Расчет биметаллических радиаторов отопления на квадратный метр: Расчет количества секций биметаллических радиаторов отопления

Расчет количества секций биметаллического радиатора – сколько нужно ребер

Секрет популярности биметаллических радиаторов заключается в том, что по своей эффективности они не уступают традиционным чугунным батареям, однако при этом они имеют лучшие технико-эксплуатационные характеристики. К числу неоспоримых преимуществ относят:

  • Высокий коэффициент теплоотдачи.
  • Продолжительный срок службы, составляющий более 20 лет.
  • Стильный и аккуратный внешний вид.
  • Сравнительно небольшой вес, что существенно упрощает установочные работы.
  • Наличие ниппелей, обеспечивающих возможность соединять секции, благодаря чему радиатор можно «нарастить».
Отметим, что зачастую необходимость в наращивании возникает, например, если при покупке был выбран прибор с неподходящим числом секций или по другим причинам. Чтобы изначально не ошибиться в подборе оптимальной модели, нужно знать, как выполнить расчет радиаторов отопления биметаллических, то есть оптимального числа секций.  Кстати, сделать это можно самостоятельно, не прибегая к помощи профессионалов, при этом для расчета используются различные методики.


Почему нужно делать расчет, а не выбирать радиатор «на глаз»?

Обратите внимание: зачастую при покупке биметаллического прибора некоторые ориентируются на то, сколько секций было в прежде эксплуатируемых чугунных батареях. Такой подход в корне неверный.

Теплоотдача секции биметаллического прибора значительно выше, чем чугунного, поэтому количество ребер будет разным. А в частности, тепловая мощность одной секции чугунного радиатора составляет в среднем от 80 до 160 Ватт, а для биметаллического этот параметр соответствует примерно 200 Ватт.

Некоторые решают выполнить расчет количества секций «на глаз», например, если в чугунной батарее их было 9, то выбрать биметаллический радиатор с 6 секциями. Но в конечном итоге вероятность «угадать» крайне мала, и получается, что после установки нового прибора в помещении либо очень холодно, либо наоборот — слишком жарко. Именно поэтому правильнее изначально сделать точный расчет биметаллических радиаторов. К счастью, современные производители выпускают устройства с различным числом секций и не составляет сложности подобрать модель для помещения фактически с любыми планировочными особенностями.

Выполнить корректный расчет количества биметаллических радиаторов и секций не так уж сложно, но для этого нужно знать технические характеристики помещения, в котором планируется установка. А в частности, потребуются следующие значения: фактическая площадь помещения и объем отапливаемой комнаты. Далее выбираем, как именно (т.е. по какой методике) будет удобнее всего рассчитать количество секций биметаллического радиатора.

Определение по площади комнаты

Проще всего выполнить расчет биметаллических радиаторов отопления по площади, но в этом случае нужно, чтобы высота потолка была около 2,5 метров

. В соответствии со СНиП, нагрузка на один метр составляет 100 Ватт — такой норматив установлен для средней полосы РФ. Отметим, что в регионах Крайнего Севера это значение гораздо больше.

В «стандартном» случае необходимо умножить площадь комнаты на 100, в результате чего мы получим мощность нормативного потребления тепла. После делим полученное значение на паспортную теплоотдачу одной секции биметаллического радиатора (она указывается в техническом описании или паспорте на прибор) — итоговая цифра показывает, сколько секций биметаллического радиатора нужно.


Расчет по объему

Расчет оптимальных параметров биметаллических радиаторов для помещений с высотой потолков более 2,6 метра осуществляется по объему. В соответствии с установленными нормами, для отопления одного кубического метра необходимо:

  • 41 Ватт, если помещение находится в многоквартирном панельном доме.
  • 34 Ватта, если помещение находится в кирпичном доме.

Определение нужного количества секций биметаллического радиатора выполняется по следующей схеме:

  • Определяем расчетный объем в кубических метрах. Для этого умножаем высоту комнаты на ее площадь.
  • Умножаем полученное значение на норматив теплопотребления (то есть на 34 или 41 Ватт), так мы получим мощность нормативного потребления тепла.
  • Итоговое значение делим на паспортную теплоотдачу одного ребра биметаллического радиатора (берем значение из технического описания или паспорта на изделие) — так удалось узнать, сколько секций нужно.


Альтернативные методы расчета

Существует и еще одна методика расчета секций биметаллических радиаторов, которая очень проста, но дает лишь приблизительный результат. Чаще всего ее используют сантехники, когда им предстоит выполнить расчет множества приборов, имеющих высокую суммарную мощность.

Считается, что в квартире со стандартной высотой потолков, расположенной в средней полосе России, одна секция биметаллического радиатора, имеющая среднюю мощность, способна обеспечивать теплом 1,8 кв. метров площади
. Таким образом, для определения нужного количества секций биметаллического радиатора остается лишь поделить площадь комнаты на 1,8.

Наиболее точная методика расчета числа секций с учетом поправочных коэффициентов

Конечно, такая методика расчета привлекает своей простотой, но рассчитывать на ее точность не приходится. Если вы хотите получить более достоверные значения, то придется учесть множество сторонних факторов, в том числе касающихся:

  • Состояния остекления.
  • Количества наружных стен.
  • Качества теплоизоляции наружных стен.
  • Климатических характеристик региона и проч.
Рекомендуем, если вы покупаете радиаторы биметаллические, расчет секций выполнить именно по формуле с поправочными коэффициентами, так как полученное значение будет максимально точным. Итоговая формула в данном случае выглядит следующим образом:
нормативное значение тепла (то есть 100 Ватт/кв.м) необходимо умножить на все поправочные коэффициенты, определяющие особенности теплопотребления комнаты
.

Описание и расшифровка поправочных коэффициентов

Поправочные коэффициенты:

  • К1 — он учитывает конструкцию остекления в помещении. Для двойных деревянных рам этот коэффициент соответствует 1,27, для двойных пластиковых стеклопакетов — 1,0, а для тройных — 0,85.
  • К2 — определяет качество утепления стен. Если стены дома созданы из кирпича, то этот коэффициент принимают за 1, во всех остальных случаях — 1,27. Кстати, наличие дополнительной теплоизоляции стен дает возможность использовать понижающий коэффициент 0,85.
  • К3 — отражает отношение площади окон к полу. В числителе ставится процент остекления, присутствующий в помещении, а в знаменателе — коэффициент теплопотребления (то есть 50/0,8; 40/0,9; 30/1,0; 20/1,1; 10/1,2).
  • K4 — коэффициент, учитывающий среднюю температуру в самую холодную неделю года. Если это значение соответствует -35 градусам по Цельсию, то К4=1,5, при -25 — 1,3, при -20 — 1,1, при -15 — 0,9, а при -10 — 0,7.
  • К5 — учитывает число наружных стен. При наличии одной наружной стены в помещении он соответствует 1,1, а каждая последующая увеличивает это значение на 0,1.
  • К6 — необходим для учета влияния теплового режима помещения, находящегося на этаж выше. Если там расположен холодный чердак, то К6 принимают на 1, если отапливаемый, то за 0,6, если жилое помещение — 0,8.
  • К7 — коэффициент, с помощью которого выражается зависимость от высоты потолков. При стандартном значении 2,5 метра он принимается равным 1. Повышение этого значения на 0,5 метра делает К7 больше на 0,05, при 3 метрах — 1,05, при 3,5 метрах — 1,1, при 4,0 метрах — 1,15, а при 4,5 метрах — 1,2.
Как показывает практика, очень большое значение оказывает, какое именно помещение расположено над комнатой, где планируется установка биметаллических радиаторов, а также существенную «лепту» вносит количество наружных стен квартиры. Если сделать расчет без учета этих факторов, то с большой долей вероятности в помещении будет слишком жарко, или наоборот — со временем придется наращивать радиатор. Намного правильнее и удобнее сразу сделать точный расчет и выполнить установку биметаллического радиатора отопления с идеально подходящими техническими характеристиками.


Пример

Рассмотрим пример расчета и определим, сколько секций биметаллического радиатора нужно для полноценного обогрева помещения, находящегося в доме из кирпича, на последнем этаже здания с неотапливаемым чердаком. При этом в комнате установлены двойные стеклопакеты, а отношение остекления к площади пола соответствует 30%. Отметим, что квартира, где находится комната — угловая, площадь помещения — 18 квадратных метров. Сам многоквартирный дом расположен в средней полосе РФ, где в самую холодную неделю в году средняя температура составляет -10 градусов по Цельсию.

При таких вводных данных формула расчета секций биметаллического радиатора будет выглядеть следующим образом:

  • 100 Ватт/метр*1,0*1,0*1,0*0,7*1,2*1,0*=84 Вт/кв.м
  • Полученное значение необходимо умножить на площадь комнаты: 18*84=1512 Ватт.
  • Остается лишь разделить 1512 Ватт на тепловую мощность одной секции, мы примем это значение за 170 Вт (на практике нужно уточнить в паспорте или описании на изделие). В итоге получаем 8,89, то есть идеальное количество секций биметаллического радиатора в представленном примере — 9.


Использование онлайн-калькулятора для расчета: в чем преимущества?

Если времени или желания выполнять самостоятельные расчеты нет, то можно воспользоваться бесплатными онлайн-программами. Для этого необходимо найти специальный калькулятор для расчета секций биметаллических радиаторов. В таких программах, помимо обозначенных выше коэффициентов, также требуется указать информацию, которая касается:

  • Особенностей установки радиатора. Например, возможен монтаж устройства открыто на стене, под подоконником, в стеновой нише.
  • Наличия или отсутствия декоративного кожуха.
  • Схемы подключения радиатора.
  • Расположения дома (а точнее — на какую сторону света выходят внешние стены дома).
Использование дополнительных данных позволяет выполнить наиболее точный расчет. Если у вас появились вопросы по способам определения необходимого количества секций биметаллического радиатора или вы хотите доверить проведение работ по расчету профессионалам, достаточно связаться с менеджером «САНТЕХПРОМ» по телефону +7 (495) 730-70-80. Представитель компании предоставит необходимые консультации и поможет точно узнать, сколько секций биметаллического радиатора нужно для вашей комнаты.

Расчет количества секций биметаллических радиаторов по площади и на 1 м2 помещения, калькулятор

Когда предстоит приятное событие в виде замены старых чугунных батарей на стильные и более мощные аналоги, люди сталкиваются с такой проблемой, как несоответствие современных обогревателей с имеющейся централизованной системой отопления.

Как показывает опыт инженеров теплосети, лучшим вариантом в таком случае являются биметаллические радиаторы отопления.

Расчет количества секций – это первое, что нужно сделать, так как они намного мощнее, чем изделия из чугуна.

Преимущество биметалла

Сделав выбор в пользу батарей, состоящих из двух металлов, владельцы квартир получают целый комплект положительных доказательств, почему они поступают правильно:

  • Долгий срок эксплуатации, который большинство производителей оценивают в 20 лет, это хороший повод для установки биметаллических радиаторов.
  • Мощность этих изделий превосходит чугунные, стальные и алюминиевые аналоги, что позволяет использовать их в системах с нестабильным давлением.
  • Теплоотдача подобного устройства почти такая же, как и у чисто алюминиевых батарей отопления.
  • Так как с теплоносителем имеет дело лишь стальной сердечник, тогда как алюминий с ним не соприкасается, то им не страшна коррозия, откуда и берется столь долгая гарантия.


Такой недостаток биметаллических устройств, как высокая стоимость, теряется рядом с перечисленными позитивными техническими характеристиками, которые предоставляют людям ощущение комфорта и безопасности.

Если подобные конструкции предполагается монтировать вместо чугунных, то следует сделать правильный расчет количества секций биметаллических радиаторов с учетом того, что они намного превосходят их по мощности и теплоотдаче.

Коэффициент потери тепла

Нельзя рассчитывать, какой мощности должна быть батарея в комнате, если не учтены все возможные теплопотери в ней. Основные утечки тепла:

  • Окна – это самое слабое «звено» в помещении, если в нем нет балкона. В доме с обычным остеклением расчет биметаллических радиаторов следует проводить с добавлением коэффициента поправки, равного 1,27. Если в помещении установлен двойной стеклопакет, то умножать придется на 1, а при тройном – на 0.85.
  • Размер окна так же влияет на потери тепла. Так, если оно составляет 10% о площади пола, то коэффициент равен 0.8. В том случае, если окно панорамное и составляет 50%, то на 1.2.
  • Если теплоизоляция стен низкого уровня, то коэффициент поправки составит 1.27.
  • Внешние стены так же имеют значение при учете теплопотерь. Если такая всего одна, то следует умножать рассчитанную мощность на 1.1, если их две или три, то на 1.2 или 1.3.

Каждое увеличение окна на 10% прибавляет к коэффициенту 0.1. Если не внести подобные поправки в расчеты, то может оказаться так, что при котле, работающем на полной мощности, в квартире будет прохладно.

Немалое значение имеет то, как изготовлен радиатор. Например, секционные модели удобны тем, что в случае, если расчет биметаллических радиаторов отопления был выполнен неправильно, лишние секции можно демонтировать или, наоборот, нарастить. Цельные модели могут выдерживать давление до 100 атмосфер, чему нет аналогов среди батарей из других видов металлов, но если установленное устройство «не тянет» по своей тепловой мощности, то менять придется всю панель.

Расчет количества элементов по площади

Чтобы узнать, сколько секций биметаллического радиатора нужно, следует провести вычисления по площади комнаты.

Для этого можно заглянуть в СНиП и узнать критерии минимального уровня мощности батареи на 1 м2 помещения. Как правило, он равен 100 Вт. Вычислив площадь комнаты, для чего нужно умножить ее длину на ширину, полученный результат умножается на мощность, а затем делится на показатель мощности одной секции батареи, который можно узнать по техпаспорту от производителя.

Например, для комнаты площадью 16 м2 и мощностью одной секции батареи, равной 160 Вт, используя формулу, получится следующий результат:

(Ах100): В = количество секций

(16х100 Вт): 160 Вт = 10 секций.

Таким образом, для комнаты площадью 16 м2 потребуется установка десяти секций, что полностью охватит всю площадь обогрева биметаллического радиатора.

Конечно, такой расчет будет только приблизительным, так как он подходит исключительно для помещений с высотой потолков не более 3 м. Кроме того, в нем не учтены теплопотери, что может сказаться на эффективности работы всей отопительной системы.

Вычисления по объему

Чтобы определить объем комнаты, придется использовать такие показатели, как высота потолка, ширина и длина. Умножив все параметры и получив объем, его следует умножить на показатель мощности, определенный СНиП в размере 41 Вт.

Например, площадь помещения (ширина х длину) 16 м2, а высота потолка 2.7 м, что дает объем (16х2.7), равный 43 м3.

Для определения мощности радиатора следует объем умножить на показатель мощности:

43 м3х41 Вт = 1771 Вт.

После этого полученный результат так же делится на мощность одой секции радиатора. Например, она равна 160 Вт, значит, для помещения объемом 43 м3 потребуется 11 секций (1771: 160).

И такой расчет биметаллических радиаторов отопления на квадратный метр так же не будет точным. Чтобы удостовериться, сколько на самом деле потребуется секций в батарее, нужно произвести расчеты по более сложной, но точной формуле, которая учитывает все нюансы, вплоть до температуры воздуха за окном.

Данная формула выглядит следующим образом:

S х 100 х k1 х k2 х k3 х k4 х k5 х k6 * k7 = мощность радиатора, где K, это параметры теплопотерь:

k1 – тип остекления;

k2 – качество утепления стен;

k3 – размер окна;

k4 – температура на улице;

k5 – наружные стены;

k6 – это помещение над комнатой;

k7 – высота потолка.

Если не полениться, и вычислить все эти параметры, то можно получить реальное количество секций биметаллического радиатора на 1 м2.

Сделать подобные расчеты несложно, и даже приблизительный показатель – это лучше, чем покупать батарею на «авось».

Биметаллические радиаторы – это дорогая и качественная продукция, поэтому перед покупкой и установкой следует с должным вниманием ознакомиться не только с такими параметрами, как тепловая мощность и устойчивость к высоким давлениям, но и с их устройством.

У каждого производителя есть свои привлекательные «фишки» для клиентов. Нельзя покупать батареи только ради акций. Качественный расчет тепловой мощности биметаллического радиатора обеспечит комнату теплом на ближайшие 20 — 30 лет, что намного привлекательнее, чем одноразовая скидка.

Полезное видео

Как рассчитать количество секций биметаллического радиатора?

Чтобы штатный режим отопления обеспечивал в комнатах квартиры температуру комфорта, под каждым подоконником должно быть достаточно радиаторных секций. Иногда, в угловых квартирах, они не помещаются под окном и располагаются вдоль стены.

Прежде чем заменить старые батареи, на стильные биметаллические приборы, рассчитайте их потребность, воспользовавшись известными методиками расчета.

Принцип и особенности работы биметаллического радиатора

Главное достоинство и причина популярности этих радиаторов в том, что они по прочности не уступают стальным трубам. Благодаря алюминиевому покрытию, они имеют:

  • Отличный коэффициент теплопередачи;
  • Долгий срок использования;
  • Стильный внешний вид;
  • Легкий вес;
  • Наличие ниппелей для соединения секций, позволяет легко нарастить — уменьшить длину батарей, соответственно теплотехническим расчетам.

Методы расчета

Наиболее популярные способы расчета производятся с использованием фактической площади и объема отапливаемой комнаты.

По площади

Расчет по площади наиболее прост, но позволяет определить количество секций, только в квартирах с высотой около 2,5 м. СНиП предусматривает нагрузку на метр в 100 Вт. Это норматив для средней полосы. На севере за 60 широтой, она может быть значительно выше.

Умножая площадь на 100, мы получаем мощность нормативного потребления тепла. Разделив ее на паспортную теплоотдачу ребра, получим число ребер для обогрева.

По объему

Расчет по объему используется там, где потолки выше 2,6 м. Согласно нормативам, для отопления м.куб. в зависимости от типа здания требуется:

  • для панельного 41 Вт,
  • для кирпичного 34 Вт.

Умножая площадь на высоту комнаты получаем расчетный объем в кубах.

Умножая количество кубов на норматив теплопотребления вашего дома, получаем мощность нормативного потребления тепла, которую используем аналогично п. 2.1.

Сколько секций биметаллического радиатора нужно на 1 м2

Еще один метод расчета. Он хоть и приближенный, но его с успехом используют слесаря сантехники, в случаях, когда расчет касается приборов большой суммарной мощности.

Практики утверждают, что в квартире со стандартной высотой, одна биметаллическая секция средней мощности обеспечивает теплом 1,8 метров площади. В этом случае достаточно знать только площадь комнаты. Поделив ее на 1,8, получаем необходимое количества ребер.

Параметры, которые нужно учитывать при подсчете

Приблизительные расчеты привлекают своей простотой, но не дают достоверной информации. В результате хозяин квартиры может замерзнуть, или переплатить за установку дорогостоящих радиаторов.

Точный расчет должен учитывать множество поправочных параметров:

  • Состояние остекление;
  • Количество наружных стен;
  • Их теплоизоляцию;
  • Тепловой режим верхнего помещения;
  • Климатические характеристики региона и другие параметры.

Поправочные коэффициенты

Окончательная формула теплопотребления выглядит как произведение нормативного значения тепла — 100 вт/м.кв, на поправочные коэффициенты, учитывающие особенности теплопотребления комнаты:

  • К1 учитывает конструкцию остекления. Принимается для спаренных деревянных переплетов 1,27. Окна с двойным стеклопакетом позволяют применять коэффициент 1,0. Значение для стеклопакета с тремя камерами — 0,85;
  • К2 учитывает качество утепления стен и принимается для стен в два кирпича за единицу. При худшей степени изоляции принимается коэффициент 1,27. Дополнительная изоляция позволяет применять понижающий коэффициент 0,85;
  • К3 отражает отношение площади окон к полу. Если процент остекления поставить в числителе, в знаменателе смотрите коэффициент теплопотребления 50/0,8, 40/0,9, 30/1,0, 20/1,1 и 10/1,2;
  • К4 учитывает среднюю температуру наиболее холодной недели года. При -35 градусах это 1,5, при — 25 градусах — 1,3, при — 20 градусах — 1,1, при — 15 градусах — 0,9, а при — 10 градусах — 0,7.
  • К5 дает поправку на количество наружных стен. При одной наружной стене в комнате он равен 1,1, а каждая следующая стена увеличивает его на 0,1;
  • К6 позволяет учесть влияние теплового режима верхнего помещения. За единицу принимается холодный чердак, отапливаемый — 0,9. Если сверху находится жилой этаж — 0,8;
  • К7 выражает зависимость от высоты комнаты. Стандартная — 2,5 м, принимается за единицу. Повышение высоты на пол-метра дает основание увеличить его на 0,05; при трех метрах — 1,05, три с половиной — 1,1, четыре метра — 1,15, четыре с половиной — 1,2.

Пример расчета — сколько секций нужно на комнату 18 м2

Вы живете в кирпичном доме, в средней полосе России, где самая холодная пятидневка имеет среднюю температуру минус 10 градусов. Живете на последнем этаже, где над вами неотапливаемый чердак, на окнах стоят двойные стеклопакеты, а отношение остекления к полу составляет 30 %. Причем квартира у вас угловая, а площадь комнаты — 18 м.кв.

Формула подсчета количества тепла будет выглядеть так:

100 Вт / на метр ×1,0 ×1,0 ×1,0 ×0,7 ×1,2 ×1,0 = 84 Вт/кв.м.

Умножаем что получилось на 18 метров и получаем 1512 Вт. Теперь разделим на тепловую мощность одного биметаллического ребра, которую мы принимает за 170 Вт (а вам следует уточнить ее у продавца). Вышло 8,89 ребер или 9 штук.

По аналогии с этим примером вы сможете рассчитать сколько секций необходимо для вашего помещения и не ошибиться при заказе.

4.7 / 5 ( 23 голоса )

Правила расчета количества секций биметаллических радиаторов

Чаще всего биметаллические радиаторы владельцы приобретают для замены чугунных батарей, которые по той или иной причине вышли из строя или стали плохо обогревать помещение. Чтобы эта модель радиаторов хорошо справлялась со своей задачей, необходимо ознакомиться с правилами расчета количества секций на все помещение.

Необходимые данные для подсчета

Самим правильным решением станет обращение к опытным специалистам. Профессионалы могут рассчитать количество биметаллических радиаторов отопления довольно точно и эффективно. Такой расчет поможет определить, сколько секций понадобится не только для одной комнаты, но и для всего помещения, а также для любого типа объекта.

Все профессионалы учитывают следующие данные для подсчета количества батарей:

  • из какого материала было построено здание;
  • какая толщина стен в комнатах;
  • тип окон, монтаж которых был произведен в данном помещении;
  • в каких климатических условиях находится здание;
  • есть ли в комнате, находящейся над помещением, где ставятся радиаторы, какое-нибудь отопление;
  • сколько в комнате «холодных» стен;
  • какая площадь рассчитываемой комнаты;
  • какая высота стен.

Все эти данные позволяют сделать расчет наиболее точным для установки биметаллических батарей.

Коэффициент теплопотерь

Чтобы сделать расчет правильно, необходимо для начала посчитать, какие будут тепловые потери, а затем высчитать их коэффициент. Для точных данных нужно учитывать одно неизвестное, то есть стены. Это касается, прежде всего, угловых комнат. Например, в помещении представлены следующие параметры: высота – два с половиной метра, ширина – три метра, длина – шесть метров.

Внешняя сторона здесь будет считаться объектом расчета, который можно произвести по такой формуле: Ф = a*х, где:

  • Ф является площадью стены;
  • а – ее длиной;
  • х – ее высотой.

Расчет ведется в метрах. По этим подсчетам площадь стены будет равна семи с половиной квадратным метрам. После этого необходимо рассчитать теплопотери по формуле Р = F*K.

Также умножить на разницу температур в помещении и на улице, где:

  • Р – это площадь теплопотерь;
  • F является площадью стены в метрах квадратных;
  • К – это коэффициент теплопроводности.

Для правильного расчета нужно учитывать температуру. Если на улице температура составляет примерно двадцать один градус, а в комнате восемнадцать градусов, то для расчета данного помещения нужно добавить еще два градуса. К полученной цифре нужно добавить Р окон и Р двери. Полученный результат нужно поделить на число, обозначающее тепловую мощность одной секции. В результате простых вычислений и получится узнать, сколько же батарей необходимо для обогрева одной комнаты.

Однако все эти расчеты правильны исключительно для комнат, которые имеют средние показатели утепления. Как известно, одинаковых помещений не бывает, поэтому для точного расчета необходимо обязательно учесть коэффициенты поправки. Их нужно умножить на результат, полученный при помощи вычисления по формуле. Поправки коэффициента для угловых комнат составляют 1,3, а для помещений, находящихся в очень холодных местах – 1,6, для чердаков – 1,5.

Мощность батареи

Чтобы определить мощность одного радиатора, необходимо рассчитать какое количество киловатт тепла понадобится от установленной системы отопления. Мощность, которая нужна для обогревания каждого квадратного метра, составляет 100 ватт. Полученное число умножается на количество квадратных метров комнаты. Затем цифра делится на мощность каждой отдельно взятой секции современного радиатора. Некоторые модели батарей состоят из двух секций и больше. Делая расчет, нужно выбирать радиатор, который имеет приближенное к идеалу число секций. Но все же, оно должно быть немного больше расчетного.

Это делается для того, чтобы сделать помещение теплее и не мерзнуть в холодные дни.

Производители биметаллических радиаторов указывают их мощность для некоторых данных системы отопления. Поэтому покупая любую модель, необходимо учесть тепловой напор, который характеризует, как нагревается теплоноситель, а также как он обогревает систему отопления. В технической документации часто указывают мощность одной секции для напора тепла в шестьдесят градусов. Это соответствует температуре воды в радиаторе в девяносто градусов. В тех домах, где помещения отапливают чугунными батареями, это оправданно, но для новостроек, где сделано все более современно, температура воды в радиаторе вполне может быть ниже. Напор тепла в таких системах отопления может составлять до пятидесяти градусов.

Расчет тут произвести тоже нетрудно. Нужно мощность радиатора поделить на цифру, обозначающую тепловой напор. Число делится на цифру, указанную в документах. При этом эффективная мощность батарей станет немного меньше.

Именно ее необходимо ставить во все формулы.

Популярные методы

Для вычета нужного количества секций в устанавливаемом радиаторе может быть использована не одна формула, а несколько. Поэтому стоит оценить все варианты и выбрать тот, что подойдет для получения более точных данных. Для этого нужно знать, что по нормам СНиП на 1 м², одна биметаллическая секция может обогреть один метр и восемьдесят сантиметров площади. Чтобы посчитать какое количество секций понадобиться на 16 м², нужно разделить эту цифру на 1,8 квадратного метра. В итоге получается девять секций. Однако этот метод довольно примитивный и для более точного определения необходимо учитывать все вышесказанные данные.

Существует еще один простой метод для самостоятельного вычисления. Например, если взять небольшую комнату в 12 м², то очень сильные батареи здесь ни к чему. Можно взять, для примера, теплоотдачу всего одной секции в двести ватт. Тогда по формуле можно легко вычислить их количество, требуемое для выбранной комнаты. Чтобы получить нужную цифру, нужно 12 – это количество квадратов, умножить на 100, мощность на метр квадратный и поделить на 200 ватт. Это, как можно понять, является значением теплоотдачи на одну секцию. В результате вычислений получится число шесть, то есть именно столько секций понадобится для отопления помещения в двенадцать квадратов.

Можно рассмотреть еще один вариант для квартиры с квадратурой в 20 м². Допустим, что мощность секции купленного радиатора – сто восемьдесят ватт. Тогда, подставляя все имеющиеся значения в формулу, получится такой результат: 20 нужно умножить на 100 и разделить на 180 будет равно 11, а значит, такое количество секций понадобится для отопления данного помещения. Однако такие результаты будут действительно соответствовать тем помещениям, где потолки не выше трех метров, а климатические условия не очень жесткие. А также не были учтены и окна, то есть их количество, поэтому к конечному результату необходимо добавить еще несколько секций, их число будет зависеть от количества окон. То есть в комнате можно установить два радиатора, в которых будет по шесть секций. При этом расчете была добавлена еще одна секция с учетом окон и дверей.

По объему

Чтобы сделать вычисление более точными, нужно провести расчет по объему, то есть учесть три измерения в выбранной отапливаемой комнате. Все расчеты делаются практически одинаково, только в основе находятся данные мощности, рассчитанной на один метр кубический, которые равны сорок одному ватту. Можно попробовать рассчитать количество секций биметаллической батареи для помещения с такой площадью, как в варианте, рассмотренном выше, и сопоставить результаты. В этом случае высота потолков будет равна двум метрам семидесяти сантиметрам, а квадратура помещения будет двенадцать квадратных метров. Тогда нужно умножить три на четыре, а потом на два и семь.

Результат будет таким: тридцать два и четыре метра кубических. Его надо умножить на сорок один и получится тысяча триста двадцать восемь и четыре ватта. Такая мощность радиатора будет идеально подходящей для отопления этой комнаты. Затем этот результат нужно разделить на двести, то есть число ватт. Результат будет равен шести целым шестидесяти четырем сотым, а значит, понадобится радиатор на семь секций. Как видно, результат расчета по объему намного точнее. В итоге не нужно будет даже учитывать число окон и дверей.

А также можно сравнить и результаты вычисления в помещении с двадцатью квадратными метрами. Для этого необходимо умножить двадцать на два и семь, получится пятьдесят четыре метра кубических – это объем помещения. Далее, нужно умножить на сорок один и в результате получится две тысячи четыреста четырнадцать ватт. Если батарея будет иметь мощность в двести ватт, то на эту цифру нужно разделить на полученный результат. В итоге выйдет двенадцать и семь, а значит для данной комнаты необходимо такое количество секций, как и в предыдущем расчете, но этот вариант намного точнее.

По площади

Если рассматривать вариант по площади, то он будет не так точен, как по объему. Для этого нужно перемножить ширину и длину, а этот результат умножить на мощность одной секции, то есть на сто ватт. Необходимо разделить на число равное теплоотдачи одной секции, которое может быть разным. Для примеров можно рассмотреть комнату в 18 м². Теплоотдачу секции батареи можно взять в двести ватт. Тогда нужно три умножить на шесть и еще раз на сто, а затем разделить на двести. В итоге получится девять секций. Такой результат подойдет для квартир, находящихся на средней полосе страны, то есть там, где температура зимой не будет превышать нормы температуры.

Можно сказать, что сделать расчет можно любым из рассмотренных способов. Однако самым точным и не таким долгим будет считаться вычисление по объему. Ведь в остальных случаях придется учитывать еще и отдельно другие параметры. Кроме того, результат далеко не всегда получается таким точным, как того хотелось бы. Для того чтобы с комфортом зимовать, важно правильно рассчитать количество секций биметаллических радиаторов так, чтобы даже в сильные холода владельцы квартир совсем не мерзли, а чувствовали себя уютно и комфортно.

Для этого достаточно следовать предложенным выше инструкциям по расчету и быть максимально внимательным во время работы.

О том, как выполнить установку биометаллических радиаторов своими руками, смотрите в видео ниже.

Правильный расчет радиаторов отопления в доме

В вопросе поддержания оптимальной температуры в доме главное место занимает радиатор.

Выбор просто поражает: биметаллические, алюминиевые, стальные самых разных размеров.

Важно правильно рассчитать мощность и выбрать радиатор, чтобы впоследствии не было ошибок, которые могут поставить под угрозу не только функционирование радиаторов, но и здоровье Вас и Ваших близких.

Нет ничего хуже, чем неправильно рассчитанная необходимая тепловая мощность в помещении. Зимой такая ошибка может стоить очень дорого.

Тепловой расчет радиаторов отопления подходит для биметаллических, алюминиевых, стальных и чугунных радиаторов. Специалисты выделяют три способа, каждый из которых основан на определенных показателях.

Готовимся к зиме – расчет количества секций радиаторов отопления.

Здесь существует три метода, которые базируются на общих принципах:

  • стандартная величина мощности одной секции может варьироваться от 120 до 220 Вт, поэтому берется средняя величина
  • для корректировки погрешностей в расчетах при покупке радиатора следует заложить 20% резерв

Теперь обратимся непосредственно к самим методам.

Метод первый – стандартный

Исходя из строительных правил, для качественного отопления одного квадратного метра требуется 100 ватт мощности радиатора. Займемся подсчетами.

Допустим, площадь помещения составляет 30 м², мощность одной секции возьмем равной 180 ватт, тогда 30*100/180 = 16,6. Округлим значение в большую сторону и получим, что для комнаты площадью в 30 квадратных метров необходимо 17 секций радиатора отопления.

Однако, если помещение является угловым, то полученное значение следует умножить на коэффициент 1,2. В таком случае, количество необходимых секций радиаторов будет равно 20

Метод второй – примерный

Данный метод отличается от предыдущего тем, что основан не только на площади помещения, но и на его высоте. Обратите внимание, что метод работает только для приборов средней и большой мощности.

При малой мощности (50 ватт и менее) подобные расчеты будут неэффективны ввиду слишком большой погрешности.

Итак, если принять во внимание, что средняя высота помещения равна 2,5 метра (стандартная высота потолков большинства квартир), то одна секция стандартного радиатора способна обогреть площадь в 1,8 м².

Расчет секций для комнаты в 30 «квадратов» будет следующим: 30/1,8=16. Снова округляем в большую сторону и получим, что для обогрева данной комнаты нужно 17 секций радиатора.

Метод третий – объемный

Как видно из названия, подсчеты в этом методе базируются на объеме комнаты.

Условно принимается, что для обогрева 5 кубических метров помещения нужна 1 секция мощностью 200 ватт. При длине в 6 м, ширине 5 и высоте 2,5 м формула для расчета будет следующей: (6*5*2,5)/5 =15. Следовательно, для комнаты с такими параметрами нужно 15 секций радиатора отопления мощностью 200 ватт каждая.

Если радиатор планируется расположить в глубокой открытой нише, то количество секций нужно увеличить на 5%.

В случае, если радиатор планируется полностью закрыть панелью, то увеличение следует сделать на 15%. В противном случае будет невозможно добиться оптимальной теплоотдачи.

Прочитайте статью и узнайте как построить схему водяного отопления частного дома.

Вот здесь – все про то как выбрать радиатор отопления

Альтернативный метод расчета мощности радиаторов отопления

Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.

Можно рассчитать мощность, необходимую для обогрева помещения и сопоставить ее с предполагаемой мощностью радиаторов отопления.

Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:

30 х 2,5 = 75 куб.м.

Теперь нужно определиться с климатом.

Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.

Для определения необходимой мощности умножаем объем помещения на норматив:

75 х 41 = 3075 Вт

Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:

3100 х 1,2 = 3720 Вт.

Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.

Каждый специалист знает, что существует несколько способов подключения радиаторов отопления. Узнайте как выбрать оптимальный.

Как отопить дачу если нет магистрального газа? Есть очень простое решение – об этом можете прочитать по адресу: https://obogreem.net/otopitel-ny-e-pribory/obogrevateli/infrakrasny-e-obogrevateli-dlya-dachi.html.

Расчет количества радиаторов

Метод расчета представляет собой выдержки из предыдущих пунктов статьи.

После того, как Вы подсчитаете необходимую мощность для обогрева помещения и количество секций радиатора, Вы приходите в магазин.

Если число секций вышло внушительное (такое бывает в помещениях с большой площадью), то резонно будет приобрести не один, а несколько радиаторов.

Данная схема применима и к тем условиям, когда мощность одного радиатора ниже необходимой.

Но существует еще один быстрый способ посчитать количество радиаторов. Если в Вашей комнате стояли старые чугунные радиаторы с высотой около 60 см, и зимой Вы чувствовали в этом помещении себя комфортно, то посчитайте количество секций.

Полученную цифру умножьте на 150 Вт – это и будет необходимой мощностью новых радиаторов.

В случае выбора биметаллических или алюминиевых радиаторов, можете покупать их из расчета 1 к 1- на одно ребро чугунного радиатора 1 ребро биметаллического.

Разделение на «теплая» и «холодная» квартира давно уже пришло в нашу жизнь.

Многие люди сознательно не хотят заниматься выбором и установкой новых радиаторов, объясняя это тем, что «в этой квартире всегда будет холодно». Но это не так.

Правильный выбор радиаторов вкупе с грамотным расчетом необходимой мощности способен сделать тепло и уют за Вашими окнами даже в самую холодную зиму.

Как рассчитать количество секций радиаторов отопления в квартиру или частный дом

Один из самых важных вопросов при обеспечении комфортных условий проживания в жилом помещении круглый год – это сбалансированная и правильно просчитанная по мощности отопительная система. Стандартная схема: контур центрального отопления или автономное оборудование с радиаторами, в качестве основных приборов отопления. Многие при выполнении ремонта или возведении нового дома поверхностно относятся к организации тепла в доме, выбирая для больших комнат просто более массивные радиаторы. Однако для комфортного микроклимата и защиты от самых серьезных морозов необходимо учитывать массу параметров, включая теплоотдачу радиаторов, площадь помещения, планировку и т. д. Именно потому часто наши клиенты спрашивают, сколько секций алюминиевого или биметаллического радиатора ставить, чтобы в помещениях было по-настоящему тепло и комфортно.

Влияние типов радиатора на отопительную систему

Все технологические расчеты основываются на СНиП и должны выполняться специалистами в виду их сложности. Однако расчет количества секций на площадь отапливаемого помещения можно осуществить самостоятельно, если правильно учесть несколько наиболее важных нюансов. Конечно, начинать расчет секций следует, исходя из типа используемых радиаторов, поскольку их характеристики и теплоотдача существенно отличаются.

Рассчет кол-ва секций алюминиевого радиатора


Легкие, эстетичные, экономичные алюминиевые радиаторы на сегодня являются наиболее востребованными при обустройстве автономных систем отопления. Теплоотдача секции алюминиевого радиатора достигает 190 Вт, при значительно меньшей емкости относительно чугунных аналогов (0,5 л против 1-1,4 л, в зависимости от того, какая высота секционного радиатора).

Стандартный метод расчета на 1 м.кв. 100 Вт. алюминиевого радиатора.
1 секция дает 160-190 Вт.

Пример: на комнату 15 м.кв.*100Вт=1500 Вт./190Вт. (одна секция) = 7,8 секций радиатора необходимо для комнаты 15 м.кв.

На нашем сайте в каждом товар уже существует калькулятор, с выбранным количеством секций и сразу же отображаются размеры конкретного радиатор, теплоотдача и обогреваемая площадь.

Также, вы можете напрямую задать в наших фильтрах нужную площадь помещения, и сайт вам автоматически выдаст необходимые радиаторы с нужным количеством секций.

     

 

Расчет кол-ва секций биметаллического радиатора


Такие типы радиаторов сочетают лучшие качества обоих конкурентов. Внутренняя поверхность радиатора выполнена из стали, что делает их невероятно надежными, стойкими к коррозии, перепадам давления и высоким температурам. А алюминиевый наружный слой увеличивает теплоотдачу. Выполняя расчет количества секций биметаллического радиатора, учитывайте, что теплоотдача одной достигает рекордных 200 Вт. Стальная часть радиатора выполнена из антикоррозийного сплава, как и соединительные муфты. Алюминиевые части не соприкасаются с теплоносителем, благодаря чему биметаллические радиаторы – рекордсмены по стойкости к коррозии, долговечности и надежности.

Расчет берется из показателя 80 Вт на 1 м.кв. Если ваше помещение 22 м.кв. то расчет такой:

22 (м.кв.) * 80 (Вт на секцию) =1760 Вт необходимо для обогрева помещения.

В среднем одна секция батареи отдает 180 Вт. 1760/180=9,77 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 10 секций радиатора.

Расчет кол-ва секций чугунного радиатора


Именно такие тепловые устройства знакомы большинству жителей постсоветских стран. Это массивные и тяжелые устройства, которые в большинстве случаев не отличаются изящным дизайном, но имеют хорошую теплоотдачу и долго удерживают тепло. Выполняя расчет чугунных батарей отопления, учитывайте, что одна секция радиатора старого образца обеспечивает теплоотдачу в 160 Вт. Максимальное количество секций в нем не ограничено, что допускает монтаж в помещении любой площади и конфигурации. Свойства чугуна обеспечивают высокую теплоемкость батареи и длительную отдачу тепла:

  • Монтаж такого оборудования требует обустройства надежных и прочных крепежей, а из-за большого объема увеличивается расход энергии.
  • Толстые стенки из чугуна устойчивы к коррозийному воздействию, механическим ударам. Потому данные устройства подходят для комплектации как центральных, так и автономных систем, что несколько упрощает подбор и расчет теплоотдачи радиатора.
  • Об эстетической стороне вопроса переживать не стоит, современные модификации чугунных батарей выглядят не хуже аналогов.
  • Чугунные батареи при правильном монтаже и уплотнении соединений не боятся гидроударов, перепадов температур и контакта с низкокачественным теплоносителем.

 

Основные способы расчета


Чтобы в квартире или доме было по-настоящему тепло, следует обязательно учитывать другие внешние факторы, включая уровень теплоизоляции в помещении, количество окон и дверей и т. д. Однако наиболее простым способом определить, какая батарея отопления нужна, считается расчет по габаритам помещения.

Метод №1. По площади

По старым сантехническим стандартам: 100 Вт на 1 м2 жилой площади.

По новым нормам, с учетом стандартов утепления: 80 Вт на 1 м2 жилой площади.

Исходя из этого берут 1 секцию радиатора на 2 квадрата. Более точный расчет можно получить, если учитывать теплоотдачу секции.

Пример:

Для комнаты в 12 м2 при установке алюминиевых радиаторов формула расчета будет следующей:

По старым нормам: 12 м.кв.*100 Вт = 1200 Вт

По новым нормам: 12м. кв.*80 Вт = 960 Вт

К примеру одна секция радиатора отдает 186 Вт.

По старым нормам: 1200/186=6,46 секций нам необходимо. Рекомендуем брать в большую сторону, тоесть 7 секций.

По новым нормам: 960/186=5,17 секций нам необходимо. Рекомендуем брать в большую сторону, тоесть 6 секций.

Расчет количества секций для частного дома


Для частного дома расчитывается кол-во секций аналогично как и для квартиры. В среднем, если не углублятся в качество утепления, то берутся номинальные значения нормы, 80-100 Вт. на 1 м.кв. Если же утепление сделано не должным образом, согласно принятых стандартов, то и показатель ватности на метр квадратный будет другой.

Расчет количества секций для квартиры


Для квартиры все предельно просто, в условиях сегодняшнего энерго сбережения и качественного утепления фасадов зданий.

Для новостроек: Расчет берется из показателя 80 Вт на 1 м.кв. Тоесть если ваша комната 17 м.кв. то расчет такой:

17*80=1360 Вт необходимо для обогрева помещения.

В среднем одна секция батареи отдает 180 Вт. 1360/180=7,55 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 8 секций радиатора.

Для старого жилого фонда: Расчет берется из показателя 100 Вт на 1 м.кв.

Что учитывать еще?

Стандартные формулы актуальны для просчета теплоотдачи радиаторов в условиях умеренного климата со средним уровнем утепления стен. Для получения более точных результатов стоит брать во внимание следующие параметры:

  • Если комната угловая, то полученный результат рекомендуется умножить на 1,3.
  • Добавить к полученному значению коэффициент климатической зоны. Украина целиком находится в умеренной климатической зоне, но для северных регионов рекомендуется использовать коэффициент 1,3-1,6.
  • Условно за каждое дополнительное окно следует добавлять 100 Вт, а дверь – 200 Вт.
  • Для частных домов используют коэффициент 1,5, чтобы компенсировать потери тепла от холодных подвальных помещений и чердака.

Используя наш калькулятор расчета количества секций радиаторов отопления, вы сможете быстро определить нужную конфигурацию. Для подробной консультации и грамотного подбора отопительного оборудования обращайтесь к специалистам.

Биметаллический радиатор отопления: как рассчитать количество секций

Система отопления включает в себя много различных элементов. Все они важны для нормального функционирования, в том числе и радиаторы. Сегодня для отопления частных домов и квартир используют различные батареи (именно так в народе принято называть радиаторы). Они могут быть изготовлены из чугуна, алюминия или быть биметаллическими. Но чтобы в доме было тепло, важно правильно рассчитать количество необходимых секций в радиаторе. Именно об этом и пойдет речь в данной статье. А конкретно, будет дан примерный расчет количества секций биметаллического радиатора.

Простой способ расчета при замене старых батарей

Если вы решили сделать замену старого чугунного радиатора отопления, то можно использовать простой способ и сделать расчет необходимого количества секций батареи. Для этого необходимо учитывать некоторые факторы. А именно:

  • теплоотдача у биметаллических и чугунных радиаторов немного отличается. Если у первого это значение равно 200 Вт на одну секцию, то у второго – 180 Вт.
  • как грела старая батарея. Если ее работа вас устраивала, то это хорошо. Если нет, то можно увеличить количество секций.
  • через определенное время радиатор отопления станет греть немного хуже. Это связано с засорением внутренних полостей устройства.

Как правило, при замене чугунного радиатора отопления на биметаллический количество секций батареи не изменяют. Конечно, если работа старой батарее вас устраивала. Если тепла не хватало, то можно увеличить количество секций.

Расчет исходя из габаритов помещения

Другое дело, когда монтаж системы отопления производится в новом доме. В этом случае опираться на предыдущий опыт эксплуатации радиаторов отопления нет возможности. Тут требуется более точный расчет, исходя из габаритов помещения.

Такие расчеты можно сделать, опираясь на:

  • площадь помещения;
  • объем комнаты.

Существует ряд санитарных норм, согласно которым на каждый квадратный метр площади помещения должно приходиться определенная мощность отопительных приборов. Эти нормативы можно легко найти через интернет. Так, для средней полосы нашей страны мощность на один квадратный метр должна быть минимум 100 Вт. Исходя из этого, легко сделать нужные расчеты.

Например, если взять площадь комнаты в 12 квадратных метров (три на четыре), то мощность отопительных приборов должна составлять 1200 Вт (12 кв.м. * 100 Вт). Делим это значение на мощность одной секции биметаллического радиатора (200 Вт при температуре теплоносителя 90 градусов) получаем 6 секций.

Такой расчет также можно считать примерным. Показатель в 100 Вт на квадратный метр можно брать, только если высота потолков не превышает 3 метров . Также здесь не учитывается количество окон и ряд других факторов.

Чтобы получить более точные расчеты, можно использовать метод, который опирается на объем отапливаемого помещения. В этом случае данные также берутся из санитарных норм. Так, для средней полосы на один кубический метр необходимо иметь 41 Вт мощности отопительных приборов.

Если взять ту же площадь что и в предыдущем примере, то при высоте потолка в 2,7 метра получим объем всего помещения 32,4 кубических метров (20 кв.м. * 2,7 метра ). Тогда мощность радиаторов должна быть 32,4 * 41 = 1328,4 Вт. Если разделить на тепловую мощность одной биметаллической секции, то получим 6,64. Значит, для отопления желательно установить 7-ми секционный радиатор.

Как видно, используя метод расчета по объему комнаты можно получить более точные данные о количестве секций биметаллического (да и любого другого) радиатора отопления. Но и в этом случае не принимается в расчет наличие окон в помещении и некоторые другие факторы. Для уточнения необходимо использовать поправочные коэффициенты.

Определяем поправочные коэффициенты

Делая расчет необходимого количества секций биметаллического радиатора, недостаточно знать площадь или объем помещения. Тут важны многие факторы: состояние стен, наличия по соседству неотапливаемых помещений, температура подаваемого теплоносителя (от этого будет зависеть тепловая мощность каждой секции) и т.д.

Чтобы в комнате, было, тепло стоит учитывать еще и некоторые поправочные коэффициенты. А именно:

  • если помещение расположено в углу здания, то оно будет двумя стенками выходить на улицу. Значит, тут необходимо увеличить количество секций. Поэтому для таких комнат полученный результат умножают на коэффициент 1.3;
  • также стоит учитывать месторасположение дома, а точнее, регион проживания. Для каждой области существует свой увеличивающий или уменьшающий коэффициент. Так, для крайнего севера его значение будет 1,6;
  • на эффективность отопления влияет и расположение самого биметаллического радиатора. Если он установлен в нише под подоконником, то его мощность теряет 7 %. А если перед ним смонтирован экран, то мощность потеряет уже 25 %.
  • необходимо также учитывать и наличие окон и дверей в комнате. Каждое окно потребует 100 Вт дополнительной мощности отопительных приборов, а дверь заберет 200 Вт.

Еще один поправочный коэффициент относится к частным домам. В таких строениях имеется холодное чердачное помещение, и все стены выходят на улицу. Значит, и мощность отопительных приборов должна быть больше. Так, для частных домов при расчете количества секций биметаллического радиатора применяется поправочный коэффициент 1,5.

Расчет необходимого количества секций на биметаллическом радиаторе зависит от многих факторов. Это и объем помещения, и наличие окон, и многое другое. Например, если стены частного дома утеплены хорошо, то и потерь тепла будет мало. А значит, и радиаторы можно устанавливать с меньшей длиной и мощностью. Также количество секций может зависеть от самих людей, которые проживают в жилище. Если они любят много тепла, то и отопительные приборы устанавливают мощнее.

Оцените статью: Поделитесь с друзьями!

Сколько киловатт на квадратный метр. Расчет площади обогрева

Расчет мощности нагревателя

1. Какая разница между наружной температурой и желаемой температурой воздуха в помещении, ° C (Например, если в помещении требуется + 22 ° C при -20 ° C на улице, то разница температур будет 22 + 20 = 42 ° С)
2. Укажите объем комнаты в м 3 (Например, комната 25 м 2, высота потолка 3.0 метров. Объем помещения = 25 * 3,0 = 75 м 3)
3. Выберите тип утепления здания
очень хорошая теплоизоляция — жилые дома с хорошей теплоизоляцией, толщина стен два или три кирпича, стеклопакеты (жилые и офисные здания)
хорошая теплоизоляция — стандартные здания, толщина стен — два кирпича (с хорошей изоляцией производственные помещения, типовые кирпичные здания)
плохая изоляция — плохо изолированные здания, толщина стен — кирпич (ангары сэндвич-типа, гаражи, производственные здания, бытовки и т. д.))
без изоляции — здания и сооружения без теплоизоляции


Нагреватели В настоящее время они очень востребованы как в качестве основных источников тепла, так и в качестве дополнительных. С наступлением неизбежного похолодания они становятся очень актуальными. Бывают случаи отключения отопления или недостаточного обогрева помещения, поэтому ваш комфорт частично зависит от области применения. обогреватель который зимой лучше иметь под рукой.Обогреватели Species комплект , и из этого набора вам необходимо выбрать тот вариант, который максимально соответствует вашим потребностям. Мощность — важнейшая характеристика ТЭНа, в целом от нее зависит эффективность его работы. Расчет мощности обогревателя сводится к расчету (в полностью неотапливаемом помещении) 1 кВт на 10 кв. Км. м площади помещения при высоте 3 м. В случае использования ТЭНа в качестве дополнительного источника мощность определяется в зависимости от требуемого перепада температур, который необходимо компенсировать.Также учитываются размер, расположение окон, их количество, материал стен, их толщина, структура пола. То есть нужно учитывать всевозможные потери тепла в помещении. При тщательном обогреве дома лучше всего воспользоваться услугами профессионалов, которые подскажут, какие обогреватели нужно использовать и их расположение. Стоит обратить внимание на то, есть ли у нагревателя регулятор мощности , что очень удобно в условиях переменных температур и позволяет использовать максимальную мощность только тогда, когда это особенно необходимо.При выборе обогревателя важно проанализировать все факторы, влияющие на обогрев, определить необходимое количество обогревателей, их расположение в помещении и мощность каждого. Если мощность будет больше, то это повлечет за собой потери, а при мощности меньше желаемая эффективность нагрева не достигается. При выборе обогревателя помимо power выбирается и его тип, с различными функциями и возможностями.

В зависимости от мощности , разновидностей обогревателей, размеры, формы, принцип действия есть несколько типов обогревателей : масляные радиаторы, электронагреватели, конвекторы, тепловентиляторы, инфракрасные обогреватели.
Масляные радиаторы имеют свои разновидности моделей. Эти модели отличаются количеством секций, температурой нагрева и мощностью . Причем значение мощности чем больше, тем больше разделов по количеству. Представляют собой масляные обогреватели системы в виде заправленных маслом батарей. Принцип действия основан на нагреве масла, которое, в свою очередь, передает тепло поверхности. Нагреватель , изготовленный из металлического материала. Некоторые модели таких обогревателей имеют терморегулятор, самостоятельно регулирующий температуру, вентилятор, распределяющий тепло по помещению и еще несколько положительных качеств.Они нагреваются максимум до 150 градусов, это хорошее качество для обогрева, но в то же время, что тоже минус — можно обжечься. Электрические обогреватели из-за расхода электроэнергии считаются достаточно дорогими в эксплуатации, но получили широкое распространение в наше время из-за простоты использования. Важно помнить о потребности в сумме мощностей было меньше нагревателей мощность источника питания в помещении. Этот обогреватель типа не нагревается выше 60 градусов, что исключает возможность получения ожогов.Тепловентиляторы имеют малую мощность и рассчитаны на непродолжительную работу. Это вееры со светящейся спиралью. Воздушный поток от тепловентиляторов направлен в одну сторону, то есть они нагревают только часть помещения, где находятся. В большинстве случаев тепловентиляторы используются в офисах, где эффективность отопления весьма сомнительна. Конвекторы — электрические обогреватели с естественной циркуляцией воздуха. Они не могут быстро обогреть комнату, только для поддержания определенной температуры. Есть разные емкости, которые различаются по цене.Инфракрасные обогреватели также работают от сети. Они производят тепло за счет излучения электромагнитных волн, при которых происходит излучение тепла. Во-первых, они нагревают предметы, на которые направлен обогреватель, например, стены, мебель, которые в свою очередь нагревают комнату. Располагайте такие обогреватели на потолке на определенном расстоянии от головы человека. Разные модели таких обогревателей отличаются мощностью и расположением потолка. То есть каждый нагреватель имеет свою удельную мощность . С мощностью нагревателя необходимо установить 800 Вт на минимальном расстоянии 0.7 метров от головы человека, а обогреватели мощностью 2-4 кВт на расстоянии около 2 метров.
Для комфортного использования в будущем, если вы решили использовать обогреватель , важно сразу сделать правильный выбор. Выбор зависит от множества различных факторов, наиболее важным из которых является мощность нагревателя . От мощность обогревателя напрямую зависит от площади помещения, отапливаемого им. Для обычных квартир и коттеджей мощность обогревателя должна составлять 1 кВт на 10 кв.Если электронагреватель нужен только для дополнительного обогрева, то в этом случае будет достаточно использовать обогреватель мощностью от 1,0 до 1,5 кВт на комнату площадью 20-25 кв. Мощность обогревателя зависит от площади отапливаемого помещения. Примерный расчет мощности нужный вам нагреватель сделать очень просто. Если помещение совсем не отапливаемое, а с хорошей теплоизоляцией, площадью примерно 10-12 квадратных метров. м. требуется нагреватель мощностью около 1000 Вт. Для обогрева помещений с (офис, квартира) площадью 20-25 кв.м нужно 1000-1500 Вт. Очень распространенным считается термоволновой обогреватель, который спокойно нагревает помещения в 1,5–2 раза больше, чем обогревателей той же мощности. Такой обогреватель в основном подходит для обогрева любой площади.

Перед выбором типа обогревателя Для начала необходимо рассчитать минимальное значение тепловой мощности для вашего помещения. Это зависит от мощности от таких показателей, как: объем помещения, которое нужно будет отапливать, разница температур в помещении и на улице.Также влияние на мощность имеет коэффициент рассеивания, который напрямую зависит от изоляции помещения и типа конструкции. Коэффициенты имеют определенные постоянные значения. При использовании деревянной конструкции или металла (без теплоизоляции) коэффициент составляет 3-4. С небольшой теплоизоляцией в упрощенном исполнении комнаты 2-2.9. Средняя теплоизоляция и стандартное исполнение обеспечивают значение коэффициента от 1 до 1,9. И, наконец, при условии улучшенного строительства (кирпичные стены, двойная изоляция, толстый пол, качественный кровельный материал), с, так сказать, высоким коэффициентом теплоизоляции — 0.6-0.9.
Умножив значения этих параметров, вы получите довольно точное значение. Требуется мощность вашего обогревателя . Хотя безопаснее будет все же воспользоваться помощью опытных специалистов, которые могут внести некоторые поправки в ваши расчеты, или рассчитать мощность самостоятельно. После определения мощности можно смело выбирать ТЭН типа . И производителей для этого очень много.

По сравнению с электрическими отопительными приборами, собственная система отопления более выгодна как с точки зрения экономии затрат , так и с точки зрения максимального удобства при обогреве помещений.

Эффективность и экономичность системы отопления в доме зависит от правильных расчетов, соблюдения точных правил и инструкций.

Расчет площади обогрева дома — процесс трудоемкий и сложный. Не стоит сильно экономить на материалах. Качественное оборудование и его установка сказываются на финансовом бюджете, но потом обслуживают дом хорошо и комфортно.

При оснащении дома системой отопления строительные работы и монтаж отопления должны выполняться строго по проекту и с учетом всех правил техники безопасности при эксплуатации.

Следует учитывать следующие моменты:

  • строительный материал в домашних условиях
  • оконных проемов;
  • климатических особенностей местности, где расположен дом;
  • расположение оконных рам на компасе;
  • что такое устройство «теплый пол».

При соблюдении всех вышеперечисленных правил и расчетов для проведения отопления необходимы некоторые инженерные знания. Но есть еще и упрощенная система — расчет отопления по площади, который можно сделать самостоятельно, опять же, придерживаясь правил и соблюдая все нормы.

Выбор котла требует индивидуального подхода.

Если в доме есть газ, то самый лучший вариант — это , газовый котел . При отсутствии централизованного газопровода выбираем электрокотел, теплогенератор на твердом или жидком топливе. Учитывая региональные особенности, доступность поставок материалов, можно установить комбинированный котел. Комбинированный генератор тепла всегда поддержит комфортную температуру, в любых аварийных и форс-мажорных ситуациях.Здесь следует отталкиваться от простого типа работы, коэффициента теплоотдачи.


После определения типа котла необходимо рассчитать площадь обогрева помещения. Формула простая, но учитывает температуру холодного периода, коэффициент теплопотерь для больших окон и их расположение, толщину стен и высоту потолков.

Каждый котел имеет определенную мощность. Если вы сделаете неправильный выбор, в комнате будет либо холодно, либо чрезмерно жарко.Таким образом, если удельная мощность котла 10 куб. Учитывая площадь отапливаемого помещения в 100 кв.м, можно выбрать наиболее оптимальный теплогенератор.

Из формулы, которую используют инженеры, — Wot = (SxWud) / 10 кВт . — Отсюда следует, что мощность котла в отопительном помещении 10 кВт на 100 кв.м .

Необходимое количество секций радиатора.

Чтобы было понятнее, решим задачу на примере конкретных чисел.Приняв комнатную площадь 14 кв.м . и высота потолка 3 метра , объем определяется умножением.

14 x 3 = 42 кубических метра .


В средней полосе России, Украине, Беларуси тепловой мощности на кубический метр соответствует 41 Вт . Определяем: 41х 42 = 1722 Вт. Выяснили, что для комнаты 14 кв.м. Радиатор мощностью 1700 Вт необходимо . Каждая отдельная секция (край) имеет мощность 150 Вт. Делясь результатами, получаем необходимое количество секций для приобретения.Расчет площади обогрева не везде одинаков. Для помещений более 100 кв.м. Требуется установка циркуляционного насоса , служащего для «принудительного» движения теплоносителя по трубам. Его установка происходит в обратном направлении от отопительных приборов к теплогенератору. Циркуляционный насос увеличивает срок службы системы отопления, уменьшая контакт горячих жидкостей с приборами.

При установке системы отопления теплый пол «Тепловой коэффициент дома значительно увеличивается.Подключить систему теплого пола можно уже существующими видами отопления. С радиаторов отопления снимается труба и подводится проводка теплого пола. Это наиболее удобный и выгодный вариант с учетом экономии средств и времени.

Чтобы рассчитать количество радиаторов отопления в квартире или в частном доме, нужно для начала подобрать радиаторы. При этом измеряется отапливаемая площадь и учитываются другие исходные показатели.Все температурные нормы указаны в соответствующих СНиПах. Но изучать все это необязательно, ведь специальная программа избавит вас от многих трудностей.

Расчет емкости радиатора отопления: калькулятор и материал батареи

Расчет радиаторов отопления начинается с выбора самих отопительных приборов. Для батарей на батарее в этом нет необходимости, так как система электронная, но для стандартного нагрева вам придется использовать формулу или калькулятор.Различают аккумуляторы по материалам изготовления. У каждого варианта своя мощность. Многое зависит от необходимого количества секций и размеров отопительных приборов.

Типы радиаторов:

  • биметаллический;
  • Алюминий;
  • Сталь;
  • Чугун.

Для биметаллических радиаторов используют 2 вида металла: алюминий и сталь. Внутреннее основание выполнено из прочной стали. Внешняя сторона сделана из алюминия.Это обеспечивает хороший прирост теплоотдачи устройству. В результате получается надежная система с хорошей мощностью. Теплопередача зависит от центра и расстояния конкретной модели радиатора.

Мощность радиаторов Rifar составляет 204 Вт с интервалом между осями 50 см. Другие производители предоставляют продукцию с более низкими характеристиками.

Для тепловой энергии аналогично биметаллическим приборам. Обычно этот показатель при междурядье 50 см составляет 180-190 Вт. Более дорогие устройства имеют мощность до 210 Вт.

Алюминий часто используют при организации индивидуального отопления в частном доме. Конструкция устройств довольно проста, но устройства отличаются отличным отводом тепла. Такие радиаторы не устойчивы к гидравлическим ударам, поэтому их нельзя использовать для центрального отопления.

При расчете мощности биметаллического и алюминиевого радиатора учитывается показатель одной секции, так как устройства имеют монолитную конструкцию. Для стальных составов расчет выполняется для всей батареи определенных размеров.Подбор таких устройств следует производить с учетом их рядов.

Измерение теплопередачи чугунных радиаторов мощностью от 120 до 150 Вт. В некоторых случаях мощность может достигать 180 Вт. Чугун устойчив к коррозии и может работать при давлении 10 бар. Их можно использовать в любых постройках.

Минусы чугунных изделий:

  • Heavy — 70 кг весит 10 секций с расстоянием 50 см;
  • Сложная установка из-за серьезности;
  • Длительно нагревается и потребляет больше тепла.

Выбирая аккумулятор покупать, учитывать мощность одной секции. Так что определитесь с устройством с необходимым количеством ответвлений. При расстоянии между центрами 50 см расчетная мощность составляет 175 Вт. А на расстоянии 30 см показатель измеряется как 120 Вт.

Калькулятор для расчета радиаторов отопления по площади

Калькулятор учета площади — это самый простой способ определить необходимое количество радиаторов на 1м2. Расчеты производятся исходя из норм выработанной мощности.Есть 2 основных положения норм, учитывающих климатические особенности региона.

Основные стандарты:

  • Для умеренного климата необходимая мощность 60-100 Вт;
  • Для северных регионов ставка 150-200 Вт.

Многих интересует, почему у норм такой большой разброс. Но мощность подбирается исходя из исходных параметров дома. Бетонные здания требуют максимальной мощности.Кирпич — средний, утепленный — низкий.

Все стандарты приняты во внимание при средней максимальной высоте полки 2,7 м.

Для расчета сечений необходимо площадь умножить на норму и разделить на теплоотдачу одного сечения. В зависимости от модели радиатора учитывается мощность одной секции. Эту информацию можно найти в технических данных. Все достаточно просто и особых сложностей не представляет.

Калькулятор для несложного расчета радиаторов на площади

Калькулятор

— это эффективный вариант расчета.Для комнаты размером 10 квадратных метров потребуется кВт (1000 Вт). Но это при условии, что комната не угловая и установлены стеклопакеты. Чтобы узнать количество граней панельных устройств, необходимо необходимую мощность разделить на теплоотдачу одной секции.

Когда это принято во внимание. Если они выше 3,5 м, то необходимо будет увеличить количество секций на одну. А если комната угловая, то добавляем плюс один отсек.

Учитывать запас тепловой мощности.Это 10-20% от расчетной цифры. Это необходимо в случае сильного холода.

Разделы теплопередачи, указанные в технических характеристиках. Для алюминиевых и биметаллических батарей учитывают мощность одной секции. Для чугунных приборов за основу берется теплоотдача всего радиатора.

Калькулятор точного расчета количества секций радиаторов

Простой расчет не учитывает многие факторы. В результате получились кривые данные.Тогда одни комнаты остаются холодными, вторые — слишком горячими. Температуру можно контролировать с помощью задвижек, но лучше заранее все рассчитать точно, чтобы использовать необходимое количество материалов.

Для точного расчета используются понижающие и повышающие тепловые коэффициенты. В первую очередь следует обратить внимание на окно. Для одинарного остекления используется коэффициент 1,7. Для двойных окон фактор не нужен. Для тройки ставка 0,85.

Если окна одинарные и нет теплоизоляции, то потери тепла будут довольно большими.

При расчете учитывают соотношение площади этажей и окон. Идеальное соотношение — 30%. Затем применяется коэффициент 1. При увеличении коэффициента на 10% коэффициент увеличивается на 0,1.

Коэффициент для разной высоты потолка:

  • Если потолок ниже 2,7 м, коэффициент не нужен;
  • При показателях от 2,7 до 3,5 м используется коэффициент 1,1;
  • При высоте 3,5-4,5 м коэффициент 1.2 требуется.

При наличии чердаков или верхних этажей также применяются определенные факторы. На теплом чердаке показатель составляет 0,9, в гостиной — 0,8. Для неотапливаемых чердаков возьмите 1.

.

Калькулятор объема для расчета тепла для отопления помещений

Подобные вычисления используются для слишком высоких или слишком низких помещений. В этом случае рассчитывается объем помещения. Значит, на 1 м куба нужно 51 ватт заряда батареи. Формула расчета выглядит следующим образом: A = B * 41

Формулы дешифрования:

  • А — сколько разделов нужно;
  • B — объем помещения.

Чтобы найти объем, умножьте длину на высоту и ширину. Если его батарея разделена на секции, то общая потребность делится на мощность всей батареи. Полученные в результате расчеты обычно округляются, так как компании часто увеличивают мощность своего оборудования.

Как рассчитать количество секций радиаторов на комнату: ошибки

Тепловая мощность по формулам рассчитана с учетом идеальных условий. В идеале температура на входе составляет 90 градусов на входе, а на выходе 70 градусов.Если поддерживать температуру в доме на уровне 20 градусов, система будет иметь теплый напор в 70 градусов. Но при этом один из показателей обязательно будет другим.

Сначала необходимо рассчитать температурный напор системы. Берем исходные данные: температуру на входе и выходе, в помещении. Далее мы определяем дельту системы: необходимо будет вычислить среднее арифметическое между входом и выходом, затем измерить температуру в помещении.

Полученную дельту необходимо найти в таблице преобразования и умножить мощность на этот коэффициент. В результате получает мощность одной секции. Таблица состоит всего из двух столбцов: дельты и коэффициента. Показатель получается в ваттах. Эта мощность используется при расчете количества батарей.

Особенности расчета отопления

Часто утверждают, что на 1 квадратный метр достаточно 100 ватт. Но эти цифры поверхностны. Они не принимают во внимание многие факторы, которые стоит знать.

Необходимые данные для расчета:

  1. Площадь комнаты.
  2. Количество внешних стен. Они охлаждают комнату.
  3. Сторона света. Важно солнце или притенение с этой стороны.
  4. Зимняя роза ветров. Там, где зимой ветрено, в помещении будет холодно. Все данные учитывает калькулятор.
  5. Климат региона — минимальная температура. Достаточно взять среднее.
  6. Кладка стен — сколько кирпича было использовано, есть ли утеплитель.
  7. Окно. Учитывайте их площадь, утеплитель, тип.
  8. Кол-во дверей. Стоит помнить, что они забирают тепло и приносят холод.
  9. Схема установки батареи
  10. .

Кроме того, всегда учитывается мощность одной секции радиатора. Это позволяет узнать, сколько радиаторов вешать в одну линию. Калькулятор значительно упрощает расчеты, так как многие данные остаются неизменными.

Как рассчитать площадь обогрева помещения: калькулятор (видео)

Перед тем, как выбрать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

Обычно для приблизительного расчета достаточно места в кубических метрах, разделенных на 30. Обычно менеджеры используют этот метод для консультирования покупателей по телефону. Такой расчет позволяет быстро оценить, какая общая теплоемкость может понадобиться для обогрева помещения.

Например, для выбора теплового пистолета в комнату (или офис) площадью 50 м² и высотой потолка 3 м (150 м³) потребуется 5,0 кВт тепловой мощности. Наш расчет таков: 150/30 = 5.0

Этот вариант расчетов в основном используется для расчета дополнительного обогрева в тех помещениях, где уже есть какое-то отопление и нужно лишь нагреть воздух до комфортной температуры.

Однако этот метод расчета не подходит для неотапливаемых помещений, и при необходимости, помимо объема помещения, учесть разницу температур внутри-снаружи, а также конструктивные особенности самого здания (стены, изоляция и др.)

Точный расчет тепловой мощности водонагревателя:

Для расчета тепловой мощности с учетом дополнительных условий помещения и температуры используется следующая формула:

В × ΔT × K = ккал / ч , или

В × ΔT × K / 860 = кВт , где

В — Объем отапливаемого помещения в кубических метрах;

ΔT — Разница между температурами воздуха внутри и снаружи.Например, если температура воздуха на улице -5 ° C, а требуемая температура в помещении +18 ° C, то разница температур составляет 23 градуса;

К — Коэффициент теплоизоляции помещения. Это зависит от типа конструкции и утепления помещения.

K = 3,0-4,0 — Упрощенная деревянная конструкция или конструкция из гофрированного листового металла. Без теплоизоляции.

K = 2,0-2,9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыш. Малая теплоизоляция.

K = 1.0-1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое количество окон, крыша со стандартной крышей. Средняя теплоизоляция.

K = 0,6-0,9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое количество стеклопакетов, толстое основание пола, крыша из качественного теплоизоляционного материала. Высокая теплоизоляция.

При выборе значения коэффициента теплоизоляции необходимо учитывать старое или новое здание, так как старые здания требуют больше тепла для прогрева (соответственно, коэффициент должен быть выше).

Для нашего примера, если учесть разницу температур (например, 23 ° C) и уточнить коэффициент теплоизоляции (например, у нас есть старое здание с двойной кирпичной кладкой, возьмем значение 1,9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так

150 × 23 × 1,9 / 860 = 7,62

То есть, как видите, скорректированный расчет показал, что для обогрева данного помещения потребуется больше теплопроизводительность, чем была рассчитана по упрощенной формуле.

Этот метод расчета применим к любому типу отопительного оборудования, за исключением, возможно, инфракрасных обогревателей, поскольку в нем используется принцип явного тепла. Подходит для любых других типов обогревателей — водяных, электрических, газовых и масляных.

После расчета необходимой тепловой мощности можно переходить к выбору типа и модели обогревателя.

От чего зависит теплоотдача радиатора. Методика расчета тепловыделения радиатора батарей отопления

Вопрос об эффективной работе системы отопления во многом зависит от того, как рассчитывается тепловая мощность радиаторов.Эти устройства являются основным источником тепла, которое нагревает воздух внутри помещения. Поэтому еще на этапе проектирования инженеры проводят расчеты, на основании которых в каждой комнате устанавливается радиатор с определенным количеством секций. Эти расчеты не так просты, потому что они должны учитывать большое количество критериев.

Что нужно учитывать при расчетах?

Расчет радиаторов

Обязательно примите во внимание:

  • Материал, из которого изготовлена ​​нагревательная батарея.
  • Его размер.
  • Кол-во окон и дверей в комнате.
  • Материал, из которого построен дом.
  • Сторона света, на которой находится квартира или комната.
  • Наличие теплоизоляции здания.
  • Тип разводки трубопроводной системы.

И это лишь малая часть того, что нужно при этом учитывать. Не забывайте о региональном расположении дома, а также о средней уличной температуре.

  • Обычный — с помощью бумаги, ручки и калькулятора. Формула расчета известна, и в ней используются основные показатели — теплопроизводительность одной секции и площадь отапливаемого помещения. Также коэффициенты добавляются-понижаются и повышаются, что зависит от ранее описанных критериев.
  • С помощью онлайн-калькулятора. Это простая в использовании компьютерная программа, в которую загружаются определенные данные о размерах и конструкции дома. Он дает достаточно точный показатель, который берется за основу при проектировании системы отопления.

Для обычного обывателя любой вариант — не самый простой способ определить тепловую мощность отопительной батареи. Но есть еще один метод, для которого используется простая формула — 1 кВт на 10 м² площади. То есть для обогрева помещения площадью 10 квадратных метров потребуется всего 1 киловатт тепловой энергии. Зная коэффициент теплоотдачи одной секции радиатора, можно точно рассчитать, сколько секций нужно установить в том или ином помещении.

Давайте рассмотрим несколько примеров, как это сделать правильно.Различные типы радиаторов имеют большой размерный диапазон, который зависит от межосевого расстояния. Это размер между осями нижнего и верхнего коллектора. Для большинства отопительных батарей этот показатель составляет либо 350 мм, либо 500 мм. Есть и другие параметры, но они встречаются чаще других.

Это первый. Во-вторых — на рынке представлено несколько видов отопительных приборов из разных металлов. У каждого металла своя теплоотдача, и это необходимо учитывать при расчете.Кстати, какой выбрать и поставить радиатор в своем доме, каждый решает сам.

Тепловыделение чугунных радиаторов

Диапазон теплопередачи чугунных аккумуляторов колеблется в пределах 125-150 Вт. Разброс зависит от межосевого расстояния. Теперь можно посчитать. Например, ваша комната имеет площадь 18 м². Если планируется установка батареи 500 мм, то воспользуемся следующей формулой: (18: 150) x100 = 12. Получается, что в этом помещении нужно установить 12-секционный радиатор.

Все просто. Аналогичным образом можно рассчитать чугунный радиатор с межосевым расстоянием 350 мм. Но это будет только приблизительный расчет, потому что для точности необходимо учитывать коэффициенты. Их не так много, но с их помощью можно получить максимально точную цифру. Например, наличие в комнате не одного, а двух окон увеличивает теплопотери, поэтому конечный результат необходимо умножить на коэффициент 1,1. Мы не будем рассматривать все коэффициенты, так как это займет много времени.Мы уже писали о них на нашем сайте, так что найдите статью и прочтите.

Тепловыделение алюминиевых радиаторов

Для сравнения двух противоположных металлов была выбрана алюминиевая батарея. Алюминиевые радиаторы

Тепловыделение радиаторов Global рассчитывается согласно EN-442

тепловая мощность больше, и одна секция излучает 200 Вт тепла. Подставляя этот показатель в формулу, определяем, сколько секций следует использовать в помещении площадью 18 м².

(18: 200) x100 = 9. Количество секций уменьшилось только за счет высокой теплоотдачи алюминиевых устройств. Так что вы сможете выбрать радиатор не только по размеру, но и по модели.

Способ подключения

Не все понимают, что разводка труб отопления и правильное подключение влияют на качество и эффективность теплопередачи. Разберем этот факт подробнее.

Есть 4 способа подключения радиатора:

  • Боковой. Этот вариант чаще всего используется в городских квартирах многоэтажных домов.Квартир в мире больше, чем частных домов, поэтому производители используют этот тип подключения как номинальный метод определения теплопередачи радиаторов. Для его расчета коэффициент равен 1,0.
  • Диагональ. Идеальное соединение, потому что теплоноситель проходит по всему устройству, равномерно распределяя тепло по его объему. Обычно этот вид применяется, если в радиаторе более 12 секций. В расчетах используется коэффициент приращения 1,1–1,2.
  • Нижний.В этом случае подводящий и обратный патрубки подключаются снизу радиатора. Обычно такой вариант используется при скрытой разводке труб. У такого типа подключения есть один минус — тепловые потери 10%.
  • Одинарная труба. Это, собственно, нижнее подключение. Обычно его используют в системе разводки труб. И здесь не обошлось без тепловых потерь, правда, они в несколько раз больше — 30-40%.

Заключение по теме


Таблица мощности радиаторов

Вы сами смогли убедиться, что можно правильно рассчитать теплопередачу радиатора простым, хотя и не очень точным способом.Кроме того, мы должны учитывать широкий разброс размерных параметров батарей, материалов, из которых они изготовлены, а также дополнительные факторы. Так что все сложно.

Поэтому советуем действовать проще. Возьмите за основу саму формулу с соотношением площади комнаты и необходимого количества тепла. Сделайте расчет и прибавьте к нему до 10%. Если ваш дом находится в северном регионе, прибавьте 20%. Даже 10% — это очень щедро, но лишнего тепла нет.Более того, можно с помощью различных устройств контролировать подачу теплоносителя к радиаторам. Вы можете уменьшить, но можете увеличить. Единственный минус такой прибавки — первоначальная стоимость приобретения радиаторов с большим количеством секций. Особенно это касается алюминиевых и биметаллических устройств отопления.

Общепринятой температурой квартирного комфорта считается 21 0 по Цельсию. Чтобы иметь его в квартире на таком уровне и в зимние холода, используются различные системы отопления, в том числе автономные и системы центрального отопления.Здравый смысл и грамотный расчет тепловыделения радиатора отопительных батарей позволяет установить необходимое количество отопительных приборов, в том числе радиаторы.

Цели и задачи расчетов радиаторов отопления

Расчеты радиаторов проводятся для обеспечения эффективного функционирования системы отопления для обогрева конкретного жилого помещения, а в расчетах тепловой комфорт трактуется не только как положительная температура произвольной величины, но и предельно допустимая.Нет смысла устанавливать сверхвысокое количество обогревателей, если приходится открывать окно ради свежего воздуха (помните, слишком горячие батареи «сжигают» кислород). То есть расчеты определяют границы низкотемпературного и высокотемпературного нагрева.

Еще одна задача тепловых расчетов — определение параметров теплопередачи, позволяющих равномерно распределять тепловые потоки по помещению. В этом случае необходимо учитывать тепловые потери в зависимости от наличия в подвале и чердачном помещении, например, материала стен, толщины стен, размеров окон и многих других сопутствующих факторов.

При проектировании строительного объекта используются специальные программы, тепловизоры можно использовать для расчета радиаторов в квартире. Но для приблизительных расчетов используются простые алгоритмы, которые принято называть калькуляторами расчета батарей отопления. Их методы основаны, в основном, на соотношении необходимой тепловой мощности обогревателя и площади отапливаемого помещения.

Методика расчета радиатора по площади

В условном расчете на площадь значение теплопроизводительности, регламентированной санитарными нормами, на 1 кв.метровая площадь помещения. Для умеренного климата на широте Москвы этот показатель составляет от 50 до 100 Вт. Для северных районов выше 60 0 северной широты он выше и принимается в пределах от 150 до 200 Вт на 1 кв. Км. метр. Паспортное значение теплопередачи одной чугунной секции указано размером от 125 до 150 Вт.

Определите необходимую мощность на 15 кв. метры:

100 x 15 = 1500 Вт.

Определить количество секций:

1500/125 = 12 секций, которые можно представить в виде двух шестисекционных чугунных батарей.

Этот расчет также эквивалентен для биметаллического радиатора, так как его теплопередача имеет практически такие же значения.

При расчетах использовались нормы потолка стандартной высоты 270 см. Для более высоких потолков расчеты радиаторов производятся исходя из параметров кубической комнаты.

Методика расчета радиатора по объему

В данном случае методика, или, как ее еще называют, калькулятор для выбора батарей кВт, оперирует такими понятиями, как номинальный тепловой поток Qn конкретного типа радиатора и количество тепловой энергии Qp, необходимое для обогрева 1 кубометра. .метр комнаты. Величина Q должна быть указана в паспорте радиатора. Значение Qp для помещения стандартного панельного дома составляет 0,041 кВт. Для кирпичного дома этот показатель снижается до 0,034 кВт на 1 куб. метр. Для жилых помещений, в которых хорошая теплоизоляция, тепловая мощность еще меньше — 0,02 кВт.

Количество секций радиатора определяется аналогично вычислителю батареи отопления по площади, то есть путем умножения объема помещения на удельную объемную тепловую энергию и последующего деления на значение номинальной тепловой энергии. поток радиатора:

N = V x Qp / Qnom, шт.Результат округляется в большую сторону.

Важно! Поскольку эти расчеты весьма приблизительны и не учитывают тепловые потери здания, округление в большую сторону даст некоторый запас для улучшения комфортных условий обогрева.

Учет дополнительных факторов при тепловых расчетах радиаторов

Дополнительными факторами, влияющими на теплопередачу радиаторов, являются поправочные коэффициенты, корректирующие отклонения от стандартных условий, принятых в основных расчетах.

Регулировка высоты

Стандартная высота комнаты 270 см. В случае большей высоты поправочный коэффициент определяется делением высоты комнаты на стандартное значение 270 см. То есть для комнаты высотой 324 см соотношение будет 324/270 = 1,2. Соответственно, удельная тепловая мощность составляет 100 Вт на 1 кв. Км. метр надо увеличить в 1,2 раза, то есть уже будет 120 Вт на кВ. метр.

Тепловая мощность батарей отопления зависит от места расположения, поскольку конвекционные потоки смешиваются по-разному на разных расстояниях между ребрами радиатора и полом или подоконником.Поправочные коэффициенты показаны на диаграмме. При этом следует учитывать, что для угловых помещений потери тепла в два раза выше, так как в таких помещениях два окна.

Коэффициент поправки к номиналу тепловыделения радиатора является наиболее оптимальным при диагональном подключении труб отопления. Но особые условия монтажа аккумуляторов не всегда позволяют использовать эту схему.

Сводка

Сложно учесть все факторы, влияющие на теплопередачу радиатора.По словам сантехников, если в доме идеальная теплоизоляция, можно обойтись без отопления. Достаточно тепла от электроприборов и плиты. Также очень важно уметь рассчитывать теплопотери в зависимости от размеров окон, дверей и окон. Однако считается, что усредненные значения тепловых характеристик помещений и радиаторов позволяют с определенной точностью определить необходимое количество секций радиатора и не пропускать при комнатной температуре.

Тепловой расчет устройств заключается в определении необходимого номинального теплового потока, марки панельного радиатора или конвектора и количества секций или колонн секционных и трубчатых радиаторов. Расчет отопительных приборов выполняется согласно рекомендациям ООО ВИТАТЕРМ. Технические характеристики системы отопления приняты для устройства с межосевым расстоянием 500 мм (кроме конвектора).

Требуемый номинальный тепловой поток устройства, Вт, определяется по формуле


, (11)

где Q и т. Д. — требуемая теплоотдача устройства, Вт;

— комплексный коэффициент приведения к номинальным условиям.

Тепловая мощность устройства Q и т. Д. , Вт, рассчитывается по формуле

Q и т. Д. = Q p Q tr , (12)

где Q p — тепловые потери помещения, определенные при расчете теплового баланса (из таблицы 3) W;

Q tr — суммарная теплоотдача труб, проложенных внутри помещения, Вт.

В курсовой работе полезная теплоотдача труб Q tr , Вт принимается в долях от тепловых потерь помещения: в двухтрубной вертикальной системе отопления верхнего этажа теплоотдача из труб — 5% тепловых потерь помещения и 15% остальных этажей; 5% от тепловых потерь помещения.

Комплексный коэффициент приведения к номинальным условиям определяется по формуле


, (13)

где n, m, c — эмпирические численные значения, учитывающие влияние схемы течения теплоносителя на тепловой поток и коэффициент теплопередачи устройства, приведены в рекомендациях ООО «ВИТАТЕРМ» по наиболее оптимальной схеме движения воды «сверху вниз»;

p — коэффициент, учитывающий направления движения теплоносителя в устройстве;

б — коэффициент атмосферного давления на участке;

Δ t — разница между средней температурой воды в приборе и температурой окружающего воздуха в помещении;

G и др. — расход воды через устройство, кг / час.

Разница температур в приборе определяется по формуле


, (14)

где т в , t out — температуру воды на входе и выходе из устройства, ºС, для двухтрубной системы водяного отопления со стальными трубами следует принимать t in = 95 ° C, t out = 70 ° С; при разводке полимерных труб температура выбирается в зависимости от характеристик их материала.Для металлополимерных труб t вх = 90 ºС и t вых = 70 ºС; для полипропилена t вход = 85 ºС и t вых = 65 ºС.

Расход воды через водонагреватель

, кг / час, определяется по формуле


, (15)

где

— теплопотери помещения из таблицы 3, Вт;

β 1 — коэффициент, зависящий от шага номенклатуры устройства;

β 2 — коэффициент, зависящий от типа устройства и способа установки.

Оба коэффициента подбираются согласно таблице.

Количество секций нагревателя определяется по формуле

, (16)

где — номинальный тепловой поток одной секции, Вт, указан в рекомендации по расчету нагревателя, таблица;

— коэффициент, характеризующий зависимость теплоотдачи радиатора от количества секций, табл.

Тепловой расчет нагревателей следует выполнять в табличной форме.

Таблица 4 — Тепловой расчет отопительных приборов

№ стояка, комн.

Теплопотери помещения Qrec, Вт

Теплоотдача труб Q tp, Вт

Требуемая теплоотдача прибора Qпр, Вт

Коэффициент β 1

Коэффициент β 2

Температура воздуха в помещении t в, 0 С

Температура воды на входе в прибор t в, 0 С

Температура воды на выходе из аппарата t вых, 0 С

Температурный напор Δt, 0 С

Расход воды через устройство Г пр, кг / ч

Продолжение таблицы 4

Мощность секции алюминиевого радиатора.Чугунные радиаторы и расчет их мощности для комнаты

Эта техника выглядит современно и недорого. Они способны при правильной установке и длительной эксплуатации выполнять свои функции. Чтобы в полной мере использовать все потенциальные возможности, необходимо точно рассчитать мощность алюминиевого радиатора, которая потребуется для качественного обогрева жилья в самых сложных погодных условиях.

Конструктивно-технические особенности

Качественные изделия из этого металла создаются методом литья.Это дает возможность изготавливать прочные, долговечные нагревательные приборы, в которых отсутствуют отдельные элементы, их соединения. Эта технология достаточно сложная. Чтобы исключить появление дефектов, требуется точное соблюдение многих режимов производства, контроль отсутствия скрытых дефектов, полостей. Стоимость таких радиаторов несколько выше, чем у сборных моделей. Но именно они могут без повреждений выдержать большое повышение давления в магистралях теплоносителя.

Второй распространенный метод — экструзия.Металл под давлением заполняет специальную форму. Заготовку разрезают на части. Отдельные элементы соединяются сваркой. В этом случае используются относительно недорогие производственные процессы. Но следует учитывать, что готовая продукция менее долговечна и надежна по сравнению с первым вариантом.

Алюминиевые радиаторы нужных размеров создаются из отдельных блоков, чтобы конечной мощности хватило на конкретное помещение. Ниже представлены диапазоны значений основных характеристик устройств данного типа:

  • Максимально допустимое давление в системе теплоснабжения: от 6 до 24 атм.
  • Температура теплоносителя (макс.): До + 110 ° С.
  • Срок службы нагревательного прибора: от 10 до 20 лет.

Параметры одной секции:

  • мощность — от 0,08 до 0,210 кВт;
  • объем охлаждающей жидкости — от 0,2 до 0,5 л;
  • вес — от 0,9 до 1,5 кг.

Сколько секций алюминиевого радиатора необходимо для обогрева одной комнаты


Самый простой и, соответственно, неточный расчет можно произвести по такой пропорции: на каждый квадратный метр помещения тепловая мощность не менее 0.1 кВт.

Чтобы узнать, сколько разделов вам нужно, выполните следующие действия:

  • Для обогрева одной комнаты площадью 30 кв. Требуется мощность 3 кВт: 30 * 1 = 3.
  • Если мощность одного элемента 0,15 кВт, то нужно 20 секций: 3 / 0,15 = 20.
  • Это слишком большое количество для одного радиатора, поэтому необходимо будет изготовить и установить в комнате две батареи. Каждый из них будет состоять из 10 разделов.

Более точный результат можно получить, если учесть следующие факторы:

  • климатические условия в районе;
  • высота потолков;
  • количество оконных и дверных проемов в помещении, наружных стенах;
  • наличие теплых полов снизу и сверху;
  • общие изоляционные характеристики конструкции.

Поправочные коэффициенты используются для каждого параметра. Их значения можно найти в профессиональных справочниках. Подставив их в общую формулу, не составит труда узнать, какая мощность в кВт требуется секции и устройства в целом для конкретного помещения. Если получилась неточная цифра, то следует округлить в большую сторону. При правильной настройке оборудования легче вносить коррективы, если оно приобретается с определенным запасом возможностей.

Как правильно установить и рентабельнее эксплуатировать алюминиевые радиаторы

Из приведенных выше данных нетрудно понять основные преимущества этого типа приборов.

Впрочем, перечислим их отдельно:

  • Сборная конструкция позволяет достаточно точно подобрать количество элементов, чтобы мощность нагрева была достаточной.
  • Малый вес облегчает производственные транспортно-монтажные работы.Не создает лишних нагрузок на крепеж и конструкцию здания.
  • Небольшие внутренние объемы и отличная теплопроводность уменьшают инерцию. Это означает, что допустимо комбинировать такие устройства с индивидуальными регуляторами, а также интегрировать их в современные системы автоматизированного поддержания комфортного температурного режима. Такое оборудование позволит снизить потребление энергоресурсов при эксплуатации.
  • Нейтральный внешний вид большинства моделей хорошо сочетается с множеством дизайнов.
  • Низкая стоимость устройств позволяет без больших затрат создавать новые или модернизировать старые системы отопления.

Они подходят как для самых простых однотрубных, так и для самых сложных коллекторных схем. Они подходят для работы с гравитационным или вынужденным движением теплоносителя.


При установке необходимо учитывать следующие особенности:

  • Все устройства должны быть оборудованы клапанами выпуска воздуха.
  • Крепление их необходимо производить в строго горизонтальном положении.
  • Когда pH охлаждающей жидкости (Ph) выходит за пределы диапазона от 7 до 8 единиц, происходят реакции, разрушающие алюминий.
  • Со временем этот металл покрывается защитной оксидной пленкой, которая предотвратит упомянутые выше процессы. Однако сам он может быть поврежден песком и другими механическими примесями. Такие загрязнения можно удалить с помощью стандартного основного фильтра.
  • В городских условиях сложно предотвратить возникновение аварийных ситуаций, связанных с резким повышением давления.Здесь рекомендуется устанавливать нагревательные приборы, рассчитанные на высокое давление.

Чугунные радиаторы — это радиаторы, дошедшие до нашего времени с далеких 70-х годов прошлого тысячелетия. Сегодня они более современные, отличить их от биметаллических или алюминиевых эмалированных радиаторов практически невозможно. Чугунные радиаторы способны работать при температуре охлаждающей жидкости до 110 0 С.

Довольно большие размеры и внушительный вес компенсируются инерционностью, позволяющей регулировать температуру.Они идеальны для любого помещения, надежны и долговечны, могут использоваться с любыми котлами и теплоносителями. Многих интересует вопрос — сколько киловатт в одной секции чугунного радиатора? Вы найдете ответ на этот вопрос ниже.

Радиатор отопления чугунный

Радиаторы чугунные М-140

Радиаторы типа М-140 имеют достаточно простую конструкцию и удобны в обслуживании. Материал, используемый при их изготовлении — чугун. Он обладает высокой устойчивостью к коррозионным процессам и может использоваться с любым теплоносителем.Низкий уровень гидравлического давления позволяет использовать радиаторы как для гравитационной, так и для принудительной циркуляции теплоносителя. Высокий порог противодействия гидроударам позволяет использовать их как в двухэтажных, так и в девятиэтажных зданиях. Преимущества М-140 — простота обслуживания, надежность, длительный срок службы и невысокая стоимость.

Радиаторы чугунные МС-140-500

Широко применяются для отопления зданий с t теплоносителя в пределах 130 0 С и давлением до 0.9 МПа. Вместимость одной полости 1,45 литра, объем обогреваемой площади 0,244 квадратных метра … Материал, из которого изготовлены секции — СЧ-10 (серый чугун).

Радиаторы чугунные МС-140-300

Радиаторы отопления предназначены для обогрева помещений с низкими подоконниками и давлением 0,9 МПа. Вместимость полости 1,11 л. Вес полости с учетом комплектующих 5700 г. Расчетный тепловой поток 0,120 кВт.

Радиаторы чугунные МС-140М-500-09

Радиаторы данной модели применяются для различных помещений с t теплоносителя до 130 0 С и давлением до 0.9 МПа. Масса одной полости 7100 г. Материал изготовления — серый чугун. S обогрев с одной камерой — 0,244 м 2.

Важно! Выбирая радиатор для жилья, обязательно обращайте внимание на его характеристики и заранее производите всевозможные расчеты, так как обменять купленный товар будет практически невозможно.

Плюсы и минусы использования чугунных радиаторов


Стилизованный чугунный радиатор

Любая существующая сегодня система отопления имеет как плюсы, так и минусы, рассмотрите их.

Номинальная тепловая мощность каждой секции составляет 160 Вт. Примерно 65% выделяемого теплового потока нагревает воздух, накапливающийся в верхней части помещения, а оставшиеся 35% нагревают нижнюю часть помещения.

  1. Длительный срок эксплуатации от 15 до 50 лет.
  2. Высокая стойкость к коррозионным процессам.
  3. Возможность использования в системах отопления с гравитационной циркуляцией теплоносителя.
  1. Низкая эффективность коррекции коэффициента теплоотдачи;
  2. Высокая трудоемкость при установке;

Важно! Чтобы не столкнуться с проблемой при установке, обязательно учтите вышеперечисленные плюсы и минусы чугунных радиаторов.Их установка стоит недешево, но повторные монтажные работы потребуют немалых финансовых средств.

Расчет сечений (полостей) радиаторов


Так вот, сколько кВт в 1 секции чугунного радиатора? Чтобы рассчитать количество секций и их мощность, нужно определиться с V-комнатой, которая в дальнейшем появится в расчетах. Далее выбираем значение тепловой энергии. Его значения следующие:

  1. отопление 1м 3 дома из панелей — 0.041кВт.
  2. Отопление 1 м 3 кирпичного дома со стеклопакетами и утепленными стенами — 0,034 кВт.
  3. отопление 1 м 3 помещения, возведенного по современным строительным нормам — 0,034 кВт.

Тепловой поток одной полости МС 140-500 0,160 кВт.

Затем выполняются следующие математические операции: объем помещения умножается на тепловой поток. Полученное значение делится на количество тепла, выделяемого одной камерой. Результат округлите в большую сторону и получите необходимое количество секций.

Сколько киловатт в чугунной секции? Каждый тип радиатора имеет различное значение, которое производитель рассчитывает при их изготовлении и указывает его в сопроводительной документации.

Сделаем примерный расчет на основе имеющихся данных.

Помещение имеет следующие данные: тип помещения — панельный дом, длина — высота — ширина — 5х6х2,7 м соответственно.

  1. Рассчитываем объем помещения V:

В = 5 х 6 х 2.7 = 81 м 3

  1. Требуемый тепловой объем:

Q = 81 * 0,041 = 3,321 кВт

  1. Исходя из этого, количество секций радиатора составляет:

n = 3,321 / 0,16 = 20,76

, где 0,16 — тепловая мощность одной секции. Уточняется производителем.

  1. Округляем значение в большую сторону, исходя из чего количество необходимых секций составляет 21 шт.


Чтобы отопление дома было эффективным, следует покупать качественные элементы.Перед этим — провести правильный расчет своей мощности.

Расчеты производятся с учетом:

  • площади помещения;
  • высота потолка;
  • количество окон
  • длина помещения;
  • особенности климата региона.

Правильный выбор

  1. Производительность отопительных приборов должна составлять 10% площади помещения при высоте его потолка менее 3 м.
  2. Если больше, то прибавляем 30% .
  3. Для конечной комнаты добавьте еще 30% .

Необходимые расчеты


После определения теплопотерь нужно определить производительность прибора (сколько кВт должно быть в стальном радиаторе или других приборах).

  1. Например, нужно отапливать помещение площадью 15 м² и высотой потолка 3 м.
  2. Находим его объем: 15 ∙ 3 = 45 м³.
  3. В инструкции сказано, что для обогрева 1 м³ в условиях Средней полосы России необходимо 41 Вт тепловой мощности.
  4. Это означает, что мы умножаем объем помещения на эту цифру: 45 ∙ 41 = 1845 Вт. Этой мощностью должен обладать радиатор отопления.

Примечание!
Если жилище находится в районе с суровыми зимами, полученное значение необходимо умножить на 1,2 (коэффициент теплопотерь).
Окончательный показатель составит 2214 Вт.

Количество ребер

Из него вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога составляет 150-200 Вт.Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214: 200 = 11.07. Это значит, что для обогрева помещения нужна батарея из 11 секций.

Тепловая мощность


На фото примерная теплопередача чугуна.

В помещении отопительные приборы размещаются у внешней стены под оконным проемом. В результате тепло, излучаемое устройством, распределяется оптимально. Холодный воздух, идущий из окон, блокируется нагретым потоком, идущим вверх от радиатора.

Чугунные аккумуляторы

Чугунные аналоги имеют следующие преимущества:

  • имеют длительный срок службы;
  • имеют высокий уровень прочности;
  • устойчивы к коррозионным повреждениям;
  • отлично подходит для использования в коммунальных системах, работающих на некачественном теплоносителе.
  • Сейчас производители выпускают чугунные батареи (их цена выше, чем у обычных аналогов), которые имеют улучшенный внешний вид за счет использования новых технологий литья корпусов.

Недостатки изделий: большая масса и тепловая инерция.

В нижней таблице указано количество кВт в чугунном радиаторе в зависимости от его модели.

Примечание!
Для обогрева помещения площадью 15 м² мощность, то есть кВт чугунного радиатора, должна быть не менее 1,5. Другими словами, батарея должна состоять из 10-12 секций.

Алюминиевые радиаторы


Алюминиевые изделия имеют более высокую тепловую мощность, чем чугунные аналоги.На вопрос, сколько кВт находится в одной секции алюминиевого радиатора, специалисты отвечают, что достигает 0,185-0,2 кВт. В итоге 9-10 секций алюминиевых профилей хватит для нормативного уровня обогрева пятнадцатиметрового помещения.

Достоинства таких устройств:

  • легкий вес;
  • эстетичный дизайн;
  • высокий уровень теплоотдачи;
  • температуру можно контролировать своими руками с помощью вентилей.

Но изделия из алюминия не обладают такой прочностью, как чугунные аналоги, например, маслоохладитель на 2 кВт.Поэтому они чувствительны к скачкам рабочего давления в системе, гидроударам, излишне высокой температуре теплоносителя.

Примечание!
Когда вода имеет высокий уровень pH (кислотности), алюминий выделяет много водорода.
Это негативно сказывается на нашем здоровье.
Исходя из этого, желательно использовать в системе отопления такие устройства, в которых он имеет нейтральную кислотность.

Биметаллические изделия

Прежде чем выяснять, сколько кВт в 1 секции биметаллического радиатора, следует отметить, что такие батареи имеют схожие рабочие параметры с алюминиевыми аналогами.Однако им не присущи недостатки.

Это обстоятельство определило конструкцию устройств.

  1. Они состоят из медных или стальных труб, по которым течет хладагент.
  2. Трубки скрыты в корпусе из алюминиевой пластины. В результате вода, циркулирующая внутри, не взаимодействует с алюминием корпуса.
  3. Исходя из этого, кислотные и механические характеристики теплоносителя никак не влияют на работу и состояние прибора.


Благодаря стали труб приспособление имеет высокую прочность. Внешние ребра из алюминия обеспечивают повышенную теплоотдачу. Пытаясь узнать, сколько кВт у стального радиатора, имейте в виду, что у биметалла самая высокая теплоотдача — около 0,2 кВт на каждую кромку.

Мощность

Узнав сколько кВт в 1 секционном стальном радиаторе или аналоге из другого металла, можно рассчитать теплопередачу купленного изделия.Это позволит создать эффективную систему отопления в своем доме.

Видео в этой статье продолжает наглядно информировать вас по теме.

Системы водяного отопления: переход от гравитационных систем к системам с принудительной циркуляцией

Системы горячего водоснабжения долгое время были предпочтительным способом передачи тепла от центральной точки (бойлера) в удаленные помещения или комнаты, где требуется тепло. Первыми системами водяного отопления были гравитационные системы. Когда вода нагревается, она увеличивается в объеме; следовательно, он становится светлее и поднимается.Одновременно падает более холодная и тяжелая вода. Это принцип работы гравитационных циркуляционных систем. У гравитационных систем есть множество характеристик, которые можно порекомендовать. Они производят равномерное тепло, бесшумны, используют воду низкой температуры, надежны, очень эффективны и практически не требуют обслуживания. Во многих зданиях до сих пор используются гравитационные системы водяного отопления, некоторым из которых более 100 лет! Недостатки гравитационных систем: они требуют трубопроводов очень большого диаметра для подачи и возврата.Низкотемпературная вода обеспечивала скорость тепловыделения всего около 150 БТЕ на квадратный фут излучения в час. Следовательно, радиаторы должны были быть большими.

По мере роста затрат на рабочую силу и материалов установка гравитационных систем стала очень дорогой. Люди больше не будут терпеть большие громоздкие радиаторы, необходимые для гравитационных систем. Размещение 6-, 8- и даже 10-дюймовой трубы для магистральных сетей стало непомерно дорогим. Медленное время отклика гравитационной системы на изменение спроса также наносило ущерб.

Изобретение в 1929 году циркуляционных подкачивающих насосов преодолело все возражения гравитационных систем, сохранив при этом все преимущества отопления горячей водой. Подкачивающий насос настолько ускорил движение воды, что можно было использовать меньшее излучение, подаваемое по трубопроводу гораздо меньшего размера. Системы с принудительной циркуляцией позволяют использовать более высокие температуры воды, что приводит к более высоким уровням выбросов. Радиатор площадью 60 квадратных футов со средней температурой воды 170 ° F будет выделять тепло со скоростью 150 БТЕ на квадратный фут в час или 9000 БТЕ в час.Радиатор площадью 45 квадратных футов с температурой воды 197 ° F будет выделять 200 БТЕ на квадратный фут в час, производя те же 9000 БТЕ в час.

При использовании автоматических устройств зажигания и более точного управления использовались более высокие температуры воды без ущерба для передовых методов проектирования.

Энергия расходуется на перемещение воды по трубам, радиаторам, бойлерам и т. Д. Чтобы использовать экономию меньших труб и радиаторов в системах горячего водоснабжения с принудительной циркуляцией, скорость воды должна быть выше, чем в гравитационных системах, чтобы обеспечить необходимую мощность в БТЕ. .Подкачивающий насос создавал напор, намного больший, чем в гравитационных системах, для достижения необходимых скоростей.

DP — это величина потери давления между любыми двумя точками в системе. Трение между внутренними стенками труб, радиаторов, бойлера и движущейся водой вызывает падение давления. В горизонтальной трубе, наполненной водой, в которой нет потока, давление во всех точках одинаковое. Начинается мгновенный поток, возникает трение, которое увеличивается прямо пропорционально скорости потока.Изменение DP можно рассчитать при увеличении или уменьшении скорости потока (галлонов в минуту). Разделите конечный GPM на начальный GPM и возведите результат в квадрат. Умножьте этот результат на исходный DP. Ответ — новый DP.

Пример:

Система с объемным расходом 3 галлона в минуту и ​​DP 5 фунтов. необходимо увеличить до 6 галлонов в минуту. Каким будет новый ДП? (Это необходимо знать, чтобы правильно выбрать подкачивающий насос.)

20 фунтов.это новый DP. (Скорость в футах в секунду также может использоваться в этой формуле.)

Напор используется для обозначения производительности подкачивающего насоса. Это способ описания DP. Максимальный «напор» насоса на самом деле является максимальным D P, против которого насос может вызвать поток воды. Напор часто выражается в «футах водяного столба». Только трение в системе ограничивает производительность насоса. Это значение называется «напор».

Должно быть достаточно мощности, чтобы преодолеть DP системы и обеспечить расчетный GPM.Это означает, что DP каждой составной части системы должен быть известен при проектировании GPM.

Подкачивающий насос обеспечивает мощность. Производители насосов публикуют значения DP и GPM или диаграммы для своих насосов. Данные могут быть выражены в фунтах на квадратный дюйм, футах водяного столба или милах. Эти цифры легко поменять местами.

1 фунт / кв. = 2,31 фута воды

1 фут воды = 0,43 фунта / кв. дюйм

1 фут воды = 12000 мил дюймов

Статическое давление не следует путать с давлением напора.Они представляют собой совершенно разные давления и не имеют никакого отношения друг к другу. Статическое давление создается за счет веса воды в системе. Не влияет на производительность насоса. Чтобы проиллюстрировать статическое давление, представьте замкнутую систему горячего водоснабжения как вертикальный водяной контур. См. Рисунок 1. Если манометр 3 находится на высоте 40 футов над котлом, а контур полностью заполнен водой, но не находится под давлением, манометр 3 покажет 0 фунтов на кв. Дюйм. Манометры 1 и 5 расположены на высоте 10 футов над котлом, манометры 2 и 4 — на 20 футов выше котла.При выключенном насосе давление в вертикальной трубе «A» идентично давлению в вертикальной трубе «B».

Рисунок 1.

Если все манометры имеют шкалу в фунтах на кв. Дюйм, манометры 1 и 5 будут показывать 12,9 фунта на квадратный дюйм (30 футов воды выше них, а фут воды равен 0,43 фунта), манометры 2 и 4 — 8,6 фунта на квадратный дюйм. Манометр на котле будет показывать 17,2 фунта на квадратный дюйм.

Хорошей практикой является создание давления в замкнутой системе, особенно если расчетная температура воды близка или выше точки кипения воды при атмосферном давлении.Дополнительные 4 фунта на квадратный дюйм — это рекомендуемое минимальное дополнительное давление, добавляемое к статическому давлению, необходимому для подачи воды в верхнюю точку системы. На нашей иллюстрации манометр 3 будет показывать 4 фунта на квадратный дюйм. а все остальные приборы покажут на 4 фунта больше. Дополнительное статическое давление одинаково увеличивается по всей системе.

Стоит повторить еще раз. Не путайте статическое давление с давлением напора. Эти два термина часто используются неправильно. Одно не имеет ничего общего с другим!

Что произойдет с нашей системой, показанной на Рисунке 1, если после заполнения до надлежащего статического давления мы включим насос? Может, ничего; может быть много шума!

Перед выбором насоса нам необходимо знать расчетный расход и расчетное давление напора.Насос должен иметь дело только с потерями на трение, DP, развиваемыми при необходимой скорости потока, галлонов в минуту.

Предположим, наша система была разработана для циркуляции 10 галлонов в минуту при давлении напора 6 футов. Проконсультируясь с таблицами производителя насосов, можно выбрать правильный насос. См. Рисунки 2 и 3. Это «кривые» для некоторых насосов B&G. Введите таблицы либо на стороне «общий напор в футах», либо на стороне «производительность в галлонах в минуту». Отметьте пересечение линий GPM и головы. Выберите насос, ближайший к этому перекрестку, но над ним.На нашей иллюстрации насосом может быть SLC-30 (Рисунок 2) или серия 100 (Рисунок 3).

Рисунок 2.

Рисунок 3.

Если бы потребовался насос для подачи 80 галлонов в минуту при напоре 25 футов, правильным выбором был бы PD38 (Рисунок 3).

Примечание: Не увеличивайте размер насоса слишком сильно. Если размер насоса недостаточен, это приведет к плохой циркуляции или ее отсутствию, а завышение размера приведет к шуму скорости и избыточной кавитации.Кавитация скоро приведет к выходу насоса из строя. Небольшое увеличение скорости потока предпочтительнее уменьшения скорости потока ниже проектных спецификаций.

Системы горячего водоснабжения с принудительной циркуляцией подразделяются на одно- или двухтрубные. Эти классификации далее подразделяются на системы с прямым и обратным возвратом. Рисунки 4, 5, 6 и 7 иллюстрируют эти классы систем.

Рисунки 4, 5, 6 и 7

На Рисунке 4 показана система с «двухтрубным прямым возвратом».Обратите внимание, что горячая вода, подаваемая в первый радиатор, также первой возвращается в котел. Это происходит по контуру, так что радиатор последним возвращает более холодную воду в котел. Радиаторы, расположенные ближе всего к котлу, имеют тенденцию к короткому замыканию воды, поэтому более удаленные агрегаты не могут обеспечить надлежащую циркуляцию. Эта система должна быть установлена ​​с использованием балансировочных клапанов и тщательно сбалансирована. На рис. 5 показана система «двухтрубного обратного возврата».Эта система рекомендуется при проектировании двухтрубных систем. Ее установка дороже, поскольку требуется больше трубопроводов, чем двухтрубная система прямого возврата, но она работает намного лучше. В этой системе у первого радиатора, на который подается горячая вода, самый длинный возврат, а у последнего питаемого радиатора — самый короткий возврат. Эта система имеет тенденцию уравновешивать себя до тех пор, пока капли подачи и возврата имеют одинаковый размер и длину.

Рисунок 6, система «последовательного контура» — самая дешевая в установке.Он просто состоит из прокладки трубы в каждый радиатор и из него, что делает радиаторы частью контура трубопровода. Длина и размер последовательной петли очень важны. Из-за падения давления и температуры в последовательном контуре его длина ограничена.

Петли серии

должны быть тщательно спроектированы. Когда вода проходит через каждую часть излучения, она охлаждается. По мере прохождения воды по контуру в каждый последующий радиатор подается более холодная вода, и, следовательно, скорость его выброса снижается.Если разработчик системы принимает во внимание все факторы, последовательные циклы могут быть эффективными.

На рис. 7 представлена ​​система, использующая отводные тройники, часто называемые однопоточной или «монопрофильной» системой. Горячая вода отводится в радиаторы с помощью специально разработанных тройников Вентури, а более холодная вода возвращается в ту же трубу, которая служит как подающей, так и обратной магистралью. Эта система сочетает в себе эффективность двухтрубных систем с низкой стоимостью установки последовательной петлевой системы.Тройники Monoflo могут быть как входными, так и обратными. См. Рис. 8. Подающий тройник ограничивает поток воды, в результате чего часть воды поднимается вверх по стояку. Обратный monoflo заставляет основную подаваемую воду увеличивать скорость, когда поток проходит через сопло. Это увеличение скорости приводит к тому, что область пониженного давления вокруг сопла и возвратных стояков «засасывает» воду обратно в магистраль (эффект Бернулли).

Рисунок 8.

Для радиаторов выше основного с нормальным сопротивлением необходимо использовать только один тройник для каждого радиатора, обычно используемый на обратной стороне.

Для радиаторов с высоким сопротивлением или если радиаторы находятся ниже магистрального, необходимы как подающий, так и обратный монофлоки.

Рисунок 9.

На рисунке 9 показана система излучающего панельного отопления. В этой системе змеевики труб закапываются в потолок, пол или стены, превращая потолок, пол или стену в радиатор, излучающий лучистое тепло в комнату. Особое внимание следует уделить конструкции системы излучающих панелей. Из-за небольшого размера трубки перепад давления велик, а длина контура имеет решающее значение.Используются коллекторы с балансировочными кранами. Системы излучающих панелей — самые дорогие в установке системы из всех систем горячего водоснабжения, но они самые тихие, чистые и удобные из всех систем.

Для правильной работы системы водяного отопления с принудительной циркуляцией необходимы специальные приспособления и аксессуары.

Начиная с подачи холодной воды, для снижения давления воды на входе в систему до рабочего давления устанавливается «клапан подачи», который фактически является клапаном понижения давления.Он используется для первоначального заполнения системы и будет добавлять воду, когда давление в системе упадет ниже настройки клапана. Стандартная заводская настройка обычно составляет 12 фунтов. Этот параметр является правильным для статической высоты примерно до 18 футов, что подходит для большинства двухэтажных зданий. Для более высоких статических напоров клапан можно отрегулировать до 25 фунтов. Доступны клапаны, которые можно регулировать до 60 фунтов. Все редукционные клапаны B&G имеют встроенный сетчатый фильтр и обратный клапан. Многие из них могут быть оснащены функцией быстрого заполнения, позволяющей быстро заполнить систему на начальном этапе или после того, как система была слита для ремонта.(В то время как большинство редукционных клапанов подачи котла подаются слишком медленно, чтобы их можно было использовать на водопроводной арматуре, редукционные клапаны высокого давления моделей 6 и 7 B&G можно использовать для защиты водопроводной арматуры от чрезмерного давления в трубопроводе.)

Компрессионный или расширительный бак предназначен для компенсации колебаний объема воды в замкнутой системе.

Вода расширяется при нагревании прямо пропорционально изменению ее температуры до точки насыщения или кипения. Компрессионный бак действует на систему как пружина, постоянно поддерживая в ней давление.Если резервуар слишком мал или становится заболоченным, предохранительный клапан открывается, когда котел нагревается и сливает воду. Когда цикл нагрева закончится, вода остынет, давление в системе упадет, подающий клапан откроется и будет подавать воду до тех пор, пока давление в системе не вернется к «нормальному». При следующем запросе тепла вода снова расширится, в результате чего откроется предохранительный клапан. Цикл будет повторяться снова и снова, пока не будет заменен слишком маленький резервуар, не будет добавлен другой расширительный резервуар или пока затопленный резервуар не будет опорожнен и должным образом заполнен правильным количеством воздуха и воды.

Объем и температура воды в системе определяют размер бака. Если резервуар слишком большой, повышения давления в системе может быть недостаточно, поскольку система нагревается и приближается к кипению, особенно в верхней точке системы, где существует низкий статический напор. Правильный выбор размера компрессионного бака очень важен для безотказной работы системы, будь то предварительно заправленный бак с баллоном, разделяющим воду и воздух, или стандартный расширительный бак.

Подобрать размер расширительного бачка — утомительная задача.Предполагая, что компрессионный бак будет должным образом оборудован фитингом компрессионного бака, чтобы в баке не происходило повышение температуры системы, для определения размера компрессионного бака можно использовать следующую формулу:

VT = Размер бака сжатия в галлонах

VS = Объем системы в галлонах

EW = Устройство расширения воды

EW-EP = Устройство расширения системы

PA = Атмосферное давление в фунтах на квадратный дюйм, абсолютное

PF = Начальное давление в баллоне в фунтах на квадратный дюйм, абсолютное

PO = Конечное давление в баллоне, абсолютное давление в фунтах на квадратный дюйм

.02VS = Воздух, выходящий из новой системной воды при нагреве, 2% от объема воды.

Легко! Просто введите все числа и решите формулу. Правильный размер бака!

Есть способ попроще. Это не так точно, но будет достаточно.

Во-первых, необходимо знать объем воды в системе. Это можно оценить с помощью таблицы A. Введите таблицу A в столбец MBH, ближайший к номинальной мощности котла. Затем прочитайте и сложите галлоны воды для каждого состояния системы.Например: Система состоит из обычного бойлера мощностью 150 000 БТЕ, плинтуса из медных оребренных труб и двухтрубной системы труб.

Бойлер = 36 галлонов

Плинтус из цветных металлов = 5,5 галлона

Двухтрубная система = 34 галлона

Всего = 75,5 галлонов воды в системе

Таблица A.

Затем определите «среднюю расчетную температуру воды».Это просто среднее значение расчетных температур подачи и возврата. Если наивысшая расчетная температура составляет 190 ° F и для расчета использовалось падение температуры на 20 ° F, очень распространенное значение DT, 180 ° F, является средней расчетной температурой воды. 190 + 170 ÷ 2 = 180. Введите Таблицу B в столбец «Объем воды в галлонах» и перейдите к ближайшему объему, найденному для системы. В нашем примере это 80. Перейдите к числу, указанному в столбце средней расчетной температуры. В нашем примере это 8. 8 — это размер в галлонах расширительного бачка для нашей примерной системы.Обратите внимание, что наш выбор был основан на давлении наполнения 12 фунтов и заданном предохранительном клапане 30 фунтов, или на 18 фунтах допустимого повышения давления в системе. Для других условий необходимо применить поправочные коэффициенты к резервуару, выбранному из таблицы B.

Таблица B.

Если бы наше давление наполнения составляло 18 фунтов. с 30-фунтовым предохранительным клапаном нам потребуется использовать Таблицу C, чтобы скорректировать размер резервуара. Войдите в Таблицу C в разделе «Начальное давление …». колонке и спуститесь до ближайшего значения для заправочного клапана.Перейдите к коэффициенту, находящемуся под столбцом, представляющим настройку предохранительного клапана, 30 фунтов минус настройка клапана заполнения, 18 фунтов, или 30-18 = 12. Коэффициент равен 1,94. Умножьте размер резервуара, указанный в таблице B, на 1,94, чтобы получить скорректированный размер резервуара 8 x 1,94 = 15,52. Используйте ближайший к вам резервуар, имеющийся в продаже. В данном случае это бак B&G на 15 галлонов.

Многие системы заполнены смесью антифриза и воды. Расширение смеси гликоля и воды больше, чем расширение одной воды.В таблице D показан поправочный коэффициент для смеси гликоль / вода. Если бы наша примерная система была заполнена 50% смесью гликоля и воды, множитель поправочного коэффициента мог бы быть 1,6 или 1,5, так как наша максимальная расчетная температура составляла 190 ° F. Если умножить размер резервуара 15,52 галлона на 1,5 или 1,6, получится размер резервуара 23,28 или 24,83 галлона, то есть резервуар на 24 галлона является коммерчески доступным размером.

Таблица D.

Все эти цифры основаны на использовании стандарта A.S.M.E. бак сжатия, то есть бак без баллона. Сегодня доступно множество расширительных баков с предварительной заправкой и баллоном, разделяющим воздух и воду. Основная формула для определения размеров этих резервуаров такая же, но необходимо сделать поправку на «приемочный объем». Другие факторы влияют на установку и размер этих типов резервуаров, но, поскольку компания Climatic Control на данный момент не продает их, в этой статье не будут подробно описаны размеры резервуаров. Желающие могут запросить бюллетень B&G TEH-981 у Hydro-Flo для обсуждения резервуаров под давлением.

Расширительный бак должен быть единственным воздушным пространством в системе. Воздух абсорбируется водой, поэтому необходимы некоторые средства предотвращения самотечной циркуляции более холодной воды, содержащей воздух в резервуаре, в систему, не ограничивая прохождение свободного воздуха из системы в резервуар. B&G ATF представляет собой такое устройство для резервуаров диаметром до 24 дюймов, а ATFL — для резервуаров большего размера. При холодной заливке компрессионный бак должен быть на 2/3 заполнен водой и на 1/3 — воздухом. Для этого можно обрезать вентиляционные трубки ATF и ATFL даже на баках, оборудованных смотровым окном.

Идеальное место для отделения воздуха от воды в системе — точка максимальной температуры и самой низкой скорости. Эти параметры в котле соблюдаются.

Арматура верхнего выпуска ABF

B&G, установленная в верхней части котла, отлично справляется с удалением пузырьков воздуха из верхней части котла и передачей их в расширительный бак. В этом случае вода без пузырьков может циркулировать по системе. Компания B&G раньше делала ABFSO, бойлер с боковым выходом Airtrol, но больше не производит их.Котел с боковым выходом Airtrols не работал так хорошо, как верхний выход, и спрос на них упал до такой степени, что дальнейшее производство фитингов Airtrol с боковым выходом стало невозможным.

Воздухозаборники, такие как B&G IAS, входят в линейные воздухоотделители. Они работают по принципу, что воздух легче воды движется по верхней части горизонтальной трубы. Когда воздух входит в воздухозаборник, пузырьки воздуха собираются перегородками в воздухозаборнике и поднимаются в верхнюю камеру.Там воздух может быть выпущен, если используется расширительный бак баллонного типа, или подключен к стандартному расширительному бачку для сбора воздуха.

Удаление воздуха из системы, за исключением расширительного бачка, имеет первостепенное значение. Необходимо удалить воздух из системы, иначе может произойти шумная работа и даже полная блокировка циркуляции. Вентиляционные отверстия должны использоваться на всех высоких точках системы. Это единственный способ полностью выпустить весь воздух при первоначальном заполнении системы. Так называемые «продувочные и сливные» клапаны не работают достаточно хорошо, чтобы удалить весь воздух, и ничего не делают с накопившимся воздухом после того, как система работает.

Существует два основных типа вентиляционных отверстий: автоматические и ручные. Автоматические вентиляционные отверстия бывают двух типов. Тип поплавка и тип фибрового диска. Поплавковые вентиляционные отверстия имеют поплавок, прикрепленный к клапану, и все они заключены в оболочку. Когда корпус заполнен водой, поплавок удерживает клапан закрытым. Когда в оболочке накапливается достаточно воздуха, поплавок опускается, открывая клапан, и воздух выходит, пока вода снова не заполняет оболочку, закрывая клапан. По мере накопления воздуха цикл повторяется.

Поплавковые вентиляционные отверстия работают хорошо и служат долго.К сожалению, даже самое маленькое вентиляционное отверстие может оказаться слишком большим, чтобы поместиться внутри крышек плинтуса ребристых труб.

Автоматические вентиляционные отверстия с волоконно-оптическим диском физически очень малы, такого же размера, как ручные вентиляционные отверстия «незакрепленный ключ» или «монеты». В них используются специальные диски, которые разбухают при попадании на них воды. По мере того, как воздух накапливается и заменяет воду вокруг дисков, диски высыхают, сжимаются и открывают небольшое вентиляционное отверстие. Воздух выпускается, вода снова достигает дисков, и цикл повторяется — какое-то время. Автоматические вентиляционные отверстия с фибровыми дисками склонны к быстрому отказу, например, заеданию или постоянному стеканию воды.

Лучшие вентиляционные отверстия — это ручные вентиляