120×6000 34 шт. 24,5 м2
40×150×6000 27 шт. 24,3 м2
40×180×6000 23 шт. 24,8 м2
40×200×6000 20 шт. 24 м2
40×250×6000 16 шт. 24 м2
Сколько досок толщиной 40 мм в кубе  («пятидесятка»)
50×100×6000 33 шт. 19,8 м2
50×120×6000 27 шт. 19,4 м2
50×150×6000 22 шт. 19,8 м2
50×180×6000 18 шт. 19,4 м2
50×200×6000 16 шт. 19,2 м2
50×250×6000 13 шт. 19,5 м2

Сколько 4-х метровых досок в 1 кубе: таблица
Размеры доски, мм Количество в 1 кубе Площадь, покрываемая 1 м3 доски
Доска-«двадцатка» (толщина 20 мм)
20×100×4000 125 шт. 50 м2
20×120×4000 104 шт. 49,9 м2
20×150×4000 83 шт. 49,8 м2
20×180×4000 69 шт. 49,7 м2
20×200×4000 62 шт. 49,6 м2
20×250×4000 50 шт. 50 м2
Доска-«двадцатьпятка» (толщина 25 мм)
25×100×4000 100 шт. 40 м2
25×120×4000 83 шт. 39,8 м2
25×150×4000 66 шт. 39,6 м2
25×180×4000 55 шт. 39,6 м2
25×200×4000 50 шт. 40 м2
25×250×4000 40 шт. 40 м2
Доска-«тридцатка» (толщина 30 мм)
30×100×4000 83 шт. 33,2 м2
30×120×4000 69 шт. 33,1 м2
30×150×4000 55 шт. 33 м2
30×180×4000 46 шт. 33,1 м2
30×200×4000 41 шт. 32,8 м2
30×250×4000 33 шт. 33 м2
Доска-«тридцатидвушка» (толщина 32 мм)
32×100×4000 78 шт. 31,2 м2
32×120×4000 65 шт. 31,2 м2
32×150×4000 52 шт. 31,2 м2
32×180×4000 43 шт. 31 м2
32×200×4000 39 шт. 31,2 м2
32×250×4000 31 шт. 31 м2
Доска-«сороковка» (толщина 40 мм)
40×100×4000 62 шт. 24,8 м2
40×120×4000 52 шт. 25 м2
40×150×4000 41 шт. 24,6 м2
40×180×4000 34 шт. 24,5 м2
40×200×4000 31 шт. 24,8 м2
40×250×4000 25 шт. 25 м2
Доска-«пятидесятка» (толщина 50 мм)
50×100×4000 50 шт. 20 м2
50×120×4000 41 шт. 19,7 м2
50×150×4000 33 шт. 19,8 м2
50×180×4000 27 шт. 19,4 м2
50×200×4000 25 шт. 20 м2
50×250×4000 20 шт. 20 м2

Узнать цены на пиломатериалы нашей пилорамы “78 Досок” в Яльгелево  с доставкой  по Санкт-Петербурге с Ленинградской области можно в разделе “ЦЕНЫ“


Как заказать?

Сделать заказ можно по телефону: +7(812)984-78-78


[table id=dostavka /]

Сколько досок в кубе: таблица, онлайн-калькулятор, порядок расчета

Чтобы не терять время в процессе строительства на ожидание доставки пиломатериалов и проблему нехватки, следует сразу рассчитать необходимое количество досок и сделать заказ с некоторым запасом. Первоначально стоит узнать, сколько досок в кубе. Таблица, приведенная в нормативных документах, поможет оперативно определить нужное значение. Также можно воспользоваться разработанным нашей командой калькулятором кубических метров, с помощью которого несложно в онлайн-режиме определить число досок конкретного типоразмера. Предлагаем ознакомиться с возможными методиками, чтобы было проще выбрать оптимальную.

Количество досок в кубе зависит от их размера

Содержание статьи

Виды и типы пиломатериала, область применения, особенности

Любое строительство начинается с выбора подходящего материала. Производители предлагают пиломатериал разного размера, формы и степени обработки. Каждый из перечисленных показателей способен оказать существенное влияние на стоимость древесины. Чтобы не переплачивать, предлагаем ознакомиться с наиболее популярными видами пиломатериала, а также их возможной областью использования.

Размер и форма пиломатериалов могут отличаться

Обрезной брус

Самый популярный вид, широко используемый на этапе строительства и выполнения ремонтных работ. Может иметь различные размеры во всех направлениях. Изготавливается из цельной древесины. Обработке подвергаются все грани материала.

Чтобы узнать, сколько будет в кубе, необходимо знать параметры распиловки. Умножив длину на площадь поперечного сечения, можно найти объем одного изделия. Для определения количества бруса в кубе необходимо будет найти обратное значение найденного объема, выраженного в метрах. Если изначально известно, сколько требуется бруса, объем одного изделия надо будет умножить на требуемое количество. Более подробно, как посчитать кубатуру, расскажем далее.

Внимание! Обрезной материал имеет естественную влажность. В справочных таблицах можно найти численное значение влажности для разной древесины.

Обрезной брус востребован в строительной отрасли

Строганый брус

Пиломатериал данного вида в процессе изготовления обязательно просушивается. Это оказывает влияние на габариты и массу готового пиломатериала, а также срок его службы. Определяя, сколько весит куб доски, данный фактор следует обязательно учитывать.

Строганый брус имеет качественную поверхность, допускающую использование в мебельной промышленности. Его стороны в поперечном сечении относятся как 1 к 2.

Пиломатериал с пониженной влажностью и качественной поверхностью

Строганый брусок

По своим характеристикам брусок аналогичен брусу. Отличие, согласно нормативным документам, заключается в геометрических параметрах. Если ширина изделия максимум 100 мм – это брусок. В противном случае речь идет о брусе.

Брус от бруска отличается размерами

Брусок обрезной

Пиломатериал, имеющий естественную влажность. По характеристикам аналогичен брусу, но имеет меньшие размеры. При выборе пиломатериала следует обращать внимание на:

  • из какой древесины он был изготовлен;
  • как долго проводилась сушка;
  • для какой конструкции приобретается.
Обрезной брусок имеет естественную влажность

Доска обрезная

Изготавливается из древесины естественной влажности. Имеет ширину, вдвое превосходящую толщину в поперечном сечении. Это существенно снижает несущую способность по сравнению с брусом. Чаще всего используется при выполнении строительных работ внутри здания: при устройстве кровли, пола, стен. Подойдет для возведения забора, надворных построек. Наиболее популярна доска дюймовка, размеры которой позволяют выдержать значительную эксплуатационную нагрузку.

Изделия, востребованные при выполнении разных видов строительных работ

Доска половая

Пиломатериал, имеющий целевое предназначение. Производители предлагаю несколько видов половой доски:

Внимание! Следует выбирать материал, имеющий достаточную толщину для конкретной эксплуатационной нагрузки.

Зная, сколько уложено квадратных метров, и сколько в кубе досок, можно рассчитать толщину уложенного материала.

Половая доска должна иметь достаточную толщину

Необрезные материалы

В процессе производства такой материал подвергается обработке не со всех сторон. В результате готовое изделие имеет две широкие продольно размещенные пластины и неопиленные боковины. Востребовано при возведении помещений различного назначения, заборов, опалубок, настилов, а также выполнении различных неответственных строительных работ.

На двух сторонах остается кора

Сколько досок в кубе: таблица

Перед тем, как посчитать куб, не спешите бросаться на поиски соответствующих формул. Если не хочется выполнять трудоемкие расчеты, на помощь придут справочные таблицы. Сколько досок в кубометре с их помощью можно узнать за считанные минуты.

Справочные таблицы содержат много информации о досках и брусе

Сколько досок в кубометре по таблице

Для начала стоит отметить, что габариты пиломатериалов стандартизированы. Воспользовавшись нормативными документами, несложно узнать, сколько досок в кубе. Для этого надо определиться, материал какого размера будет использоваться при выполнении строительных работ.

Таблица верный помощник, если надо узнать, сколько досок в кубе

Если не удалось разобраться, как пользоваться таблицами, можно воспользоваться онлайн-калькулятором досок в кубе, либо выполнить расчет самостоятельно.

Основной порядок расчета количества досок в кубометре

Прежде чем приступить к расчету, стоит узнать, как высчитать кубический метр. Такой объем будет численно равен кубу, каждая сторона которого равна метру. Чтобы найти искомое значение, надо перемножить между собой линейные размеры фигуры.

Куб со сторонами по метру занимает кубический метр

Зная, как рассчитать куб, можно приступать к последующим расчетам. Достаточно ответственный этап, который необходимо выполнить с достаточной точностью и аккуратностью.

Для начала определяется объем одного изделия. Если речь идет об обрезной доске, перемножаем линейные размеры доски: длину на толщину и ширину. Если они даны в миллиметрах (мм), следует обязательно сделать перевод в метры. В противном случае в последующем можно будет запутаться в размерности.

После того, как кубатура одной доски найдена, порядок расчета зависит от того, какие исходные данные есть. Если надо подсчитать количество изделий в кубе, находим обратное значение найденному. Другим словами при расчете единицу (1 куб) делим на вычисленное значение. Полученное значение следует округлить до целого большего числа.

Если же интересует, как посчитать кубические метры, которые предстоит приобрести, то найденное значение следует умножить на требуемое количество досок. Если требуется несколько штук, объем получится небольшим.

Если материал приобретается для определенной поверхности, надо будет знать габариты помещения, чтобы рассчитать квадратуру помещения. Для определения нужного количества пиломатериалов делается перевод кубических метров в квадраты. Чтобы узнать, сколько квадратных метров в кубическом метре, необходимо куб разделить на толщину (высоту) выбранного материала.

Если боитесь ошибиться при подсчете нужного количества, стоит выполнить расчет доски в кубе на калькуляторе. Специальная программа по стандартным формулам позволит определить искомое значение намного быстрее по сравнению с самостоятельными вычислениями.

Калькулятор кубатуры доски

Тем, кто боится допустить ошибку при выполнении расчета, предлагаем воспользоваться калькулятор кубатуры доски. С его помощью можно узнать, сколько надо досок за доли секунд.

 

Если у вас еще остаются вопросы относительно того, как высчитать кубатуру по таблице или с помощью калькулятора, задавайте их в комментариях. Мы постараемся подробно и оперативно на них ответить.

 

 

Предыдущая

Строительные материалыЛДСП: что это такое и как выбрать то, что действительно выгодно

Следующая

Строительные материалыОргалит – что это такое, классификация и маркировка, основные характеристики, применение

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Сколько досок в кубе: формула для расчета

Доски, брус и другие виды пиломатериала обычно продаются кубатурой. Это значит, что цену в прайсе вы видите за единицу объема, тогда как расчет нужного для строительства количества ведется, исходя из площади. Поэтому возникает определенная сложность при подсчете того объема древесины, который необходимо закупить.

Этот вопрос достаточно важный, поскольку если вы ошибетесь с количеством досок, то понесете материальные потери. Если их окажется больше, чем нужно, то у вас на руках будут неизрасходованные остатки. Если материала не хватит, его придется докупать, и вы дважды заплатите за доставку. Так что стоит уделить внимание вопросу, сколько досок в кубе, и дважды перепроверить расчеты.

Определяем размер доски

Прежде чем узнавать цену доски и сколько стоит кубометр, нужно выяснить геометрические размеры одной доски. Это нужно сделать, поскольку при равной длине и ширине пиломатериалы могут иметь разную толщину. Таким образом, стандартного пересчета, сколько досок в кубе, нет, и чтобы не ошибиться, в каждом конкретном случае необходимо перепроверять расчеты.

Общий принцип пересчета количества досок в кубометры

Для начала необходимо узнать объем одной доски. Для этого нужно просто умножить значения ее линейных размеров — длины, ширины и толщины. Чтобы не запутаться и не получить ошибочных значений, нужно изначально перевести эти параметры в метры.

Далее, зная объем одной доски, можно подсчитать сколько досок в кубе. Для этого нужно выполнить вычисление по формуле 1/объем доски. Число получится дробным, и его нужно округлить в меньшую сторону.

Приведем примеры расчетов для досок с разным сечением:

  • Сколько досок в кубе 25х150х6000.

Линейные размеры доски указаны в мм, и их нужно перевести в метры. Получается 0.025х0.15х6. Теперь нужно подсчитать объем одной доски — 0.025*0.15*6. Получится 0.0225 м3. Исходя из этого в одном кубометре будет 1/0.0225 = 44.44. Округляя до меньшего целого значения, получаем 44 штуки.

  • Сколько досок в кубе 50х100х6000.

Аналогично рассчитаем количество досок в кубометре с сечением 50х100. Приведя линейные размеры к метрам, рассчитываем объем одной доски — 0.05х0.1х6. Получаем 0.03 м3. Тогда в одном кубическом метре будет 1/0.03 = 33.33 — 33 целые доски.

  • Сколько досок в кубе 20х140х3000.

Сделаем еще один расчет для трехметровых досок. Принцип вычисления аналогичный: переводим размеры в метры и вычисляем объем одной доски. Получается 0.02х0.14х3 = 0.0084 м3. Подсчет количества штук: 1/0.0084 = 119.04. Имеем 119 целых досок.

Типичные ошибки в расчетах

Некоторые продавцы пилят доски не по 6 м, а 6,1-6,2 м. Стоимость указывается за доски целой длины, а при подсчете количества штук в кубометре используются реальные значения. Не проконтролировав подсчет, вы можете получить завышенные значения.

Также стоит быть внимательным, рассчитывая, сколько досок в кубе, если вы покупаете необрезную доску — ее не приводят к стандартизированным размерам, и сечение может различаться даже для одного изделия. В этом случае необходимо измерить реальные линейные размеры нескольких досок и использовать для дальнейших расчетов среднее арифметическое их параметров.

Заказ доски в ВЗД

У нас распил ведется строго по ГОСТу, поэтому вы получаете качественную обрезную доску из лиственницы или хвойной древесины с прогнозируемыми размерами. Мы поможем подсчитать количество досок в кубометре и доставим партию пиломатериалов на ваш объект в пределах Московской области с нашего склада в Одинцово. Пиломатериалы есть в наличии в широком сортаменте.

Для простого расчета воспользуйтесь готовыми данными — вы легко рассчитаете, сколько досок 6 м в кубе по таблице.

Сколько Досок 50х150х6000 в 1 кубе

📝 Брус и доска – один из древнейших строительных материалов, но он не теряет свою актуальность и сегодня. При этом стоимость этих пиломатериалов заставляет покупателей внимательно подходить к точности подсчета их необходимого количества.

сколько обрезной доски в кубе

Сейчас можно найти во всемирной сети необходимые таблицы расчета нужного числа кубометров стройматериалов, но умелый хозяин должен уметь провести расчет самостоятельно.

Сколько в Кубе Досок 50 на 150 на 6000?

Как вы уже, наверное, поняли, расчет пиломатериалов проводится в кубических метрах. В то же время куб доски и бруса может иметь разные габаритные показатели. Поэтому для точной покупки нужно понимать размер этого куба для более точного расчета. Самый распространенный куб пиломатериалов имеет размеры 50х150х6000 мм.

Считаем нужный объем легко и просто

Проводить расчет кубометров доски или бруса очень легко. Для этого нужно иметь элементарные познания с геометрии, которые нам рассказывали еще в школе. Таким образом, для определения нужной кубатуры вам необходимо изначально умножить показатели ширины (l), толщины (s) и длины (b).

К примеру: s доски × l доски х b доски = 50 мм × 150 мм х 6000 мм = 45000 см/куб.

Мы помним, что кубометр равен 1000000 куб/см, то есть – 100 см х 100 см х 100 см.

Поэтому далее мы берем числовой показатель 1000000 и просто делим на кубатуру доски (бруса):

1000000 куб/см : 45000 куб/см = 22,22 штуки доски в одном кубе.

Сколько досок в 1 кубе таблица 6м:

Размер доски Объем 1-й доски Досок в 1-ом кубе в штуках Метров квадратных доски в 1 кубе
 Пятидесятка
Доска 50х100х6000 0,03 м³ 33 шт. 20 м²
Доска 50х120х6000 0,036 м³ 27 шт. 20 м²
Доска 50х150х6000 0,045 м³ 22 шт. 20 м²
Доска 50х180х6000 0,054 м³ 18 шт. 20 м²
Доска 50х200х6000 0,06 м³ 16 шт. 20 м²
Доска 50х250х6000 0,075 м³ 13 шт. 20 м²

Как вы видите, рассчитать необходимое количество 6-ты метровой доски очень легко. Теперь вы знаете, как определить сколько метровых досок в кубе. В зависимости от размера, вы просто подставляете нужные размеры в простую формулу и получаете готовый результат.

1 Куб обрезной доски сколько в штуках

Для упрощения счета, мы подготовили для Вас сводную таблицу. Таблица позволяет сразу узнать, сколько досок в 1 кубе, не уделяя время расчетам. Чтобы Вам было удобно.

Сколько штук обрезной и строганной доски в 1 кубе таблица

Размеры, мм Объём досок в 1 м 3 Количество досок в м 3 Количество досок в м 2
20х100х6000 0,012 м 3 83 шт. 50 м 2
20х120х6000 0,0144 м 3 69 шт. 50 м 2
20х150х6000 0,018 м 3 55 шт. 50 м 2
20х180х6000 0,0216 м 3 46 шт. 50 м 2
20х200х6000 0,024 м 3 41 шт. 50 м 2
20х250х6000 0,03 м 3 33 шт. 50 м 2
25х100х6000 0,015 м 3 67 шт. 40 м 2
25х120х6000 0,018 м 3 55 шт. 40 м 2
25х150х6000 0,0225 м 3 44 шт. 40 м 2
25х180х6000 0,027 м 3 37 шт. 40 м 2
25х200х6000 0,03 м 3 33 шт. 40 м 2
25х250х6000 0,0375 м 3 26 шт. 40 м 2
30х100х6000 0,018 м 3 55 шт. 33 м 2
30х120х6000 0,0216 м 3 46 шт. 33 м 2
30х150х6000 0,027 м 3 37 шт. 33 м 2
30х180х6000 0,0324 м 3 30 шт. 33 м 2
30х200х6000 0,036 м 3 27 шт. 33 м 2
30х250х6000 0,045 м 3 22 шт. 33 м 2
32х100х6000 0,0192 м 3 52 шт. 31 м 2
32х120х6000 0,023 м 3 43 шт. 31 м 2
32х150х6000 0,0288 м 3 34 шт. 31 м 2
32х180х6000 0,0346 м³ 28 шт. 31 м 2
32х200х6000 0,0384 м 3 26 шт. 31 м 2
32х250х6000 0,048 м 3 20 шт. 31 м 2
40х100х6000 0,024 м 3 41 шт. 25 м 2
40х120х6000 0,0288 м 3 34 шт. 25 м 2
40х150х6000 0,036 м 3 27 шт. 25 м 2
40х180х6000 0,0432 м 3 23 шт. 25 м 2
40х200х6000 0,048 м 3 20 шт. 25 м 2
40х250х6000 0,06 м 3 16 шт. 25 м 2
50х100х6000 0,03 м 3 33 шт. 20 м 2
50х120х6000 0,036 м 3 27 шт. 20 м 2
50х150х6000 0,045 м 3 22 шт. 20 м 2
50х180х6000 0,054 м 3 18 шт. 20 м 2
50х200х6000 0,06 м 3 16 шт. 20 м 2
50х250х6000 0,075 м 3 13 шт. 20 м 2

Формулы расчета доски

Примеры расчета доски размером 20х100х6000 мм

Формула расчета объема доски:
0,02 м · 0,1 м · 6 м = 0,012 м 3

Формула расчета доски в кубе в штуках:
1 м3 / 0,012 м 3 = 83 шт./м 3

Формула расчета доски в кубе в квадратах:
1 м 3 / 0,02 м = 50 м 2 /м 3

Чтобы решить, сколько досок в 1 кубе, сначала нужно знать основные параметры приобретаемого материала – толщину, ширину и длину. Также можно делать расчет для досок размером 3 метра, 4 метра, 5 метров.

Страница содержит ответы на простые вопросы людей:

  • Сколько досок
  • Сколько кубов доски
  • Сколько штук досок
  • Досок в кубе
  • Сколько кубов в досках
  • Сколько штук в одном кубе
  • Сколько в кубе обрезной доски
  • Как подсчитать сколько досок в 1 кубе

Зачем считать, сколько досок в 1 кубе?

Всего две причины для того, чтобы произвести расчеты:

  • Вы узнаете общую цену всего объема бруса, нужного для вашего проекта. Достаточно знать цену за 1 доску и сколько всего штук (определяется расчетным путем или из нашей таблицы для стандартных размеров досок).
  • Вы подсчитаете общее число досок, нужное для осуществления вашего проекта. И сделать расчет можно, зная, сколько нужно кубов материала для работы, и определив количество штук досок в 1 кубе.

Но если боитесь сделать неправильные расчеты, позвоните по телефонам +7 (495) 775-83-74 или 8 (800) 775-83-74 и наши специалисты помогут разобраться с правильным подсчетом!

Ваша тачка с покупками сейчас пуста

Расчеты для обрезной и строганной доски длиной 6 метров. В таблицах приведены данные об объеме одной доски и о том, сколько штук досок разного размера в 1-ом кубе. Чтобы вам было удобно.

Сколько штук обрезной и строганной доски в 1 кубе таблица

Размер доски Объем 1-й доски Досок в 1-ом кубе в штуках Метров квадратных в 1-ом кубе
Двадцатка
Доска 20 х 100 х 6000 0,012 м³ 83 шт. 50 м²
Доска 20 х 120 х 6000 0,0144 м³ 69 шт. 50 м²
Доска 20 х 150 х 6000 0,018 м³ 55 шт. 50 м²
Доска 20 х 180 х 6000 0,0216 м³ 46 шт. 50 м²
Доска 20 х 200 х 6000 0,024 м³ 41 шт. 50 м²
Доска 20 х 250 х 6000 0,03 м³ 33 шт. 50 м²
Двадцатьпятка
Доска 25 х 100 х 6000 0,015 м³ 67 шт. 40 м²
Доска 25 х 120 х 6000 0,018 м³ 55 шт. 40 м²
Доска 25 х 150 х 6000 0,0225 м³ 44 шт. 40 м²
Доска 25 х 180 х 6000 0,027 м³ 37 шт. 40 м²
Доска 25 х 200 х 6000 0,03 м³ 33 шт. 40 м²
Доска 25 х 250 х 6000 0,0375 м³ 26 шт. 40 м²
Тридцатка
Доска 30 х 100 х 6000 0,018 м³ 55 шт. 33 м²
Доска 30 х 120 х 6000 0,0216 м³ 46 шт. 33 м²
Доска 30 х 150 х 6000 0,027 м³ 37 шт. 33 м²
Доска 30 х 180 х 6000 0,0324 м³ 30 шт. 33 м²
Доска 30 х 200 х 6000 0,036 м³ 27 шт. 33 м²
Доска 30 х 250 х 6000 0,045 м³ 22 шт. 33 м²
Тридцатидвушка
Доска 32 х 100 х 6000 0,0192 м³ 52 шт. 31 м²
Доска 32 х 120 х 6000 0,023 м³ 43 шт. 31 м²
Доска 32 х 150 х 6000 0,0288 м³ 34 шт. 31 м²
Доска 32 х 180 х 6000 0,0346 м³ 28 шт. 31 м²
Доска 32 х 200 х 6000 0,0384 м³ 26 шт. 31 м²
Доска 32 х 250 х 6000 0,048 м³ 20 шт. 31 м²
Сороковка
Доска 40 х 100 х 6000 0,024 м³ 41 шт. 25 м²
Доска 40 х 120 х 6000 0,0288 м³ 34 шт. 25 м²
Доска 40 х 150 х 6000 0,036 м³ 27 шт. 25 м²
Доска 40 х 180 х 6000 0,0432 м³ 23 шт. 25 м²
Доска 40 х 200 х 6000 0,048 м³ 20 шт. 25 м²
Доска 40 х 250 х 6000 0,06 м³ 16 шт. 25 м²
Пятидесятка
Доска 50 х 100 х 6000 0,03 м³ 33 шт. 20 м²
Доска 50 х 120 х 6000 0,036 м³ 27 шт. 20 м²
Доска 50 х 150 х 6000 0,045 м³ 22 шт. 20 м²
Доска 50 х 180 х 6000 0,054 м³ 18 шт. 20 м²
Доска 50 х 200 х 6000 0,06 м³ 16 шт. 20 м²
Доска 50 х 250 х 6000 0,075 м³ 13 шт. 20 м²

Формулы расчета доски

Примеры расчета доски размером 20 х 100 х 6000

Формула расчета объема доски:
0,02 м · 0,1 м · 6 м = 0,012 м³

Формула расчета доски в кубе в штуках:
1 м³ / 0,012 м³ = 83 шт./м³

Формула расчета доски в кубе в квадратах:
1 м³ / 0,02 м = 50 м²/м³

Страница содержит ответы на простые вопросы людей:

  • сколько досок
  • сколько кубов доски
  • сколько штук досок
  • досок в кубе
  • сколько кубов в досках
  • сколько штук в одном кубе
  • сколько в кубе обрезной доски
  • и так дальше.

Зная объем одной доски и, зная сколько штук досок вам нужно всего, вы сможете рассчитать общий итог в кубах и, соответственно, зная цену за 1 куб доски, рассчитать общую цену вашего заказа.

Зная сколько штук досок нужного вам размера в 1-ом кубе и, зная сколько вам нужно кубов, вы сможете рассчитать общее, необходимое вам, количество досок в штуках.

Любые строительные работы с применением пиломатериала рано или поздно поставят перед вами вопрос – сколько досок определенного типоразмера будет содержать один куб. Облегчить задачу расчета, привести готовые таблицы-кубатурники, а также рассказать о существующих нюансах перевода кубометров в количество досок и наоборот мы и постараемся в данной статье.

Порядок и методика расчета

Чтобы рассчитать, сколько досок будет в одном кубе, достаточно освежить в памяти знания из курса математики средней школы. Переходим к порядку расчета.

Исходные данные

В расчетах будем отталкиваться от размеров доски. Используется три значения: высота (толщина), ширина и длина. В обозначении сортамента они приводятся в таком же порядке, например 25×150×6000 и указываются в миллиметрах.

Важно! Перед началом расчета не забудьте перевести значения геометрических размеров в метры. Так как мы рассматриваем расчет для нахождения количества досок в 1 метре кубическом, значит и все исходные данные должны быть приведены к размеру в метрах.

Высота и ширина (сечение) обрезного пиломатериала регламентируются ГОСТ 24454-80 «Пиломатериалы хвойных пород. Размеры», хотя у продавцов они могут иметь и другие значения.

Отметим, что для расчетов пиломатериалов специального назначения, отличающихся от стандартной прямоугольной формы в поперечном сечении (к примеру, шпунтованной половой доски), значения размеров высоты и ширины следует принимать по лицевой, «рабочей» ширине поверхности.

Для длины обрезного пиломатериалы наиболее популярные на рынке предложения – это 4-х и 6-ти метровые доски.

Важно! Покупая необрезную доску неизвестных геометрических параметров, размеры её сечения для последующего расчета кубатуры лучше находить как среднее значение между высотой и шириной, измеренных с обеих сторон.

Расчет количества досок в кубе

Отталкиваться будем от простой геометрической формулы: объем равен произведению длин трех сторон. По ней, используя исходные данные, рассчитываем объем одной доски. Затем делим 1 на полученное значение и получаем итоговую цифру сколько досок содержится в кубе в штуках.

Символьной формулой расчет кубатуры доски можно записать так:

h, b, L – высота, ширина и длина доски соответственно, м;

N – количество досок в 1 м 3 , штук.

Нужно понимать, что расчет по обозначенной формуле носит ориентировочный характер. Число может получиться и дробное, хотя при покупке вы заберете количество, кратное целому и округленное в меньшую сторону. Также производителем пиломатериала могут четко не соблюдаться номинальные значения геометрических размеров, и фактическое количество досок в одном кубе может составить как большее значение, так и меньшее от расчетного. Кроме того, не следует руководствоваться расчетом «впритык». Не весь купленный пиломатериал может оказаться пригодным к использованию, поэтому процентов 10-15 запаса по количеству, особенно при больших партиях закупки, следует закладывать на брак.

Важно! При покупке объема пиломатериала, превышающего 1 м 3 , требуйте расчета количества отпускаемой вам доски от всего объема по вышеприведенной формуле (подставляя вместо единицы в числителе нужный вам объем), а не по одному кубу с последующим округлением и умножением – недобросовестные продавцы на этом могут сэкономить.

Расчет покрытия в м 2 одним кубометром доски

Данный расчет – частный случай, востребованный когда нужно знать, сколько квадратных метров способен покрыть один метр кубический пиломатериала, например, для половой доски или же стеновой вагонки.

S – площадь в м 2 , «зашиваемая» 1 м 3 доски.

Важно! Расчетное значение площади доски в одном кубометре также получается ориентировочной цифрой, которую, при закупке пиломатериала на необходимый метраж в «квадратах», следует брать с определенным запасом.

Калькуляторы кубатуры досок

Рассмотрев вышеприведенные формулы, в теории становится понятно, как посчитать кубатуру доски. Для повседневного использования и упрощения рутинного процесса на нашем сайте размещены калькуляторы, осуществляющие онлайн-расчет по различным критериям.

Калькулятор расчета количества досок в кубе

Данный калькулятор осуществляет расчет количества досок в штуках, содержащихся в заданном объеме пиломатериала в кубометрах. Чтобы рассчитать искомый показатель, необходимо ввести в соответствующие поля параметры одной доски (ширина, толщина, длина – в мм) и общий объем досок в м 3 .

Итоговый результат в штуках может иметь дробное значение, но продавцы пиломатериала, как правило, округляют расчетное количество досок в кубе до ближайшего меньшего целого числа, что также учитывает и наш онлайн-калькулятор.

Калькулятор расчета кубатуры досок по их количеству

Нижеприведенный калькулятор будет полезен, когда возникает задача перевести доски в кубы. В качестве исходных данных, как и для предыдущего онлайн-расчета, используется геометрические размеры одной доски в мм и общее количество досок в штуках, для которых нужно определить их кубатуру в м 3 .

Готовые таблицы количества досок в кубе

Несмотря на простоту формулы определения кубатуры пиломатериала и наличие доступных онлайн-калькуляторов, рассчитывать каждый раз сколько досок в кубе для разных размеров достаточно неудобно. Для избавления от этого рутинного процесса созданы уже готовые таблицы-кубатурники, которыми достаточно удобно пользоваться для быстрого определения количества штук пиломатериала в 1 м 3 .

Сколько 6-ти метровых досок в 1 кубе: таблица

Размеры доски, мм Количество в 1 кубе Площадь, покрываемая 1 м 3 доски
Доска-«двадцатка» (толщина 20 мм)
20×100×6000 83 шт. 49,8 м 2
20×120×6000 69 шт. 49,7 м 2
20×150×6000 55 шт. 49,5 м 2
20×180×6000 46 шт. 49,7 м 2
20×200×6000 41 шт. 49,2 м 2
20×250×6000 33 шт. 49,5 м 2
Доска-«двадцатьпятка» (толщина 25 мм)
25×100×6000 66 шт. 39,6 м 2
25×120×6000 55 шт. 39,6 м 2
25×150×6000 44 шт. 39,6 м 2
25×180×6000 37 шт. 40 м 2
25×200×6000 33 шт. 39,6 м 2
25×250×6000 26 шт. 39 м 2
Доска-«тридцатка» (толщина 30 мм)
30×100×6000 55 шт. 33 м 2
30×120×6000 46 шт. 33,1 м 2
30×150×6000 37 шт. 33,3 м 2
30×180×6000 30 шт. 32,4 м 2
30×200×6000 27 шт. 32,4 м 2
30×250×6000 22 шт. 33 м 2
Доска-«тридцатидвушка» (толщина 32 мм)
32×100×6000 52 шт. 31,2 м 2
32×120×6000 43 шт. 31 м 2
32×150×6000 34 шт. 30,6 м 2
32×180×6000 28 шт. 30,2 м 2
32×200×6000 26 шт. 31,2 м 2
32×250×6000 20 шт. 30 м 2
Доска-«сороковка» (толщина 40 мм)
40×100×6000 41 шт. 24,6 м 2
40×120×6000 34 шт. 24,5 м 2
40×150×6000 27 шт. 24,3 м 2
40×180×6000 23 шт. 24,8 м 2
40×200×6000 20 шт. 24 м 2
40×250×6000 16 шт. 24 м 2
Доска-«пятидесятка» (толщина 50 мм)
50×100×6000 33 шт. 19,8 м 2
50×120×6000 27 шт. 19,4 м 2
50×150×6000 22 шт. 19,8 м 2
50×180×6000 18 шт. 19,4 м 2
50×200×6000 16 шт. 19,2 м 2
50×250×6000 13 шт. 19,5 м 2

Сколько 4-х метровых досок в 1 кубе: таблица

Размеры доски, мм Количество в 1 кубе Площадь, покрываемая 1 м 3 доски
Доска-«двадцатка» (толщина 20 мм)
20×100×4000 125 шт. 50 м 2
20×120×4000 104 шт. 49,9 м 2
20×150×4000 83 шт. 49,8 м 2
20×180×4000 69 шт. 49,7 м 2
20×200×4000 62 шт. 49,6 м 2
20×250×4000 50 шт. 50 м 2
Доска-«двадцатьпятка» (толщина 25 мм)
25×100×4000 100 шт. 40 м 2
25×120×4000 83 шт. 39,8 м 2
25×150×4000 66 шт. 39,6 м 2
25×180×4000 55 шт. 39,6 м 2
25×200×4000 50 шт. 40 м 2
25×250×4000 40 шт. 40 м 2
Доска-«тридцатка» (толщина 30 мм)
30×100×4000 83 шт. 33,2 м 2
30×120×4000 69 шт. 33,1 м 2
30×150×4000 55 шт. 33 м 2
30×180×4000 46 шт. 33,1 м 2
30×200×4000 41 шт. 32,8 м 2
30×250×4000 33 шт. 33 м 2
Доска-«тридцатидвушка» (толщина 32 мм)
32×100×4000 78 шт. 31,2 м 2
32×120×4000 65 шт. 31,2 м 2
32×150×4000 52 шт. 31,2 м 2
32×180×4000 43 шт. 31 м 2
32×200×4000 39 шт. 31,2 м 2
32×250×4000 31 шт. 31 м 2
Доска-«сороковка» (толщина 40 мм)
40×100×4000 62 шт. 24,8 м 2
40×120×4000 52 шт. 25 м 2
40×150×4000 41 шт. 24,6 м 2
40×180×4000 34 шт. 24,5 м 2
40×200×4000 31 шт. 24,8 м 2
40×250×4000 25 шт. 25 м 2
Доска-«пятидесятка» (толщина 50 мм)
50×100×4000 50 шт. 20 м 2
50×120×4000 41 шт. 19,7 м 2
50×150×4000 33 шт. 19,8 м 2
50×180×4000 27 шт. 19,4 м 2
50×200×4000 25 шт. 20 м 2
50×250×4000 20 шт. 20 м 2

Таблица кубатуры необрезного пиломатериала

Составление готовой точной таблицы для такого рода изделий, как и точный расчет, затруднительны. Необрезной пиломатериал получают продольным распиливанием бревна на доски без дальнейшей их обработки по кромкам. В такой ситуации в зависимости от участка выпилки меняется и ширина полученной доски, постоянными остаются только длина и высота (толщина).

Чтобы хотя бы примерно представлять, сколько необрезной доски будет в одном кубе, мы приводим типовой вариант таблицы-кубатурника необрезного пиломатериала длиной 6 метров и стандартного ряда толщин 25, 40 и 50 мм:

Особенности практического применения расчета и таблиц

Следует понимать, что алгоритм расчета количества доски в кубе будет одинаков для пиломатериала с различными степенями осушки или же из различных пород древесины. Каких-то дополнительных ухищрений тут не требуется.

Также отметим, что табличные значения являются, хоть и с высокой степень точности, но все-таки ориентировочными данными. В действительности, при подсчете реального количества досок в кубе, многое будет зависеть от плотности укладки штабеля, ведь пиломатериал не прилегает друг к другу идеально плотно, как то подразумевает математическая модель расчета. Помните об этом, рассчитывайте по формулам или таблицам сколько кубов пиломатериала вам необходимо и рассматривайте приобретение расчетного количества с определенным запасом.

таблица расчета количества и кубатуры пиломатериала

Нет такой стройки, которая обошлась бы без применения пиломатериалов.

Поэтому возникает необходимость определить точное их количество. Рассчитать, сколько досок в 1 кубе, можно по формулам, а можно воспользоваться готовыми таблицами. Эти таблицы называют кубатурниками.

Заметим, что здесь рассматриваются изделия из древесины хвойных пород.

Что такое кубатура

В общем случае — это объем какого-либо тела, выраженный в кубических мерах.

Кубатура пиломатериала — это объем пиломатериала, выраженный в кубических метрах, иначе — в кубометрах или просто в кубах.

Виды пиломатериалов

В этом разделе расскажем о пиломатериалах в том порядке, в каком их получают при распиле бревна.

Обапол и горбыль

Почему-то с определением этих материалов возникает путаница: кто-то утверждает, что это одно и то же, а кто-то — что обапол производят из горбыля.

Предлагаемая таблица внесет полную ясность.

Как видно из таблицы, обапол в строительстве не применяется, поэтому в дальнейшем его рассматривать не будем.

Требования же к горбылю нормируются в соответствии с ОСТ 13-28-74. А это означает, что горбыль является полноценным стройматериалом.

Горбыль применяется:

  • для устройства чернового пола;
  • обрешетки крыши;
  • изготовления опалубки.

Необрезная доска

Она пропилена по двум противоположным поверхностям, называемым пластями. Кромки остаются необрезанными, отсюда и название.

Ее стандартные размеры следующие: толщина — 25, 40 и 50 мм; длина — 6 м.

Область применения шире, чем у горбыля.

Применяется также для строительства:

  • складов;
  • подсобных помещений;
  • временных заборов;
  • навесов.

Кроме того, может служить основанием под обшивку вагонкой, блок-хаусом и другими отделочными материалами.

Обрезная доска

Отличается от необрезной тем, что пропилена по пластям и кромкам.

Применяется в качестве:

  • обрешетки крыши;
  • обрешетки стен каркасных домов;
  • стоек и раскосов каркасных домов;
  • лестниц;
  • материала для изготовления дачной мебели и т. д.

Брус

Это пиломатериал толщиной от 100 мм и более с различием ширины и высоты сечения не более чем в два раза. Обычно брус бывает квадратного сечения. Самый используемый брус имеет сечение 100 × 100 мм и 150 × 150 мм.

Используется:

  • в строительстве каркасных домов в виде стоек и балок;
  • в качестве материала для наружных и внутренних стен деревянных домов;
  • для устройства лестниц, ограждений и т. д.

Брусок

Отличается от бруса тем, что максимальный размер его сечения 75 мм. Как и брус, чаще всего изготавливается с квадратным сечением.

Используется для внутренних работ, таких как устройство:

  • лестниц;
  • перил;
  • подоконников;
  • основания для финишной обшивки;
  • контробрешетки кровли.

Как рассчитать количество досок в кубе

Обрезная доска

Как известно из курса средней школы, объем прямоугольного параллелепипеда (а обрезная доска, брус и брусок — это именно он) равен произведению длин его сторон.

Рассчитывается по формуле 1:

V = L × b × h

где: V – объем; L – длина; b – ширина; h – высота (в нашем случае толщина) доски.

Рассчитав таким образом объем, можно легко найти количество досок в кубе.

Для этого нужно единицу разделить на полученное число (формула 2):

N = 1 ÷ V

где: N – кол-во штук, 1 – 1 куб. м, V – объем.

Не следует забывать, что размеры обрезных материалов даются в миллиметрах, поэтому перед расчетом их необходимо перевести в метры.

Пример

Есть пиломатериал со следующими параметрами:

25 × 150 × 6000, где 25 – толщина; 150 – ширина; 6000 – длина.

Посчитаем кубатуру доски .

Для этого переведем миллиметры в метры и подставим полученные величины в формулу 1:

V = 0,025 × 0,15 × 6 = 0,0225

Полученное число подставим в формулу 2:

N = 1 ÷ 0,0225 = 44,4

Полученный результат всегда округляется до целых чисел отбрасыванием десятичной части.

Таким образом, в одном кубе содержится 44 целых доски.

Необрезная доска

Решить предыдущую задачу в этом случае сложнее.

У необрезной большая разница по ширине на противоположных пластях, поэтому при расчете объема в формулу 1 нужно подставлять среднюю ширину: эти две ширины складывают и полученную сумму делят пополам.

Результат измерения округляют до 10 мм, доли до 5 мм не учитывают, а доли 5 мм и более считают за 10 мм.

Кроме того, необрезанные кромки не позволяют уложить доску в плотный пакет, и для вычисления точного объема применяются различные повышающие коэффициенты.

Методика расчета не столько сложна, сколько утомительна, поэтому проще воспользоваться таблицей из следующего раздела.

Шпунтованная доска и вагонка

Друг от друга они отличаются только размерами, поэтому методика расчета для них одинакова.

Монтируются они по системе «шпунт-паз», как показано на рисунке.

За ширину b в данном случае принимается так называемая «рабочая» или «видимая» ширина — расстояние от основания шпунта до края доски (см. рис.). Именно этот размер и следует подставить в формулу 1.

Таблицы количества досок в кубе

Для того, чтобы каждый раз не высчитывать количество и объем, были составлены специальные таблицы-кубатурники, в которых для каждого размера материала приведено его количество в одном кубометре.

4-х метровые доски

6-ти метровые доски

4-х метровый брус

6-ти метровый брус

Необрезной материал

Из-за большого разброса размеров по длине, толщине и ширине невозможно рассчитать точное количество горбыля в одном кубе, поэтому таблицы-кубатурника для него не существует.

Здесь приведена таблица пересчета складочного объема горбыля в плотный.

В этом случае мы решаем обратную задачу: определяем, какой фактический объем имеет известное количество горбыля.

Для этого нужно:

  1. Разобрать горбыль на окоренный (у которого удален самый толстый, ближайший к корню дерева, торец) и неокоренный.
  2. Отсортировать по длине — до 2-х метров и более 2-х метров.
  3. При необходимости отсортировать по толщине.
  4. Уложить в пакет, чередуя тонкие и толстые торцы.
  5. Вычислить складочный объем пакета.
  6. Выбрать из таблицы соответствующий коэффициент и определить фактический (плотный) объем.

Кубатурник для необрезной доски.

Расчет площади покрытия

Когда основное строительство завершено, пора приступать к отделочным работам: обшивать стены и настилать чистые полы.

теперь необходимо рассчитать, какую площадь можно покрыть одним кубометром материала.

Для этого вспомним формулу 1. Вычисляя объем одного элемента, запишем промежуточный результат — произведение:

L × b = S (3)

где S — площадь этого элемента.

Вычислив по формуле 2 количество, умножаем полученный результат на площадь.

Видео

В этом видео приведены данные, не вошедшие в статью.

Калькулятор футов доски

Этот калькулятор футов доски позволяет быстро оценить объем пиломатериалов лиственных пород, которые вы хотите купить. Если вы не знаете, как рассчитать футы для досок или что такое футы для досок, прокрутите вниз, чтобы получить более подробную информацию. В противном случае просто введите размеры деревянной доски в этот калькулятор ножек для доски!

В отличие от площади в квадратных футах, размер доски составляет единиц объема . Используется при покупке нескольких досок пиломатериала разных размеров.

По определению, один дощатый фут пиломатериала равен , один квадратный фут равен толщиной в один дюйм. Если вы хотите преобразовать единицы обычного объема в ножки для доски, используйте следующее соотношение:

1 фут доски = 144 кубических дюйма = 1/12 кубического фута

Как рассчитать футы доски?

Удивительно, но вычисления чрезвычайно просты! Все, что вам нужно сделать, это использовать формулу досок, приведенную ниже:

футов доски = длина (фут) * ширина (дюйм) * толщина (дюйм) / 12

Обратите особое внимание на агрегаты! Длину деревянной доски следует выражать в футах, а ширину и толщину — в дюймах.

Использование калькулятора пиломатериалов: пример

Предположим, вы хотите использовать этот калькулятор ножек для досок, чтобы определить, сколько вы должны заплатить за несколько деревянных частей.

  1. Определитесь с количеством штук, которое вы хотите приобрести. Предположим, это пять деревянных досок.

  2. Выберите размеры досок. Например, кусок дерева твердых пород может иметь длину 8 футов, ширину 10 дюймов и толщину 1,25 дюйма.

  3. Подставьте эти числа в формулу подошвы доски, чтобы найти количество досок для каждой части:

футов доски = длина (фут) * ширина (дюйм) * толщина (дюйм) / 12

футов доски = 8 * 10 * 1.25/12

футов доски = 8,33 BF

  1. Теперь умножьте этот результат на количество частей, чтобы получить общий размер доски для вашей покупки:

5 * 8,33 = 41,67 BF

  1. Наконец, вы можете умножить это значение на цену за досковый фут, чтобы определить общую стоимость вашей покупки. Предполагая, что один дощатый фут пиломатериалов стоит $ 4,15

стоимость = 41,67 * 4,15 доллара = 172,92 доллара

Вы заплатите примерно 170 долларов.

Для вычисления длины дуги без радиуса нужен центральный угол и площадь сектора. :

  1. Умножьте площадь на 2 и разделите результат на центральный угол в радианах.
  2. Найдите квадратный корень из этого деления.
  3. Умножьте этот корень еще раз на центральный угол, чтобы получить длину дуги.
  4. Единицами измерения будет квадратный корень из угла площади сектора.
  5. Проверьте результат с помощью калькулятора Omni.

или центральный угол и длина хорды :

  1. Разделите центральный угол в радианах на 2 и выполните для него функцию sin.
  2. Разделите длину хорды на удвоение результата шага 1. Это даст вам радиус.
  3. Умножьте радиус на центральный угол, чтобы получить длину дуги.
  4. Проверьте результат с помощью калькулятора Omni.

В чем разница между доской и линейной ногой?

Основное различие между доской и линейным футом состоит в том, что дощатый фут является мерой объема , тогда как линейный фут является мерой длины .Фут доски обычно используется для пиломатериалов и представляет собой произведение ее ширины в футах, длины в футах и ​​толщины в дюймах. Линейный фут — это прямая линия длиной 12 дюймов (1 фут).

Что такое изоляционная плита для подошвы?

Изоляция подошвы плиты — это величина , на которую может быть нанесен объем изоляционной пены, покрытой распылением. Фут доски — это объем 1 фут x 1 фут x 1 дюйм, поэтому оцените объем, который вам нужно заполнить, прежде чем покупать утеплитель из распыляемой пены, определив квадратные метры пространства.Доска-фут также является обычной единицей измерения пиломатериалов в США и Канаде.

Сколько весит дощатый фут из дуба?

Доска из дуба весит где-то между 3,08 — 4,67 фунта (1,42-2,12 кг) , но в среднем весит 3,875 фунта (1,77 кг) . Это связано с тем, что плотность дуба может варьироваться от 37 — 56 фунтов / фут 3 (0,6 — 0,9 10 3 кг / м 3 ), в зависимости от сорта и места выращивания.

Сколько досок в 320 квадратных футах?

футов доски в 320 квадратных футах , так как футы доски — это мера объема , а квадратные футы — мера площади.Однако для площади в 320 квадратных футов при глубине 1 дюйм имеется 320 футов досок.

Измерение стоящих деревьев | Ohioline

Владельцам лесных угодий часто необходимо измерить товарное содержание дощатого настила (называемое «объемом») в определенных деревьях в их лесном массиве. Например, для продажи древесины требуется оценка количества, которое будет продано. Если деревья должны быть спилены для получения пиломатериалов, необходима оценка объема, чтобы определить, какого размера и сколько деревьев нужно спилить.Используя методы, описанные в этой статье, владелец лесного участка может оценить объем дощатого настила на одном или нескольких деревьях. Однако, если требуется оценка нескольких акров земли, владельцу лесного участка рекомендуется воспользоваться услугами отдела лесного хозяйства Департамента природных ресурсов штата Огайо, лесничего-консультанта или отраслевого лесничего. Методы, необходимые для точной и эффективной инвентаризации древесины на больших площадях, выходят за рамки данной публикации.

Оценка объема дерева

В Соединенных Штатах наиболее распространенной мерой объема пиломатериалов является подошва доски, определяемая как кусок дерева, содержащий 144 кубических дюйма.Его проще всего представить в виде доски размером 12 дюймов в квадрате и толщиной в один дюйм (12 дюймов x 12 дюймов x 1 дюйм = 144 кубических дюйма). Однако любой кусок дерева, содержащий 144 кубических дюйма, составляет дощатый фут (например, 3 дюйма). x 4 «x 12»; 2 «x 6» x 12 «; и т. д.). Содержание досок в футах любой доски может быть определено путем умножения длины на ширину на толщину, все выражается в дюймах, и деления на 144 кубических дюйма.

Основание доски также является наиболее распространенной мерой объема для деревьев и бревен, используемых для пиломатериалов и шпона.Объем доски в футах дерева или бревна — это выражение количества досковых футов пиломатериалов, которые можно вырезать из этого дерева или бревна. Объем пиломатериалов, который можно вырезать из дерева или бревна, зависит от множества переменных, включая то, как дерево распиливается на бревна, размеры пиломатериалов, сколько бревна теряется в опилках и отходах, а также эффективность лесопилки и рабочих. Из-за этих переменных объем доскового фута дерева или бревна не может быть точно измерен, но оценен.

Были разработаны многочисленные методы (так называемые «правила») для оценки объема досок. В Огайо обычно используются два правила объема доск-фут: правила Дойля и международные правила 1/4 дюйма (таблицы 1 и 2). Оба эти правила обеспечивают оценку содержания дощатого фута в дереве на основе диаметра ствола дерева по высоте грудки и высоты дерева, пригодного для продажи (обсуждается позже). Правило Дойла — наиболее распространенное правило в Огайо. Его используют в лесной промышленности и многие профессиональные лесники.Международное правило 1/4 дюйма используется государственными агентствами и Лесной службой США.

Таблица 1. Объем стопы стоящей деревянной доски — правило Дойля
Dbh
(дюймы)
Количество 16-футовых бревен
1/2 1 1-1 / 2 2 2-1 / 2 3 3-1 / 2 4
Ножки доски
12 20 30 40 50 60
14 30 50 70 80 90 100
16 40 70 100 120 40 160 180 190
18 60 100 130 160 200 220 40 160
20 80 130 180 220 260 300 320 360
22 100 170 230 280 340 380 420 460
24 130 220 290 360 430 490 540 600
26 160 260 360 440 520 590 660 740
28 190 320 430 520 620 710 800 880
30 230 380 510 630 740 840 940 1,040
32 270 440 590 730 860 990 1,120 1,220
34 300 510 680 850 1 000 1,140 1,300 1,440
36 350 580 780 970 1,140 1,310 1,480 1,640
38 390 660 880 1,100 1,290 1,480 1,680 1,860
40 430 740 990 1,230 1,450 1,660 1880 2,080
42 470 830 1,100 1,370 1,620 1,860 2 100 2,320
Откуда: Эшли, Берл С.1980. Справочник лесников. USDA NA-FR-15. 35 с.

Сравнение этих двух таблиц томов покажет, что они не идентичны. Международное правило 1/4 дюйма обычно считается наилучшей оценкой количества пиломатериалов, которое может быть фактически распилено из дерева или бревна при оптимальных условиях. Правило Дойля существенно недооценивает объем деревьев в классах меньшего диаметра. Поэтому международное правило 1/4 дюйма следует использовать, когда важна наиболее точная оценка урожайности, например, при определении количества деревьев, которые нужно спилить, чтобы получить заданное количество пиломатериалов.Однако при сбыте древесины на корню выбор правила объема менее критичен. Не должно возникать путаницы в отношении количества, если и покупатель, и продавец знают, какое правило использовалось для оценки объемов. Цены на древесину на корню обычно корректируются в зависимости от того, какое правило используется.

Измерение диаметра дерева

Диаметр ствола дерева измеряется на высоте груди (называемый диаметром на высоте груди или DBH), определяемым как диаметр дерева на высоте 4½ фута над землей на склоне дерева.Если дерево разветвляется ниже уровня груди, каждый ствол рассматривается как отдельное дерево. DBH можно измерить штангенциркулем для дерева, палкой Билтмора, лентой для измерения диаметра дерева или гибкой измерительной лентой (например, тканевой или стальной). Штангенциркули для деревьев, палки Biltmore и ленты для диаметра деревьев можно приобрести у компаний, поставляющих лесозаготовительное оборудование. Гибкая измерительная лента может использоваться для измерения окружности ствола дерева и деления окружности на 3,14 для определения диаметра.

Таблица 2.Объем стопы для стоящей деревянной доски — Международное правило 1/4 дюйма
Dbh
(дюймы)
Количество 16-футовых бревен
1/2 1 1-1 / 2 2 2-1 / 2 3 3-1 / 2 4
Ножки доски
12 30 60 80 100 120
14 40 80 110 140 160 180
16 60 100 150 180 210 250 280 310
18 70 140 190 240 280 320 360 400
20 90 170 240 300 350 400 450 500
22 110 210 290 360 430 490 560 610
24 130 250 350 430 510 590 660 740
26 160 300 410 510 600 700 790 880
28 190 350 480 600 700 810 920 1,020
30 220 410 550 690 810 930 1,060 1,180
32 260 470 640 790 940 1,080 1,220 1,360
34 290 530 730 900 1,060 1,220 1,380 1,540
36 330 600 820 1,010 1,200 1,380 1,560 1,740
38 370 670 910 1,130 1,340 1,540 1,740 1 940
40 420 740 1,010 1,250 1,480 1,700 1 920 2,160
42 460 820 1,100 1,360 1,610 1870 2120 2,360
Откуда: Эшли, Берл С.1980. Справочник лесников. USDA NA-FR-15. 35 с.

Измерение товарной высоты

Товарная высота — это высота дерева (или длина его ствола), до которой может быть получен конкретный продукт, обычно за вычетом высоты пня в один фут. Товарная высота пиловочника и фанеры обычно оценивается как высота, на которой диаметр ствола сужается до 10 дюймов, или до тех пор, пока не будут обнаружены сильные ветвления или дефекты.Товарная высота очень ценных деревьев, таких как шпон черного ореха, может измеряться с точностью до фута или двух футов. Торговая высота большинства других деревьев измеряется в единицах 16-футовых бревен и 8-футовых полубревен. Товарные размеры округлены до ближайшего полбревна. Таким образом, дерево с коммерческой высотой 42 фута будет измерено как имеющее 2½ бревна коммерческой высоты.

Товарная высота может быть измерена с помощью ряда специальных инструментов, разработанных специально для измерения высоты деревьев, таких как клинометры, высотомеры, ретоскопы или гипсометры.Эти инструменты можно приобрести у компаний-поставщиков лесозаготовительного оборудования. Товарную высоту также можно измерить с помощью длинного шеста, если измеряется только несколько деревьев и они имеют относительно небольшую товарную высоту. С некоторой практикой товарная высота в единицах бревна и полубревна может быть оценена довольно точно, особенно для деревьев с небольшой коммерческой высотой.

Использование таблиц для оценки объема товарного дерева

После измерения диаметра на высоте груди и коммерческой высоты дерева можно использовать Таблицу 1 или 2 для оценки его объема в футах доски.Например, 20-дюймовый дуб DBH с коммерческой высотой 2½ бревна содержит 260 футов доски по правилу Дойля или 350 футов по международному правилу 1/4 дюйма.

При использовании этих таблиц важно помнить, что следует измерять только ту часть ствола, которая будет производить полезный продукт. Части ствола или целые стволы полые, чрезмерно искривленные, гнилые и т. Д. Не подлежат измерению. Вы можете услышать, как лесники или покупатели говорят о валовом и чистом объеме. Общий объем — это расчетный объем дерева без вычета дефектов (т.е., DBH и коммерческая высота всех деревьев были измерены без учета дефектов, объемы были определены, и объемы были суммированы). Чистый объем — это предполагаемый объем дерева с соответствующими вычетами по дефектам.

Правило бревна Калькулятор футов доски

На этой странице находится калькулятор правил бревна , который будет оценивать выход бревна в футах с использованием правил шкалы Дойла или Скрибнера или международного правила бревен с коэффициентом 1/4. пропил 1/8 дюйма.

Он также может оценить урожайность стоящих деревьев с использованием адаптации Вайанта и Кастанеды правила Дойля, Скрибнера и международного правила 1/4 дюйма.

(Хотя опоры для досок являются общепринятым стандартом в Северной Америке, по желанию вы можете использовать метрические / кубические см.)

Футов доски Калькулятор правил бревна

Зачем оценивать футы бревенчатых досок?

Чтобы оценить бревно, необходимо оценить выход доски после ее возврата с лесопильного завода. Чаще всего в США и Канаде это выражается в футах доски , объем, эквивалентный ширине доски 1 x 12 x 12 дюймов.

( Другие измерения объема иногда включают шнуры и кубические футы).

Вот откуда пришли правила масштабирования журнала — они позволяют оценить урожайность бревна или, в некоторых случаях, даже стоящего дерева. В первую очередь они используются для оценки дерева — часто после того, как оно уже срублено, но иногда еще стоя (см. Раздел ниже).

Оценка высоты доски в бревне

После того, как дерево собрано (или весь грузовик с деревьями …), мы можем оценить его урожай, используя другие методы, такие как комплексные электронные измерения объема бревен с использованием лазеров или вес бревна оценивается в , если просто взвесить грузовик или контейнер, когда они пустые и полные.

Несмотря на то, что электроника и взвешивание — это хорошо, традиционные правила бревен являются наиболее распространенным способом оценки годной к употреблению пиломатериалов.

Эти правила учитывают пропил, отходы, сучки и усадку, но имеют свои ограничения из-за различных видов деревьев и отсутствия регулировки конуса дерева. Однако они не игнорируют правила — хотя они производят перерасход или недобит (когда пиломатериалы превышают или не соответствуют правилу, соответственно), они пытаются учесть потери и ограничения.

Тем не менее, методы масштабирования бревен являются традиционным способом определения цены на пиломатериалы . В этот инструмент я включил четыре — правило журнала Дойла, правило журнала Скрибнера, Международное правило журнала разреза 1/4 дюйма и Международное правило журнала разреза 1/8 дюйма.

Вы можете изучить все тонкости измерения и масштабирования бревен в Справочнике по масштабированию бревен Национальной лесной службы. Правил ведения журнала намного больше, чем в инструменте — см. Отличный обзор от Фрэнка Фриза из Министерства сельского хозяйства США.2 (\ frac {L} {16})

Где:

  • BF = расчетный урожай в футах доски
  • D = Диаметр бревна в дюймах, (внутри коры) маленький конец бревна
  • L = Длина бревна в футах
Факты о правиле Дойля

В то или иное время правило Дойля было официальным методом масштабирования журнала во многих штатах. По традиции, он все еще широко используется сегодня во многих областях в качестве приблизительной оценки урожайности.

Основная слабость правила Дойля заключается в его допусках на плиты и кромки.(Также см. Эту диаграмму из «Измерения леса » Германа Чепмана 1921 г.).

Правило Дойля дает слишком большой допуск для плит и кромок в небольших бревнах — характеристика, ориентированная на покупателя (во всяком случае, для небольших бревен!). Для больших бревен припуск слишком мал.

Правило Скрибнера в значительной степени заменило его после его публикации в 1846 году. Однако правило Дойля вновь обрело популярность, когда Джордж У. Фишер купил права на правило Скрибнера в середине 1870-х годов и (по какой-либо причине) опубликовал таблицу значений Дойля вместо Ценности Скрибнера в переизданном руководстве.

Даже сегодня правило Дойля является местным обычаем во многих областях.

Правило журнала Скрибнера

Правило журнала Скрибнера было впервые опубликовано в 1846 году Дж. М. Скрибнером. Скрибнер основывал это на оценках чертежей бревен, распиленных с пропилом 1/4 дюйма. Его оригинальные таблицы варьировались от 10 до 24 футов бревен с диаметром от 12 до 44 дюймов (маленький конец, внутри коры).

в таблицах используется оценка по формуле Брюса и Шумахера Скрибнера 1942 (при 16-дюймовом бревне):

BF = (.2} {48} -3] L

(это версия в инструменте DQYDJ выше)

Где:

  • BF = расчетный ресурс в футах доски
  • D = Диаметр входа дюймы (внутри коры) маленький конец бревна
  • L = Длина бревна в футах
Факты о правиле Скрибнера

Правило Скрибнера, несомненно, было усовершенствованием Дойла. Скрибнер (проповедник) даже нацелился на используемые правила журнала ( читается: в основном Дойл ), когда он впервые опубликовал свое правило:

Я не пожалел ни усилий, ни затрат, чтобы сделать их идеальными; и следует надеяться, что в дальнейшем они будут предпочтительнее явно ошибочных таблиц, которые использовались до сих пор.

Дж. М. Скрибнер, при публикации таблиц правил журнала Скрибнера

Правило Скрибнера достаточно точно для бревен диаметром примерно 16 футов и диаметром около 28 дюймов. Однако для всего, что больше, обычно наблюдается выход за пределы.

Международные правила ведения журналов

Джадсон Ф. Кларк работал в провинции Онтарио в 1900 году, когда он впервые сформулировал свое Международное правило, предполагая, что пропил должен быть 1/8 дюйма. Впервые он опубликовал это правило в 1906 году.

Видя, что большинство лесопилок того времени не могло соответствовать производительности, предполагаемой его правилом 1/8 дюйма, Кларк опубликовал правило разреза 1/4 дюйма в 1917 году.2+ 0,04222222L


Весы для бревен на корню

Ситуация несколько сложнее, когда дерево все еще стоит — вы не можете точно измерить диаметр внутри коры маленького конца бревна!

К счастью, Гарри В. Вайант и Фройлан Кастанеда приспособили три бревенчатых стола для стоящих деревьев. Используя диаметр дерева на высоте груди и принимая дерево класса формы 78 (измерение конуса дерева), они пришли к формуле для оценки урожайности стоящих деревьев с использованием Дойла, Скрибнера и международного журнала 1/4 дюйма. правило.

Для всех трех приведенных ниже формул масштабирования бревен предположим:

  • L = количество бревен длиной 16 футов в дереве (в калькуляторе мы делаем бревно -> преобразование высоты)
  • D = диаметр на уровне груди (4,5 фута от земли)

Для классов формы, отличных от 78, вы добавляете или вычитаете 3% для каждого +/- 1 в классе формы. (Это встроено в инструмент).

Формула стоячего дерева по правилу Дойля

Оценка Вайанта и Кастанеды для выхода стопы стоячей доски класса 78 с использованием правила журнала Дойла составляет:

BF = (0.2

Зачем нужно оценивать урожайность фута для древесной доски на корню?

Самая распространенная причина для оценки урожайности в футах доски для стоящего дерева — это значение для дерева . Используя одно из правил масштабирования бревен и умножая их на цену за фут доски, вы можете оценить стоимость древесины дерева после фрезерования.

Кроме того, вы можете использовать формулы масштабирования для инвентаризации . Если у вас есть несколько деревьев, вы можете приблизительно знать, сколько годной для использования древесины будет произведено, если вы соберете их.

Использование калькулятора оценки масштабирования бревен на ножках стоячей доски

Для использования калькулятора правил бревна:

  1. Введите диаметр в дюймах малого конца бревна (внутри коры), если у вас есть бревно , в противном случае диаметр на высоте груди (4,5 фута от земли), если дерево стоит.
  2. Введите длину бревна в футах готового бревна. Если дерево все еще стоит, введите оценку полезной длины бревна дерева на основе его высоты.
  3. Выберите, какое правило применить — Doyle , Scribner , International 1/4 «Kerf или International 1/8″ Kerf , если у вас уже есть журналы. Doyle Standing , Scribner Standing или International 1/4 «Standing , если вы оцениваете по стоящему дереву.
  4. (необязательно) ТОЛЬКО для стоящих деревьев, введите класс формы Girard для дерева.
  5. ( Необязательно) переключение между британских футов или метрических кубических сантиметров в качестве вывода.

Наконец, нажмите Calculate Board Feet , и мы воспользуемся выбранной формулой и выведем приблизительное количество футов доски в дереве.

Нравится? Вы не найдете здесь слишком много калькуляторов для пиломатериалов, но, пожалуйста, посетите наши другие калькуляторы и инструменты после.

Таблица кубов

3 = 27000

32 3 = 32768

33 3 = 35937

34 3 = 39304

35 3 = 42875

36 3 = 46656

500003

38 3 = 54872

39 3 = 59319

40 3 = 64000

1 3 = 1

2 3 = 8

3 3 = 27

4 3 = 64

5 3 = 125 60002

3 = 216

7 3 = 343

8 3 = 512

9 3 = 729

10 3 = 1000

11 12 3 3 = 1728

13 3 = 2197

14 3 = 2744

15 3 = 3375

16 3 = 4096

17 3 9000 3000213

= 5832

19 3 = 6859

20 3 = 8000

21 3 = 9261

22 3 = 10648

23 12167 3 = = 13824

25 3 = 15625

26 3 = 17576

27 3 = 19683

28 3 = 21952

29 3 = 24389

30 3 = 27000

41 3 = 68921

42 3 = 74088 23

44 3 = 85184

45 3 =

46 3 = 97336

47 3 = 103823

48 3 = 110592

22 49 3 3 3 = 125000

51 3 = 132651

52 3 = 140608

53 3 = 148877

54 3 = 157464

55 3 = 3 = 3 175616

57 3 = 185193

58 3 = 195112

59 3 = 205379

60 3 = 216000

61 3 = 238328

63 3 = 250047

64 3 = 262144

65 3 = 274625

66 3 = 287496

67 3 = 300763

67 3 = 300763

69 3 = 328509

70 3 = 343000

71 3 = 357911

72 3 = 373248

73 3 = 38 23 = 405224

75 3 = 421875

76 3 = 438976

77 3 = 456533

78 3 = 474552

79 3 = 4

9

79 3 = 4

9

9

81 3 = 531441

82 3 = 551368

83 3 = 571787

84 3 = 5

85 12 3 = 6

87 3 = 658503

88 3 = 681472

89 3 = 704969

90 3 = 729000

91 3 = 753571 = 753571

93 3 = 804357

94 3 = 830584

95 3 = 857375

96 3 = 884736

97 3 = 126 23 23 003

99 3 = 970299

100 3 = 1000000

Калькулятор эквивалентов парниковых газов — Расчеты и справочная информация

На этой странице описаны расчеты, использованные для преобразования количества выбросов парниковых газов в различные типы эквивалентных единиц.Для получения дополнительной информации перейдите на страницу калькулятора эквивалентностей.

Примечание о потенциалах глобального потепления (ПГП): Некоторые эквиваленты в калькуляторе указаны как эквиваленты CO 2 (CO 2 E). Они рассчитываются с использованием ПГП из Четвертого оценочного доклада Межправительственной группы экспертов по изменению климата.

Сокращение потребления электроэнергии (киловатт-часы)

В калькуляторе эквивалентов парниковых газов используется инструмент предотвращения выбросов и генерации (AVERT) U.S. средневзвешенная скорость выбросов CO 2 для преобразования сокращенных киловатт-часов в единицы предотвращенных выбросов диоксида углерода.

Большинство пользователей Калькулятора эквивалентностей, которые ищут эквиваленты для выбросов, связанных с электричеством, хотят знать эквиваленты для сокращений выбросов в результате программ повышения энергоэффективности (EE) или возобновляемых источников энергии (RE). Расчет воздействия выбросов ЭЭ и ВИЭ на электрическую сеть требует оценки количества выработки на ископаемом топливе и выбросов, вытесняемых ЭЭ и ВИЭ.Коэффициент предельных выбросов является лучшим представлением для оценки того, какие энергоблоки EE / RE, работающие на ископаемом топливе, вытесняются по флоту ископаемых. Обычно предполагается, что программы ЭЭ и ВИЭ не влияют на электростанции с базовой нагрузкой, которые работают постоянно, а скорее на предельные электростанции, которые вводятся в эксплуатацию по мере необходимости для удовлетворения спроса. Поэтому AVERT предоставляет национальный предельный коэффициент выбросов для Калькулятора эквивалентностей.

Коэффициент выбросов

1562,4 фунта CO 2 / МВтч × (4.536 × 10 -4 метрических тонн / фунт) × 0,001 МВтч / кВтч = 7,09 × 10 -4 метрических тонн CO 2 / кВтч
(AVERT, средневзвешенное значение по США CO 2 маржинальный уровень выбросов, данные за 2019 год)

Примечания:

  • Этот расчет не включает никаких парниковых газов, кроме CO 2 .
  • Этот расчет включает линейные потери.
  • Региональные предельные уровни выбросов также доступны на веб-странице AVERT.

Источники

  • EPA (2020) AVERT, U.S. средневзвешенный уровень выбросов CO 2 , данные за 2019 год. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.

галлонов израсходованного бензина

В преамбуле к совместному нормотворчеству EPA / Министерства транспорта от 7 мая 2010 г., которое установило исходные стандарты экономии топлива Национальной программы на 2012-2016 модельные годы, агентства заявили, что они согласились использовать общий коэффициент преобразования 8 887 граммов выбросов CO 2 на галлон потребленного бензина (Федеральный регистр 2010).Для справки, чтобы получить количество граммов CO 2 , выделенных на галлон сожженного бензина, теплосодержание топлива на галлон можно умножить на 2 кг CO на единицу теплосодержания топлива.

Это значение предполагает, что весь углерод в бензине преобразован в CO 2 (IPCC 2006).

Расчет

8887 грамм CO 2 / галлон бензина = 8,887 × 10 -3 метрических тонн CO 2 / галлон бензина

Источники

Галлонов израсходованного дизельного топлива

в совместном нормотворчестве EPA / Министерства транспорта 7 мая 2010 г., которое установило исходные стандарты экономии топлива Национальной программы на модельные годы 2012-2016, агентства заявили, что они согласились использовать общий коэффициент пересчета 10 180 граммов CO 2 выброса на галлон израсходованного дизельного топлива (Федеральный регистр 2010).Для справки, чтобы получить количество граммов CO 2 , выделяемых на галлон сожженного дизельного топлива, теплосодержание топлива на галлон можно умножить на 2 кг CO на единицу теплосодержания топлива.

Это значение предполагает, что весь углерод в дизельном топливе конвертируется в CO 2 (IPCC 2006).

Расчет

10,180 граммов CO 2 / галлон дизельного топлива = 10,180 × 10 -3 метрических тонн CO 2 / галлон дизельного топлива

Источники

Легковых автомобилей в год

определяется как двухосные автомобили с четырьмя шинами, включая легковые автомобили, фургоны, пикапы и спортивные / внедорожные автомобили.

В 2018 году средневзвешенная комбинированная экономия топлива легковых и легких грузовиков составила 22,5 мили на галлон (FHWA 2020). Средний пробег транспортного средства (VMT) в 2018 году составил 11556 миль в год (FHWA 2020).

В 2018 году отношение выбросов углекислого газа к общим выбросам парниковых газов (включая углекислый газ, метан и закись азота, выраженные в эквиваленте углекислого газа) для легковых автомобилей составило 0,993 (EPA 2020).

Количество углекислого газа, выбрасываемого на галлон сожженного автомобильного бензина, равно 8.89 × 10 -3 метрических тонн, как рассчитано в разделе «Израсходованные галлоны бензина» выше.

Для определения годовых выбросов парниковых газов в расчете на одно легковое транспортное средство использовалась следующая методология: VMT был разделен на средний расход бензина, чтобы определить количество галлонов бензина, потребляемых на одно транспортное средство в год. Израсходованные галлоны бензина были умножены на количество двуокиси углерода на галлон бензина, чтобы определить выбросы двуокиси углерода на автомобиль в год. Затем выбросы углекислого газа были разделены на отношение выбросов углекислого газа к общему количеству выбросов парниковых газов от транспортных средств, чтобы учесть выбросы автомобильного метана и закиси азота.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

8,89 × 10 -3 метрических тонн CO 2 / галлон бензина × 11,556 VMT в среднем легковой / грузовой × 1 / 22,5 миль на галлон в среднем легковой / грузовой × 1 CO 2 , CH 4 2 -осные автомобили с 4 колесами, включая легковые автомобили, фургоны, пикапы, а также спортивные / внедорожные автомобили.

В 2018 году средневзвешенная комбинированная экономия топлива легковых и легких грузовиков составила 22,5 мили на галлон (FHWA 2020). В 2018 году отношение выбросов углекислого газа к общим выбросам парниковых газов (включая углекислый газ, метан и закись азота, все выраженные в эквиваленте углекислого газа) для легковых автомобилей составило 0,993 (EPA 2020).

Количество углекислого газа, выбрасываемого на галлон сожженного автомобильного бензина, составляет 8,89 × 10 -3 метрических тонн, как рассчитано в разделе «Израсходованные галлоны бензина» выше.

Для определения годовых выбросов парниковых газов на милю использовалась следующая методология: выбросы углекислого газа на галлон бензина были разделены на среднюю экономию топлива транспортных средств, чтобы определить выбросы углекислого газа на милю, пройденную типичным пассажирским транспортным средством. Затем выбросы углекислого газа были разделены на отношение выбросов углекислого газа к общему количеству выбросов парниковых газов от транспортных средств, чтобы учесть выбросы автомобильного метана и закиси азота.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

8,89 × 10 -3 метрических тонн CO 2 / галлон бензина × 1 / 22,5 миль на галлон легковых / грузовых автомобилей в среднем × 1 CO 2 , CH 4 и N 2 O / 0,993 CO 2 = 3,98 x 10 -4 метрических тонн CO 2 E / милю

Источники

Термические и кубические футы природного газа

Выбросы углекислого газа на терм определены путем пересчета миллионов британских термические единицы (mmbtu) на термы, затем умножение углеродного коэффициента на окисленную фракцию на отношение молекулярной массы диоксида углерода к углероду (44/12).

0,1 млн БТЕ равняется одному термину (EIA 2018). Средний коэффициент выбросов углерода в трубопроводном природном газе, сожженном в 2018 году, составляет 14,43 кг углерода на 1 млн БТЕ (EPA 2020). Предполагается, что доля окисленной до CO 2 составляет 100 процентов (IPCC 2006).

Примечание. При использовании этого эквивалента имейте в виду, что он представляет собой эквивалент CO 2 CO 2 , выделенного для природного газа , сжигаемого в качестве топлива, а не природного газа, выброшенного в атмосферу. Прямые выбросы метана в атмосферу (без горения) примерно в 25 раз сильнее, чем CO 2 , с точки зрения их теплового воздействия на атмосферу.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

0,1 млн БТЕ / 1 терм × 14,43 кг С / мм БТЕ × 44 кг CO 2 /12 кг C × 1 метрическая тонна / 1000 кг = 0,0053 метрической тонны CO 2 / терм

Выбросы диоксида углерода в терм могут быть преобразованы в выбросы углекислого газа на тысячу кубических футов (Mcf) с использованием среднего теплосодержания природного газа в 2018 году, 10.36 термов / Mcf (EIA 2019).

0,0053 метрических тонны CO 2 / терм x 10,36 терм / Mcf = 0,0548 метрических тонн CO 2 / Mcf

Источники

  • EIA (2019). Ежемесячный обзор энергетики, март 2019 г., Таблица A4: Приблизительное теплосодержание природного газа для конечного потребления. (PDF) (1 стр., 54 КБ, О программе PDF)
  • EIA (2018). Конверсия природного газа — часто задаваемые вопросы.
  • EPA (2020 г.). Реестр выбросов и стоков парниковых газов в США: 1990-2018 гг.Приложение 2 (Методология оценки выбросов CO 2 от сжигания ископаемого топлива), Таблица A-43. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия. Агентство по охране окружающей среды США № 430-R-20-002 (PDF) (108 стр., 2 МБ, О программе PDF)
  • IPCC (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г. Том 2 (Энергия). Межправительственная группа экспертов по изменению климата, Женева, Швейцария.

Баррелей израсходованной нефти

Выбросы диоксида углерода на баррель сырой нефти определяются путем умножения теплосодержания на коэффициент углерода, умноженную на долю окисленной фракции, умноженную на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12).

Среднее теплосодержание сырой нефти составляет 5,80 млн БТЕ на баррель (EPA 2020). Средний углеродный коэффициент сырой нефти составляет 20,31 кг углерода на 1 млн БТЕ (EPA 2020). Предполагается, что окисленная фракция составляет 100 процентов (IPCC 2006).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

5,80 млн БТЕ / баррель × 20,31 кг C / млн БТЕ × 44 кг CO 2 /12 кг C × 1 метрическая тонна / 1000 кг = 0.43 метрических тонны CO 2 / баррель

Источники

Автоцистерны с бензином

Количество углекислого газа, выбрасываемого на галлон сожженного автомобильного бензина, составляет 8,89 × 10 -3 метрических тонн, как рассчитано в « Израсходованные галлоны бензина »выше. Бочка равна 42 галлонам. Типичный бензовоз вмещает 8 500 галлонов.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

8,89 × 10 -3 метрических тонн CO 2 / галлон × 8500 галлонов / автоцистерна = 75,54 метрических тонн CO 2 / автоцистерна

Источники

Количество ламп накаливания, переключенных на светоизлучающие диодные лампы

Светодиодная лампа мощностью 9 Вт дает такой же световой поток, как лампа накаливания мощностью 43 Вт. Годовая энергия, потребляемая лампочкой, рассчитывается путем умножения мощности (43 Вт) на среднесуточное использование (3 часа в день) на количество дней в году (365).При среднем ежедневном использовании 3 часа в день лампа накаливания потребляет 47,1 кВтч в год, а светодиодная лампа — 9,9 кВтч в год (EPA 2019). Годовая экономия энергии от замены лампы накаливания эквивалентной светодиодной лампой рассчитывается путем умножения разницы в мощности между двумя лампами в 34 Вт (43 Вт минус 9 Вт) на 3 часа в день и 365 дней в году.

Выбросы углекислого газа, уменьшенные на одну лампочку, переключенную с лампы накаливания на светодиодную, рассчитываются путем умножения годовой экономии энергии на средневзвешенный уровень выбросов углекислого газа по стране для поставленной электроэнергии.Средневзвешенный национальный уровень выбросов диоксида углерода для поставленной электроэнергии в 2019 году составил 1562,4 фунта CO 2 на мегаватт-час, что учитывает потери при передаче и распределении (EPA 2020).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

34 Вт x 3 часа / день x 365 дней / год x 1 кВтч / 1000 Втч = 37,2 кВтч / год / замена лампы

37.2 кВтч / лампочка в год x 1562,4 фунта CO 2 / МВтч поставленной электроэнергии x 1 МВтч / 1000 кВтч x 1 метрическая тонна / 2204,6 фунта = 2,64 x 10 -2 метрических тонн CO 2 / замена лампы

Источники

  • EPA (2020). AVERT, США, средневзвешенная норма выбросов CO 2 , данные за 2018 год. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.
  • EPA (2019). Калькулятор экономии для лампочек, соответствующих требованиям ENERGY STAR. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.

Домашнее потребление электроэнергии

В 2019 году 120,9 миллиона домов в США потребили 1 437 миллиардов киловатт-часов (кВтч) электроэнергии (EIA 2020a). В среднем каждый дом потреблял 11880 кВтч поставленной электроэнергии (EIA 2020a). Средний показатель выработки углекислого газа по стране в 2018 г. составил 947,2 фунта CO 2 на мегаватт-час (EPA 2020), что соответствует примерно 1021,6 фунта CO 2 на мегаватт-час для поставленной электроэнергии, при условии передачи и распределения. потери 7.3% (EIA 2020b; EPA 2020). 1

Годовое домашнее потребление электроэнергии было умножено на уровень выбросов углекислого газа (на единицу поставленной электроэнергии), чтобы определить годовые выбросы углекислого газа на один дом.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

11880 кВтч на дом × 947,2 фунта CO 2 на выработанный мегаватт-час × 1 / (1-0,073) МВтч доставлено / выработано МВтч × 1 МВтч / 1000 кВтч × 1 метрическая тонна / 2204.6 фунтов = 5,505 метрических тонн CO 2 / дом.

Источники

Энергопотребление в домашних условиях

В 2019 году в США насчитывалось 120,9 миллиона домов (EIA 2020a). В среднем каждый дом потреблял 11 880 кВтч отпущенной электроэнергии. Общенациональное потребление природного газа, сжиженного нефтяного газа и мазута домашними хозяйствами в 2019 году составило 5,22, 0,46 и 0,45 квадриллиона БТЕ соответственно (EIA 2020a). В среднем по домохозяйствам в Соединенных Штатах это составляет 41 712 кубических футов природного газа, 42 галлона сжиженного нефтяного газа и 27 галлонов мазута на дом.

Средний уровень выработки углекислого газа по стране в 2018 г. составил 947,2 фунта CO 2 на мегаватт-час (EPA 2020), что соответствует примерно 1021,6 фунта CO 2 на мегаватт-час для поставленной электроэнергии (при условии передачи и потери при распределении 7,3%) (EPA 2020; EIA 2020b). 1

Средний коэффициент диоксида углерода природного газа составляет 0,0548 кг CO 2 на кубический фут (EIA 2019c). Доля, окисленная до CO 2 , составляет 100 процентов (IPCC 2006).

Средний коэффициент диоксида углерода дистиллятного мазута составляет 430,80 кг CO 2 на баррель объемом 42 галлона (EPA 2020). Доля, окисленная до CO 2 , составляет 100 процентов (IPCC 2006).

Средний коэффициент углекислого газа сжиженных углеводородных газов составляет 235,7 кг CO 2 на баррель объемом 42 галлона (EPA 2020). Окисленная фракция составляет 100 процентов (IPCC 2006).

Общие данные о потреблении электроэнергии, природного газа, дистиллятного мазута и сжиженного нефтяного газа были переведены из различных единиц в метрические тонны CO 2 и сложены вместе, чтобы получить общие выбросы CO 2 на один дом.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

1. Электроэнергия: 11880 кВтч на дом × 947 фунтов CO 2 на выработанный мегаватт-час × (1 / (1-0,073)) выработано МВтч / поставлено МВтч × 1 МВтч / 1000 кВтч × 1 метрическая тонна / 2204,6 фунта = 5,505 метрических тонн CO 2 / дом.

2. Природный газ: 41 712 кубических футов на дом × 0,0548 кг CO 2 / кубический фут × 1/1000 кг / метрическая тонна = 2.29 метрических тонн CO 2 / дом

3. Сжиженный углеводородный газ: 41,8 галлона на дом × 1/42 барреля / галлон × 235,7 кг CO 2 / баррель × 1/1000 кг / метрическая тонна = 0,23 метрической тонны CO 2 / дом

4. Мазут: 27,1 галлона на дом × 1/42 барреля / галлон × 430,80 кг CO 2 / баррель × 1/1000 кг / метрическая тонна = 0,28 метрической тонны CO 2 / дом

Всего выбросов CO 2 для использования энергии на дом: 5,505 метрических тонн CO 2 для электроэнергии + 2.29 метрических тонн CO 2 для природного газа + 0,23 метрических тонн CO 2 для сжиженного нефтяного газа + 0,29 метрических тонн CO 2 для мазута = 8,30 метрических тонн CO 2 на дом в год .

Источники

  • EIA (2020a). Годовой прогноз энергетики на 2020 год, Таблица A4: Ключевые показатели и потребление жилого сектора.
  • EIA (2020b). Годовой прогноз развития энергетики на 2020 год, таблица A8: Предложение, утилизация, цены и выбросы электроэнергии.
  • EIA (2019).Ежемесячный обзор энергетики, ноябрь 2019 г., Таблица A4: Приблизительное теплосодержание природного газа для конечного потребления. (PDF) (270 стр., 2,65 МБ, О программе PDF)
  • EPA (2020 г.). Реестр выбросов и стоков парниковых газов в США: 1990-2018 гг. Приложение 2 (Методология оценки выбросов CO 2 от сжигания ископаемого топлива), Таблица A-47 и Таблица A-53. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия. Агентство по охране окружающей среды США № 430-R-20-002 (PDF) (108 стр., 2 МБ, О программе PDF)
  • EPA (2020 г.).eGRID, годовой национальный коэффициент выбросов США, данные за 2016 год. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.
  • IPCC (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г. Том 2 (Энергия). Межправительственная группа экспертов по изменению климата, Женева, Швейцария.

Количество городских саженцев деревьев, выращенных за 10 лет

Среднерослое хвойное или лиственное дерево, посаженное в городских условиях и разрешенное для роста в течение 10 лет, секвестры 23.2 и 38.0 фунтов углерода соответственно. Эти оценки основаны на следующих предположениях:

  • Среднерослые хвойные и лиственные деревья выращивают в питомнике в течение одного года, пока они не станут 1 дюйм в диаметре на высоте 4,5 фута над землей (размер дерева, купленного в 15- галлоновый контейнер).
  • Деревья, выращенные в питомнике, затем высаживаются в пригороде / городе; деревья не густо посажены.
  • При расчете учитываются «коэффициенты выживаемости», разработанные У.С. ДОЕ (1998). Например, через 5 лет (один год в яслях и 4 года в городских условиях) вероятность выживания составляет 68 процентов; через 10 лет вероятность снижается до 59 процентов. Для оценки потерь растущих деревьев вместо переписи, проведенной для точного учета общего количества посаженных саженцев по сравнению с выжившими до определенного возраста, коэффициент секвестрации (в фунтах на дерево) умножается на коэффициент выживаемости, чтобы получить вероятность: взвешенная скорость секвестрации. Эти значения суммируются за 10-летний период, начиная с момента посадки, чтобы получить оценку 23.2 фунта углерода на хвойное дерево или 38,0 фунта углерода на лиственное дерево.

Оценки поглощения углерода хвойными и лиственными деревьями были затем взвешены по процентной доле хвойных и лиственных деревьев в городах США. Из примерно 11000 хвойных и лиственных деревьев в семнадцати крупных городах США примерно 11 процентов и 89 процентов взятых в выборку деревьев были хвойными и лиственными, соответственно (McPherson et al., 2016).Следовательно, средневзвешенное значение углерода, поглощенного хвойным или лиственным деревом средней высоты, посаженным в городских условиях и позволяющим расти в течение 10 лет, составляет 36,4 фунта углерода на одно дерево.

Обратите внимание на следующие оговорки к этим предположениям:

  • В то время как большинству деревьев требуется 1 год в питомнике, чтобы достичь стадии рассады, деревьям, выращенным в других условиях, и деревьям определенных видов может потребоваться больше времени: до 6 лет.
  • Средние показатели выживаемости в городских районах основаны на общих предположениях, и эти показатели будут значительно варьироваться в зависимости от условий местности.
  • Связывание углерода зависит от скорости роста, которая зависит от местоположения и других условий.
  • Этот метод оценивает только прямое связывание углерода и не включает экономию энергии в результате затенения зданий городским лесным покровом.
  • Этот метод лучше всего использовать для оценки пригородных / городских территорий (например, парков, тротуаров, дворов) с сильно рассредоточенными насаждениями деревьев и не подходит для проектов лесовосстановления.

Для преобразования в метрические тонны CO 2 на дерево умножьте на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12) и соотношение метрических тонн на фунт (1 / 2,204.6).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

(0,11 [процент хвойных деревьев в выбранных городских условиях] × 23,2 фунта C / хвойное дерево) + (0,89 [процент лиственных деревьев в выбранных городских условиях] × 38,0 фунтов C / лиственное дерево) = 36,4 фунта C / дерево

36,4 фунта C / дерево × (44 единицы CO 2 /12 единиц C) × 1 метрическая тонна / 2204,6 фунта = 0,060 метрической тонны CO 2 на одно посаженное городское дерево

Источники

Акров U.S. леса, улавливающие СО2 в течение одного года

В настоящем документе под лесами понимаются управляемые леса, которые классифицируются как леса более 20 лет (т. Е. За исключением лесов, переустроенных в / из других типов землепользования). Пожалуйста, обратитесь к Реестру выбросов и стоков парниковых газов США: 1990–2018 гг., , где обсуждается определение лесов США и методология оценки запасов углерода в лесах США (EPA 2020).

Растущие леса накапливают и накапливают углерод. В процессе фотосинтеза деревья удаляют CO 2 из атмосферы и хранят его в виде целлюлозы, лигнина и других соединений.Скорость накопления углерода в лесном ландшафте равна общему росту деревьев за вычетом вывозки (т. Е. Урожая для производства бумаги и древесины и потери деревьев в результате естественных нарушений) за вычетом разложения. В большинстве лесов США рост превышает абсорбцию и разложение, поэтому количество углерода, хранимого на национальном уровне в лесных угодьях, в целом увеличивается, хотя и снижается.

Расчет для лесов США

Инвентаризация выбросов и стоков парниковых газов в США: 1990–2018 гг. (EPA 2020) предоставляет данные о чистом изменении запасов углерода в лесах и площади лесов.

Годовое чистое изменение запасов углерода на площадь в год t = (Запасы углерода (t + 1) — Запасы углерода т ) / Площадь земель, остающихся в той же категории землепользования

Шаг 1: Определить изменение запасов углерода между годами путем вычитания запасов углерода в году t из запасов углерода в году (t + 1) . Этот расчет, также содержащийся в Реестре выбросов и стоков парниковых газов США: 1990–2018 гг. (EPA 2020), использует оценки лесной службы Министерства сельского хозяйства США по запасам углерода в 2019 году за вычетом запасов углерода в 2018 году.(Этот расчет включает запасы углерода в надземной биомассе, подземной биомассе, валежной древесине, подстилке, а также в пулах почвенного органического и минерального углерода. Прирост углерода, относящийся к продукции из заготовленной древесины, в этот расчет не включается.)

Годовое чистое изменение запасов углерода в 2018 году = 56 016 млн т C — 55 897 млн ​​т C = 154 млн т C

Шаг 2: Определите годовое чистое изменение запасов углерода (т. е. секвестрации) на площади , разделив изменение запасов углерода на U.S. леса из Шага 1 по общей площади лесов США, оставшихся в лесах в году t (т. Е. Площадь земель, категории землепользования которых не изменились между периодами времени).

Применение расчета Шага 2 к данным, разработанным Лесной службой Министерства сельского хозяйства США для инвентаризации выбросов и стоков парниковых газов в США: 1990–2018 гг. дает результат 200 метрических тонн углерода на гектар (или 81 метрическую тонну углерода). углерода на акр) для плотности запаса углерода в СШАлесов в 2018 году, при этом годовое чистое изменение запасов углерода на единицу площади в 2018 году составило 0,55 метрических тонны поглощенного углерода на гектар в год (или 0,22 метрических тонны поглощенного углерода на акр в год).

Примечание. Из-за округления выполнение вычислений, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

Плотность запасов углерода в 2018 году = (55 897 млн ​​т C × 10 6 ) / (279 787 тыс. Га × 10 3 ) = 200 метрических тонн хранимого углерода на гектар

Чистое годовое изменение запасов углерода на площадь в 2018 году = (-154 млн т C × 10 6 ) / (279,787 тыс.га × 10 3 ) = — 0,55 метрических тонн секвестрированного углерода на гектар в год *

* Отрицательные значения указывают на связывание углерода.

С 2007 по 2018 год среднее годовое поглощение углерода на площадь составляло 0,55 метрической тонны C / га / год (или 0,22 метрической тонны C / акр / год) в Соединенных Штатах при минимальном значении 0,52 метрической тонны C / гектар / год (или 0,22 метрической тонны C / акр / год) в 2014 году, и максимальное значение 0,57 метрической тонны C / га / год (или 0.23 метрических тонны С / акр / год) в 2011 и 2015 годах.

Эти значения включают углерод в пяти лесных резервуарах: надземная биомасса, подземная биомасса, валежная древесина, подстилка, а также органический и минеральный углерод почвы, и основаны на государственных: уровень данных инвентаризации и анализа лесов (FIA). Запасы углерода в лесах и изменение запасов углерода основаны на методологии и алгоритмах разницы в запасах, описанных Смитом, Хитом и Николсом (2010).

Коэффициент преобразования для углерода, секвестрированного за один год на 1 акр среднего U.S. Forest

Примечание: из-за округления выполнение вычислений, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

-0,22 метрической тонны C / акр / год * × (44 единицы CO 2 /12 единиц C) = — 0,82 метрической тонны CO 2 / акр / год, ежегодно поглощаемых одним акром среднего леса в США.

* Отрицательные значения указывают на связывание углерода.

Обратите внимание, что это приблизительная оценка для «средних» лесов США с 2017 по 2018 год; я.е., годовое чистое изменение запасов углерода в лесах США в целом за период с 2017 по 2018 годы. В основе национальных оценок лежат значительные географические различия, и вычисленные здесь значения могут не отражать отдельные регионы, штаты или изменения в видовом составе. дополнительных соток леса.

Чтобы оценить поглощенный углерод (в метрических тоннах CO 2 ) дополнительными «средними» акрами лесов за один год, умножьте количество дополнительных акров на -0.82 метрических тонны CO 2 акров / год.

Источники

  • EPA (2020). Реестр выбросов и стоков парниковых газов в США: 1990-2018 гг. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия. Агентство по охране окружающей среды США № 430-R-20-002 (PDF) (733 стр., 14 МБ, О программе PDF)
  • IPCC (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г., Том 4 (Сельское, лесное и другое землепользование). Межправительственная группа экспертов по изменению климата, Женева, Швейцария.
  • Смит, Дж., Хит, Л., и Николс, М. (2010). Руководство пользователя инструмента расчета углерода в лесах США: Запасы углерода в лесных угодьях и чистое годовое изменение запасов. Общий технический отчет NRS-13 пересмотрен, Министерство сельского хозяйства США, Лесная служба, Северная исследовательская станция.

акров лесов США, сохранившихся после преобразования в пахотные земли

Леса определяются здесь как управляемые леса, которые классифицируются как леса более 20 лет (т. Е. Исключая леса, переустроенные в / из других типов землепользования).Пожалуйста, обратитесь к Реестру выбросов и стоков парниковых газов США: 1990–2018 гг., , где обсуждается определение лесов США и методология оценки запасов углерода в лесах США (EPA 2020).

На основании данных, разработанных Лесной службой Министерства сельского хозяйства США для инвентаризации инвентаризации выбросов и стоков парниковых газов США: 1990–2018 гг. , плотность запасов углерода в лесах США в 2018 г. составила 200 метрических тонн углерода на гектар (или 81 метрическую тонну). углерода на акр) (EPA 2020).Эта оценка состоит из пяти углеродных пулов: надземная биомасса (53 метрических тонны C / га), подземная биомасса (11 метрических тонн C / га), валежная древесина (10 метрических тонн C / га), подстилка (13 метрических тонн C / га). гектар) и почвенный углерод, который включает минеральные почвы (92 метрических тонны С / га) и органические почвы (21 метрическую тонну С / га).

Реестр выбросов и стоков парниковых газов США: 1990–2018 гг.При расчете изменений запасов углерода в биомассе из-за преобразования лесных угодий в пахотные земли руководящие принципы МГЭИК указывают, что среднее изменение запасов углерода равно изменению запасов углерода из-за удаления биомассы из исходящего землепользования (т. Е. Лесных угодий) плюс углерод. запасы углерода за один год роста входящего землепользования (т. е. пахотных земель) или углерода в биомассе сразу после преобразования минус углерод в биомассе до преобразования плюс запасы углерода за год роста входящего землепользования ( я.е., пахотные земли) (IPCC 2006). Запас углерода в годовой биомассе пахотных земель через год составляет 5 метрических тонн C на гектар, а содержание углерода в сухой надземной биомассе составляет 45 процентов (IPCC 2006). Таким образом, запас углерода в пахотных землях после одного года роста оценивается в 2,25 метрических тонны C на гектар (или 0,91 метрических тонны C на акр).

Среднее значение эталонного запаса углерода в почве (для высокоактивной глины, малоактивной глины, песчаных почв и гистосолей для всех климатических регионов США) составляет 40.83 метрических тонны C / га (EPA 2020). Изменение запасов углерода в почвах зависит от времени, при этом период по умолчанию для перехода между равновесными значениями углерода в почве составляет 20 лет для почв в системах возделываемых земель (IPCC 2006). Следовательно, предполагается, что изменение равновесного почвенного углерода будет рассчитываться в годовом исчислении в течение 20 лет, чтобы представлять годовой поток в минеральных и органических почвах.

Органические почвы также выделяют CO 2 при осушении. Выбросы из осушаемых органических почв в лесных угодьях и осушенных органических почв на пахотных землях варьируются в зависимости от глубины дренажа и климата (IPCC 2006).Реестр выбросов и стоков парниковых газов США: 1990–2018 гг. оценивает выбросы от осушенных органических почв с использованием коэффициентов выбросов для пахотных земель, специфичных для США, и коэффициентов выбросов по умолчанию для лесных угодий МГЭИК (2014) (EPA 2020).

Годовое изменение выбросов с одного гектара осушенных органических почв может быть рассчитано как разница между коэффициентами выбросов для лесных почв и почв пахотных земель. Коэффициенты выбросов для осушенной органической почвы на лесных угодьях умеренного пояса равны 2.60 метрических тонн C / га / год и 0,31 метрических тонн C / га / год (EPA 2020, IPCC 2014), а средний коэффициент выбросов для осушенной органической почвы на пахотных землях для всех климатических регионов составляет 13,17 метрических тонн C / га / год ( EPA 2020).

Руководящие принципы IPCC (2006) указывают на то, что недостаточно данных для обеспечения подхода или параметров по умолчанию для оценки изменения запасов углерода из резервуаров мертвого органического вещества или подземных запасов углерода на многолетних возделываемых землях (IPCC 2006).

Расчет для преобразования U.S. От лесов к пахотным землям США

Годовое изменение запасов углерода биомассы на землях, переустроенных в другую категорию землепользования

∆CB = ∆C G + C Преобразование — ∆C L

Где:

∆CB = годовое изменение запасов углерода в биомассе на землях, переустроенных в другую категорию землепользования (т. Е. Изменение биомассы на землях, переустроенных из леса в пахотные земли)

∆C G = ежегодное увеличение запасов углерода в биомассе из-за роста земель, переустроенных в другую категорию землепользования (т.е., 2,25 метрических тонны C / га на пахотных землях через год после преобразования из лесных угодий)

C Преобразование = начальное изменение запасов углерода в биомассе на землях, переустроенных в другую категорию землепользования. Сумма запасов углерода в надземной, подземной биомассе, валежной древесине и подстилочной биомассе (-86,97 метрических тонн C / га). Сразу после преобразования лесных угодий в пахотные земли предполагается, что запас углерода надземной биомассы равен нулю, так как земля очищается от всей растительности перед посадкой сельскохозяйственных культур)

∆C L = ежегодное уменьшение запасов биомассы из-за потерь от лесозаготовок, сбора топливной древесины и нарушений на землях, переустроенных в другую категорию землепользования (принимается равной нулю)

Следовательно, : ∆CB = ∆C G + C Преобразование — ∆C L = -84.72 метрических тонны С / га / год запасов углерода биомассы теряются, когда лесные угодья превращаются в пахотные земли в год преобразования.

Годовое изменение запасов органического углерода в минеральных и органических почвах

∆C Почва = (SOC 0 — SOC (0 T) ) / D Где:

∆C Почва = годовое изменение запасов углерода в минеральных и органических почвах

SOC 0 = запасов органического углерода в почве за последний год периода инвентаризации (т.е., 40,83 мт / га, средний эталонный запас углерода в почве)

SOC (0 T) = запасы органического углерода в почве на начало периода инвентаризации (т. е. 113 мт C / га, что включает 92 т C / га в минеральных почвах плюс 21 т C / га в органических почвах)

D = Временная зависимость коэффициентов изменения запасов, которая является периодом времени по умолчанию для перехода между равновесными значениями SOC (т. е. 20 лет для систем пахотных земель)

Следовательно, : ∆C Почва = (SOC 0 — SOC (0-T) ) / D = (40.83 — 113) / 20 = -3,60 метрических тонн C / га / год потери углерода в почве.

Источник : (IPCC 2006) .

Годовое изменение выбросов из осушенных органических почв

В Реестре выбросов и стоков парниковых газов США: 1990–2018 гг. используются стандартные коэффициенты МГЭИК (2014) для осушенной органической почвы на лесных землях и коэффициенты, специфичные для США для возделываемых земель. Изменение выбросов от осушенных органических почв на гектар оценивается как разница между коэффициентами выбросов для осушенных органических лесных почв и осушенных органических почв пахотных земель.

∆L Органические = EF пахотные земли — EF лесные угодья

Где:

∆L Органические = Годовое изменение выбросов от осушенных органических почв 962

на гектар пахотные земли = 13,17 метрических тонн C / га / год (среднее значение коэффициентов выбросов для осушенных органических почв пахотных земель в субтропическом, умеренно холодном и умеренно теплом климатах в США) (EPA 2020)

EF лесные угодья = 2.60 + 0,31 = 2,91 метрических тонн C / га / год (коэффициенты выбросов для умеренно осушенных органических лесных почв) (IPCC 2014)

L органических = 13,17 — 2,91 = 10,26 метрических тонн C / га / год выбрасывается

Следовательно, изменение плотности углерода в результате преобразования лесных угодий в пахотные земли составит -84,72 метрических тонны C / гектар / год биомассы плюс -3,60 метрических тонны C / гектар / год почвы C, минус 10,26 метрических тонн C / га / год от осушенных органических почв, что равняется общей потере 98.5 метрических тонн C / га / год (или -39,89 метрических тонн C / акр / год) в год преобразования. Чтобы преобразовать его в диоксид углерода, умножьте его на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12), чтобы получить значение -361,44 метрических тонны CO 2 / га / год (или -147,27 метрических тонн. CO 2 / акр / год) в год конверсии.

Коэффициент преобразования для углерода, секвестрированного 1 акром леса, сохраненного после преобразования в возделываемые земли

Примечание: из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

-39,89 метрических тонн C / акр / год * x (44 единицы CO 2 /12 единиц C) = — 146,27 метрических тонн CO 2 / акр / год (в год преобразования)

* Отрицательные значения указывают на то, что CO 2 НЕ излучается.

Для оценки выбросов CO 2 , которые не выбрасываются, когда акр леса сохраняется от преобразования в пахотные земли, просто умножьте количество акров леса, не преобразованных в пахотные земли, на -146,27 мт CO 2 / акр / год. Обратите внимание, что это представляет собой CO 2 , которых удалось избежать в год конверсии.Также обратите внимание, что этот метод расчета предполагает, что вся лесная биомасса окисляется во время вырубки (т. Е. Ни одна из сгоревших биомассов не остается в виде древесного угля или золы) и не включает углерод, хранящийся в древесных продуктах после сбора урожая. Также обратите внимание, что эта оценка включает запасы углерода как в минеральной, так и в органической почве.

Источники

Пропановые баллоны, используемые для домашних барбекю

Пропан на 81,7% состоит из углерода (EPA 2020). Предполагается, что окисленная фракция составляет 100 процентов (IPCC 2006).

Выбросы диоксида углерода на фунт пропана были определены путем умножения веса пропана в баллоне на процентное содержание углерода, умноженное на долю окисленной фракции, умноженную на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12). Пропановые баллоны различаются по размеру; для целей этого расчета эквивалентности предполагалось, что типичный баллон для домашнего использования содержит 18 фунтов пропана.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

18 фунтов пропана / 1 баллон × 0,817 фунта C / фунт пропана × 0,4536 кг / фунт × 44 кг CO 2 /12 кг C × 1 метрическая тонна / 1000 кг = 0,024 метрических тонны CO 2 / баллон

Источники

Сгоревшие вагоны с углем

Среднее теплосодержание угля, потребленного электроэнергетическим сектором США в 2018 году, составило 20,85 млн БТЕ на метрическую тонну (EIA 2019). Средний углеродный коэффициент угля, сжигаемого для выработки электроэнергии в 2018 году, составил 26.09 килограммов углерода на миллион БТЕ (EPA 2020). Предполагается, что окисленная фракция составляет 100 процентов (IPCC 2006).

Выбросы диоксида углерода на тонну угля были определены путем умножения теплосодержания на коэффициент углерода, умноженную на окисленную фракцию, на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12). Предполагалось, что количество угля в среднем вагоне составляет 100,19 коротких тонн или 90,89 метрических тонн (Hancock 2001).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

20,85 млн БТЕ / метрическая тонна угля × 26,09 кг С / млн БТЕ × 44 кг CO 2 /12 кг C × 90,89 метрических тонн угля / железнодорожный вагон × 1 метрическая тонна / 1000 кг = 181,29 метрических тонн CO 2 / железнодорожный вагон

Источники

  • EIA (2019). Ежемесячный обзор энергетики, ноябрь 2019 г., Таблица A5: Приблизительное теплосодержание угля и угольного кокса. (PDF) (1 стр., 56 КБ, О программе PDF)
  • EPA (2020 г.). Реестр выбросов и стоков парниковых газов в США: 1990-2018 гг. Приложение 2 (Методология оценки выбросов CO 2 от сжигания ископаемого топлива), Таблица A-43.Агентство по охране окружающей среды США, Вашингтон, округ Колумбия. Агентство по охране окружающей среды США № 430-R-20-002 (PDF) (108 стр., 3 МБ, О программе в формате PDF).
  • Хэнкок (2001). Хэнкок, Кэтлин и Срикант, Анд. Перевод веса груза в количество вагонов . Совет по исследованиям в области транспорта , Paper 01-2056, 2001.
  • IPCC (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г. Том 2 (Энергия). Межправительственная группа экспертов по изменению климата, Женева, Швейцария.

Фунтов сожженного угля

Средняя теплосодержание угля, потребляемого электроэнергетикой в ​​США.S. в 2018 году составила 20,85 млн БТЕ на метрическую тонну (EIA 2019). Средний коэффициент углерода для угля, сжигаемого для выработки электроэнергии в 2018 году, составил 26,09 кг углерода на 1 млн БТЕ (EPA, 2019). Окисленная фракция составляет 100 процентов (IPCC 2006).

Выбросы диоксида углерода на фунт угля были определены путем умножения теплосодержания на коэффициент углерода, умноженную на окисленную фракцию, на отношение молекулярной массы диоксида углерода к молекулярной массе углерода (44/12).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

20,85 млн БТЕ / метрическая тонна угля × 26,09 кг С / млн БТЕ × 44 кг CO 2 /12 кг C × 1 метрическая тонна угля / 2204,6 фунта угля x 1 метрическая тонна / 1000 кг = 9,05 x 10 -4 метрических тонн CO 2 / фунт угля

Источники

  • EIA (2019). Ежемесячный обзор энергетики, ноябрь 2019 г., Таблица A5: Приблизительное теплосодержание угля и угольного кокса. (PDF) (1 стр., 56 КБ, О программе PDF)
  • EPA (2020 г.). Реестр выбросов и стоков парниковых газов в США: 1990-2018 гг.Приложение 2 (Методология оценки выбросов CO 2 от сжигания ископаемого топлива), Таблица A-43. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия. Агентство по охране окружающей среды США № 430-R-20-002 (PDF) (108 стр., 2 МБ, О программе в формате PDF).
  • IPCC (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г. Том 2 (Энергия). Межправительственная группа экспертов по изменению климата, Женева, Швейцария.

Тонны рециркулируемых отходов вместо захоронения

Для разработки коэффициента преобразования для переработки, а не захоронения отходов, были использованы коэффициенты выбросов из модели сокращения отходов (WARM) Агентства по охране окружающей среды (EPA 2019).Эти коэффициенты выбросов были разработаны в соответствии с методологией оценки жизненного цикла с использованием методов оценки, разработанных для национальных кадастров выбросов парниковых газов. Согласно WARM, чистое сокращение выбросов от переработки смешанных вторсырья (например, бумаги, металлов, пластмасс) по сравнению с базовым уровнем, в котором материалы вывозятся на свалки (т.е. с учетом предотвращенных выбросов от захоронения), составляет 2,94 метрических тонны углерода. эквивалент диоксида на короткую тонну.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

2,94 метрических тонны CO 2 эквивалента / тонна переработанных отходов вместо захоронения

Источники

Количество мусоровозов с переработанными отходами вместо захоронения

Выбросы в эквиваленте диоксида углерода, которых удалось избежать при переработке вместо захоронения 1 тонна отходов составляет 2,94 метрических тонны CO 2 эквивалента на тонну, как рассчитано в разделе «Тонны отходов, рециркулируемых вместо захоронения» выше.

Сокращение выбросов углекислого газа на каждый мусоровоз, заполненный отходами, был определен путем умножения выбросов, которых удалось избежать при переработке вместо захоронения 1 тонны отходов, на количество отходов в среднем мусоровозе.Предполагалось, что количество отходов в среднем мусоровозе составляет 7 тонн (EPA 2002).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

2,94 метрических тонны CO 2 эквивалента / тонна переработанных отходов вместо захоронения x 7 тонн / мусоровоз = 20,58 метрических тонн CO 2 E / мусоровоз для утилизации отходов вместо захоронения

Источники

Мусор мешки с отходами переработаны вместо захоронения

Согласно WARM, чистое сокращение выбросов от переработки смешанных вторсырья (например,g., бумага, металлы, пластмассы) по сравнению с базовым уровнем, при котором материалы вывозятся на свалки (т. е. с учетом предотвращенных выбросов от захоронения), составляет 2,94 метрических тонны эквивалента CO 2 на короткую тонну, как рассчитано в « Тонны отходов перерабатываются, а не вывозятся на свалки »выше.

Сокращение выбросов углекислого газа на каждый мешок для мусора, заполненный отходами, было определено путем умножения выбросов, которых удалось избежать при переработке вместо захоронения 1 тонны отходов, на количество отходов в среднем мешке для мусора.

Количество отходов в среднем мешке для мусора было рассчитано путем умножения средней плотности смешанных вторсырья на средний объем мешка для мусора.

Согласно стандартным коэффициентам преобразования объема в вес EPA, средняя плотность смешанных вторсырья составляет 111 фунтов на кубический ярд (EPA 2016a). Предполагалось, что объем мешка для мусора стандартного размера составляет 25 галлонов, исходя из типичного диапазона от 20 до 30 галлонов (EPA 2016b).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

2,94 метрических тонны CO 2 эквивалента / короткая тонна отходов, переработанных вместо захоронения × 1 короткая тонна / 2000 фунтов × 111 фунтов отходов / кубический ярд × 1 кубический ярд / 173,57 сухих галлонов × 25 галлонов / мешок для мусора = 2,35 x 10 -2 метрических тонн CO 2 эквивалента / мешок для мусора утилизируются вместо захоронения

Источники

Выбросы угольных электростанций за один год

В 2018 году в общей сложности использовалось 264 электростанции уголь для выработки не менее 95% электроэнергии (EPA 2020).Эти электростанции выбросили 1 047 138 303,3 метрических тонны CO 2 в 2018 году.

Выбросы углекислого газа на одну электростанцию ​​были рассчитаны путем деления общих выбросов электростанций, основным источником топлива которых был уголь, на количество электростанций.

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

1 047 138 303,3 метрических тонны CO 2 × 1/264 электростанции = 3 966 432.97 метрических тонн CO 2 / электростанция

Источники

  • EPA (2020). Данные eGRID за 2018 год. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.

Количество ветряных турбин, работающих в течение года

В 2018 году средняя паспортная мощность ветряных турбин, установленных в США, составила 2,42 МВт (DOE 2019). Средний коэффициент ветроэнергетики в США в 2018 году составил 35 процентов (DOE 2019).

Выработка электроэнергии от средней ветряной турбины была определена путем умножения средней паспортной мощности ветряной турбины в Соединенных Штатах (2.42 МВт) на средний коэффициент ветроэнергетики США (0,35) и на количество часов в году. Предполагалось, что электроэнергия, произведенная от установленной ветряной турбины, заменит маржинальные источники сетевой электроэнергии.

Годовая предельная норма выбросов ветра в США для преобразования сокращенных киловатт-часов в предотвращенные единицы выбросов углекислого газа составляет 6,48 x 10 -4 (EPA 2020).

Выбросы углекислого газа, которых удалось избежать за год на установленную ветряную турбину, были определены путем умножения среднего количества электроэнергии, вырабатываемой одной ветряной турбиной в год, на годовой национальный предельный уровень выбросов ветра (EPA 2020).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

2,42 МВт Средняя мощность x 0,35 x 8760 часов в год x 1000 кВтч / МВтч x 6,4818 x 10 -4 метрических тонн CO 2 / кВтч уменьшено = 4807 метрических тонн CO 2 / год / ветряная турбина установлено

Источники

Количество заряженных смартфонов

По данным Министерства энергетики США, 24-часовая энергия, потребляемая обычным аккумулятором смартфона, составляет 14.46 ватт-часов (DOE 2020). Сюда входит количество энергии, необходимое для зарядки полностью разряженного аккумулятора смартфона и поддержания этого полного заряда в течение дня. Среднее время, необходимое для полной зарядки аккумулятора смартфона, составляет 2 часа (Ferreira et al. 2011). Мощность в режиме обслуживания, также известная как мощность, потребляемая, когда телефон полностью заряжен, а зарядное устройство все еще подключено, составляет 0,13 Вт (DOE 2020). Чтобы получить количество энергии, потребляемой для зарядки смартфона, вычтите количество энергии, потребляемой в «режиме обслуживания» (0.13 Вт умножить на 22 часа) от потребляемой за 24 часа энергии (14,46 Вт-часов).

Выбросы углекислого газа на заряженный смартфон были определены путем умножения энергопотребления на заряженный смартфон на средневзвешенный уровень выбросов углекислого газа по стране для поставленной электроэнергии. Средневзвешенный национальный уровень выбросов диоксида углерода для поставленной электроэнергии в 2019 году составил 1562,4 фунта CO 2 на мегаватт-час, что учитывает потери при передаче и распределении (EPA 2020).

Расчет

Примечание. Из-за округления выполнение расчетов, приведенных в приведенных ниже уравнениях, может не дать точных результатов.

[14,46 Втч — (22 часа x 0,13 Вт)] x 1 кВтч / 1000 Втч = 0,012 кВтч / заряженный смартфон

0,012 кВтч / заряд x 1562,4 фунта CO 2 / МВтч поставленной электроэнергии x 1 МВтч / 1000 кВтч x 1 метрическая тонна / 2204,6 фунта = 8,22 x 10 -6 метрических тонн CO 2 / смартфон заряжен

Источники

  • DOE (2020).База данных сертификатов соответствия. Программа стандартов энергоэффективности и возобновляемых источников энергии для приборов и оборудования.
  • EPA (2029 г.). AVERT, США, средневзвешенная норма выбросов CO 2 , данные за 2019 год. Агентство по охране окружающей среды США, Вашингтон, округ Колумбия.
  • Федеральный регистр (2016). Программа энергосбережения: стандарты энергосбережения для зарядных устройств; Заключительное правило, стр. 38 284 (PDF) (71 стр., 0,7 МБ, О PDF).
  • Феррейра, Д., Дей, А. К., & Костакос, В. (2011). Понимание проблем человека и смартфона: исследование времени автономной работы. Pervasive Computing, стр. 19-33. DOI: 10.1007 / 978-3-642-21726-5_2.

1 Годовые убытки от передачи и распределения в США в 2019 году были определены как ((Чистая генерация в сеть + Чистый импорт — Общий объем продаж электроэнергии) / Общий объем продаж электроэнергии) (т.е. (3988 + 48–3762) / 3762 = 7,28% ). Этот процент учитывает все потери при передаче и распределении, которые возникают между чистым производством и продажей электроэнергии.Данные взяты из Annual Energy Outlook 2020, таблица A8: поставка, утилизация, цены и выбросы электроэнергии, доступная по адресу: https://www.eia.gov/outlooks/aeo/.

Расчеты груза

на танкерах с таблицами ASTM: вот все, что вам нужно знать

Мы делаем так много для того, чтобы судовладельцы получали максимальную отдачу от своих вложений в покупку и эксплуатацию судна.

Следим за тем, чтобы на корабле было меньше констант, до последней капли откачан балласт и многое другое в этом роде.

Все это для того, чтобы у нас была возможность погрузить максимум груза и у судовладельца был шанс заработать на этом максимум.

Но пока мы делаем все это, иногда мы просто не можем правильно делать более простые вещи.

Вещи такие простые, как расчет груза.

Это то, что руководитель не может позволить себе сделать неправильно.

Но вот в чем дело. Иногда бывает сложно разобраться в этих расчетах. Есть так много таблиц, которые можно использовать, и так много терминов, которые плавают.

Иногда бывает сложно понять, какой использовать и зачем.

Но не волнуйтесь !!! Эта статья призвана упростить расчет грузов на танкерах.

Поехали.

Основные сведения об объеме и весе

Прежде чем переходить к сложным вещам, лучше начать с основ.

Объемы и масса !!!

Объем изменяется в зависимости от температуры, но вес остается прежним.

Даже когда мы слышим некоторый вес груза, скажем, 30000 тонн груза, есть две вещи, о которых нам нужно знать.

1. Единица веса

Какая единица измерения этого веса? Это

  • Метрическая тонна
  • Длинная тонна
  • Короткая тонна

2. В воздухе или в вакууме

Вес измеряется не только в единицах измерения, но и в воздухе или в вакууме.

Хотя на судах чаще всего измеряют вес груза в воздухе, иногда вы можете обнаружить, что фрахтователи устанавливают требования для измерения веса в вакууме.

Помните, что для расчета остойчивости и осадки нам все равно потребуется использовать вес в воздухе.

Возвращаясь к теме, можете ли вы угадать, при таком же количестве груза, какой вес будет больше? Вес в воздухе или вес в вакууме?

Нет проблем, сделайте безумное предположение, даже если вы не знаете.

Ну, вес в вакууме всегда больше, чем вес в воздухе.

Это связано с тем, что, как и в случае с водой, воздух (и любая другая среда, в которой присутствует вес) будет обладать некоторой плавучестью, которая снижает вес.

В вакууме плавучесть отсутствует и, следовательно, вес больше, чем такой же вес при измерении в воздухе.

Преобразование веса в вакууме в вес в воздухе и наоборот

Хорошо, теперь вот первое, чему мы можем научиться. Как преобразовать вес в вакууме в вес в воздухе?

На первой странице таблицы 56 ASTM указан коэффициент для преобразования веса в вакууме в вес в воздухе и наоборот.

Основы расчета грузов

Хорошо, теперь вернемся к основам расчета грузов на танкерах. И это не так уж сложно.

Сначала мы измеряем незаполненный объем (или зондирование) резервуаров с помощью ленты UTI (или радарного датчика в CCR).

Мы также измеряем температуру груза, предпочтительно на трех уровнях, и берем среднее значение этих трех температур, чтобы получить температуру груза.

Итак, вот что у нас есть.

Теперь мы получаем объемы для каждого из этих резервуаров для исправленного незаполненного объема, который у нас есть.

Это будет объем при наблюдаемой температуре. Помните, что объем меняется в зависимости от температуры.

Это будет объем при наблюдаемой температуре.Помните, что объем меняется в зависимости от температуры.

Допустим, мы получили объемы из таблиц незаполненного объема, а объемы для каждого резервуара указаны ниже.

Поскольку объем изменяется в зависимости от температуры, это не может быть мерой того, сколько груза мы погрузили или выгружали.

Нам нужно перевести объемы в вес груза в каждом танке. Нам нужна плотность груза, чтобы преобразовать объем груза в вес.

И поскольку плотность также изменяется с температурой, нам потребуется плотность груза при температуре груза, чтобы преобразовать наблюдаемый объем в вес.

Если этого было недостаточно, людям на этой планете Земля удалось еще больше запутать это.

  • Объемы измеряются в кубических метрах в одних местах и ​​в бочках (например, в США) в других
  • Вес измеряется в метрических тоннах в одних местах и ​​в длинных тоннах в других местах и ​​в бочках при температуре 60 градусов по Фаренгейту в других местах.
  • Плотность измеряется как плотность в т / м3 в некоторых местах и ​​API или удельный вес в других местах

Но пусть все это вас не сбивает с толку.Я не позволю вам сбить с толку. Сделайте глубокий вдох и читайте дальше.

Сначала проверьте, какой сюрвейер вам предоставил.

Сюрвейер предоставит

  • Плотность при определенной температуре и поправочный коэффициент
  • А Таблица плотностей при разных температурах
  • Плотность при 15 ° C и таблица ASTM для использования
  • Плотность API при 60 градусах F и таблица ASTM для использования

Рассчитаем вес груза в каждой из этих ситуаций.

1. Плотность при определенной температуре и поправочный коэффициент

Допустим, инспектор груза предоставил нам плотность при определенной температуре и поправочный коэффициент.

Допустим, предоставленные значения —

  • Плотность при 25 ° C: 0,9155
  • Поправочный коэффициент плотности: 0,0006 на градус Цельсия

Это означает, что при повышении температуры на каждый градус плотность будет уменьшаться на 0,0006.

Это означает, что

  • Плотность при 31 ° C будет: 0.9119
  • Плотность при 32 ° C будет: 0,9113
  • Плотность при 34 ° C будет: 0,9101
  • Плотность при 35 ° C будет: 0,9095

Итак, в этом случае мы просто применяем эти плотности, чтобы получить вес груза в каждом танке и, следовательно, общий вес груза.

Вот как будет выглядеть отчет о незаполненном объеме.

2. Таблица плотностей при разных температурах

Инспектор груза может предоставить таблицу плотности при различных температурах.Это даже проще, чем в предыдущем разделе, который мы обсуждали.

Таблица плотности может выглядеть примерно так.

Расчет груза в этом случае также прост. Мы просто приводим плотность груза к соответствующей температуре груза, которую мы измерили.

Остальные вычисления такие же, как и в предыдущем разделе.

Если температура груза находится между двумя значениями в таблице плотности, мы просто интерполируем, чтобы получить плотность при желаемой температуре.

3. Плотность при 15 ° C и таблица ASTM для использования

Два предыдущих метода полезны и применимы для грузов, плотность которых изменяется пропорционально температуре.

Эти методы в основном используются для расчета химических грузов.

Но для нефтепродуктов и сырой нефти таблицы ASTM используются для расчета веса груза.

В таблицах

ASTM приведены поправочные коэффициенты объема (VCF) для определения объемов при температуре, для которых указана плотность.

Допустим, инспектор груза предоставил плотность при 15 ° C как 0,816 и таблицу 54B ASTM.

Давайте использовать те же объемы и температуры, которые мы использовали в нашем первоначальном примере.

Итак, сначала нам нужно найти VCF из таблицы 54 ASTM для температуры 34 ° C.

Перейдите к таблице 54 ASTM и посмотрите плотность 816,0 при 15 ° C и температуру 34,0 ° C

Итак, как мы видим, для температуры 34 ° C поправочный коэффициент объема равен 0.9830.

Аналогичным образом нам нужно найти VCF для грузовых температур других танков.

И когда VCF применяется к объемам при наблюдаемой температуре, мы получаем объемы при 15 ° C, которые также называют «стандартным объемом».

Вот как будет выглядеть отчет о незаполненном объеме.

Сейчас во многих местах может использоваться стандартный объем вместо веса. Стандартный объем груза также останется прежним, поскольку это объем при фиксированной температуре (15 ° C).

Но в любом случае нам все равно нужен вес груза, поскольку для расчетов остойчивости нужен вес груза в каждом танке, а не стандартный объем.

Получить вес из стандартного объема просто. У нас есть объем при 15 ° C и плотность при 15 ° C.

Если мы умножим эти два, мы получим вес по простой формуле.

Но подождите.

Плотность при 15 ° C — это всегда плотность в вакууме. Итак, если просто умножить эту плотность на стандартный объем, мы получим вес в вакууме.

Итак, нам нужно либо преобразовать вес в вакууме в вес в воздухе, как мы обсуждали ранее, либо мы можем просто преобразовать плотность в вакууме в плотность в воздухе.

Существует простая взаимосвязь между плотностью в вакууме и плотностью в воздухе.

И мы называем это поправочным коэффициентом веса (WCF).

Итак, в нашем случае WCF будет: 0,8149.

Когда мы применяем этот WCF к стандартному объему, мы получаем вес груза в Air.

В приведенном выше отчете о незаполненном объеме я применил WCF к стандартному объему брутто, но мы можем легко сделать одну дополнительную колонку и применить WCF к стандартному объему каждого резервуара, чтобы получить вес в воздухе для каждого резервуара.

4. Плотность в градусах API при 60 градусах F и таблица ASTM для использования

Порты, подобные портам в США, не используют метрическую систему и, следовательно, не используют плотность.

Вместо этого в этих портах используется плотность в градусах API при 60 градусах Фаренгейта.

И, как вы могли догадаться правильно, эти порты также измеряют температуру не в градусах Цельсия, а в градусах F.

Также объем измеряется в бочках, а не в кубических метрах.

Итак, когда мы в этих портах, нам нужно иметь объемы в баррелях и температуру в градусах F.

Это не такая уж и сложная задача. Их можно преобразовать по простой формуле.

Вот как будут выглядеть данные об объемах и температурах в отчете о незаполненном объеме для этих портов.

Следуя тому же принципу, что и ранее, нам нужно довести этот объем до уровня 60 градусов по Фаренгейту.

И для этого нам нужно применить поправочный коэффициент объема.

Нам нужно использовать таблицу, которую мы можем ввести с предоставленной плотностью в градусах API при 60 градусах F и наблюдаемой температурой в резервуаре, чтобы получить VCF (коэффициент поправки на объем).

Это таблица 6B ASTM.

Допустим, инспектор груза предоставил плотность в градусах API при 60 F, равную 66,0

Найдем VCF для температуры 95 градусов F.

Как видно из таблицы 6B, поправочный коэффициент объема для API при 60 градусах F составляет 66.0 и температура 95 градусов по Фаренгейту составляет 0,9748.

Конечно, если температура или API находится между двумя значениями, перечисленными в таблице 6B ASTM, нам необходимо выполнить интерполяцию, чтобы получить правильный VCF.

Хорошо. Таким же образом мы получаем VCF (коэффициент поправки на объем) для других требуемых температур, которые мы измерили в каждом резервуаре.

И когда мы умножаем объем при наблюдаемой температуре на VCF, мы получаем стандартный объем, на этот раз объем при 60 градусах F.

Нам нужно применить поправочный коэффициент веса (WCF) к стандартному объему, чтобы получить вес груза.

Существуют различные таблицы ASTM для получения WCF для известного API при 60 градусах F.

  • Таблица 9 ASTM: Заставить WCF преобразовывать стволы при 60 градусах F в короткие тонны в воздухе.
  • ASTM Таблица 11: Заставить WCF преобразовать бочки при 60 градусах F в длинные тонны в воздухе.
  • ASTM Таблица 13: Чтобы заставить WCF преобразовывать баррели при 60 градусах F в метрические тонны в воздухе.

Допустим, мы заинтересованы в вычислении веса в метрических тоннах в воздухе.

В этом случае мы будем использовать таблицу 13 ASTM для получения поправочного коэффициента веса (WCF).

Итак, в таблице ASTM найдите плотность API 66 и найдите WCF (который выражается в тоннах на баррели).

Итак, как мы выяснили, коэффициент пересчета веса для API 66 составляет 0,11362.

Мы можем применить этот WCF к стандартному объему, чтобы получить вес груза в воздухе.

Теперь окончательный отчет о незаполненном объеме будет выглядеть следующим образом.

Другие таблицы ASTM

Пока мы знаем, что нам нужно использовать таблицу 54 ASTM (54A для сырой нефти и 54B для продуктов) для VCF и таблицу 56 для WCF, когда нам предоставили плотность 15 C.

И в портах, таких как США, где указана плотность в градусах API при 60 F, нам необходимо использовать таблицу 6 ASTM (6A для сырой нефти и 6B для продуктов) для VCF.

И таблицы ASTM 9, 11 или 13 для WCG.

Но есть и другие таблицы ASTM, которые дополняют эти таблицы, которые мы обсуждали до сих пор.

Например, чтобы рассчитать вес груза по таблице ASTM 6 (6A или 6B), нам необходимо предоставить нам плотность в градусах API при 60F.

Но что, если нам предоставят плотность в градусах API при какой-либо другой температуре, скажем, при 80 градусах по Фаренгейту?

Затем есть таблица 5 ASTM (5A для сырой нефти и 5B для продуктов), которая может использоваться для преобразования API при любой температуре в API при 60 градусах F.

Аналогичным образом, таблица 53 ASTM (53A для сырой нефти и 53B для продуктов) может использоваться для преобразования плотности при некоторой температуре в плотность при 15 ° C.

Ой !!! А что, если вы загружаете груз из США, где используется плотность в градусах API при 60 градусах F, и выгружаете этот груз в порту, где они хотят использовать плотность при 15 градусах C.

Что ж, есть таблица 3 ASTM для преобразования API при 60 ° F в плотность при 15 ° C.

Хотя таблицы ASTM, которые мы обсуждали в предыдущих разделах, являются наиболее часто используемыми, существуют и другие таблицы ASTM, которые дополняют эти основные таблицы.

И даже для основных таблиц ASTM информацию о том, какую таблицу необходимо использовать для расчета груза, предоставляет сюрвейер груза.

Нам необходимо следовать информации, предоставленной инспектором груза, потому что это будет таблица, которая используется для береговых расчетов, и нам нужно использовать ее, чтобы избежать разницы в количестве судов на берегу.

Заключение

Расчеты груза иногда бывают непростыми.

Не потому, что это сложно, а потому, что существует множество вариаций.

Но мы должны понимать, что на самом базовом уровне мы рассчитываем объем по таблицам незаполненного объема, и нам нужно обеспечить плотность при той же температуре, что и груз.

Умножаем оба значения и получаем вес груза.

Но для нефтеналивных грузов нам предоставляется плотность 15 ° C или 60 ° F по API.

В этом случае нам нужно получить поправочный коэффициент объема (VCF), чтобы преобразовать объем при наблюдаемой температуре в стандартный объем, который является объемом при 15 ° C или объемом при 60 ° F соответственно.

Затем нам нужно применить коэффициент поправки на вес (WCF), чтобы преобразовать стандартный объем в вес.

Различные таблицы ASTM предоставляют значения для VCF и WCF.

Существуют разные таблицы ASTM для сырой нефти и нефтепродуктов.

Буква A предназначена для сырой нефти, а буква B — для нефтепродуктов. Таблицы ASTM без букв являются общими как для сырой нефти, так и для нефтепродуктов.

Воспользуйтесь таблицами ASTM, и вы обнаружите, что расчеты груза не так сложны, как кажется.

Коэффициенты преобразования

Приведенная ниже таблица предназначена для помощи читателям в переводе цен, измеренных в долларах США за 1000 досок или квадратных футов, в доллары за кубический метр. Эти преобразования работают только для материала размером один или два дюйма. Наиболее часто используемая функция — ЖИРНЫЙ (умножение на для лесоматериалов и деление на для панельных изделий).

Пиломатериалы Пример: если цена элемента 1×6 или 2×6 составляла 300 долларов за 1000 футов доски, умножьте его на 0.6167, чтобы найти цену в долларах за кубический метр, которая в этом примере составит 185 долларов за кубический метр.

Панельные изделия Пример: Если цена элемента 3/4 составляла 665 долларов за 1000 квадратных футов, разделите на 1,770, чтобы найти цену в долларах за кубический метр, которая в этом примере составит 376 долларов за кубический метр.

Коэффициенты преобразования

Разделить на

Умножить на

Продукция из древесины (1000 досок футов)

$ / mbf (спил) => $ / m 3 2.3585 0,4240
$ / mbf (1×3 или 2×3) => $ / m 3 1.4741 0,6784
$ / mbf (1×4 или 2×4) => $ / m 3 1,5478 0,6461
$ / мбф (1×6 или 2×6) => $ / м 3 1.6215 0,6167
$ / мбр (1×8 или 2×8) => $ / м 3 1.6030 0,6238
$ / mbf (1×10 или 2×10) => $ / m 3 1,6362 0,6112
$ / mbf (1×12 или 2×12) => $ / m 3

1.6583

0.6030

Панельные изделия (1000 квадратных футов)

$ / msf (1/4 дюйма) => $ / м 3 0.590 1,695
$ / msf (11/32 дюйма) => $ / м 3 0,810 1,235
$ / MSF (3/8 дюйма) => $ / м 3 0,885 1,130
$ / MSF (7/16 дюйма) => $ / м 3 1.033 0,968
$ / msf (15/32 дюйма) => $ / м 3 1.110 0,901
$ / msf (1/2 дюйма) => $ / м 3 1,180 0,847
$ / msf (19/32 дюйма) => $ / м 3 1.400 0,714
$ / MSF (5/8 дюйма) => $ / м 3 1,480 0,676
$ / msf (23/32 дюйма) => $ / м 3 1.700 0,588
$ / msf (3/4 дюйма) => $ / м 3 1,770 0,565
$ / msf (6,0 мм) => $ / м 3 0,559 1,789
$ / msf (9,5 мм) => $ / м 3 0,885 1,130
$ / MSF (11.5 мм) => $ / м 3 1.071 0,934
$ / MSF (12,0 мм) => $ / м 3 1,117 0,895
  • Для международных рейсов произвольной длины цены указаны в валюте США ($) или Канады ($ C). Цены собраны в футах досок / квадратных футах и ​​конвертируются в кубические метры с использованием приведенных выше формул. Наиболее часто используемые функции выделены жирным шрифтом.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *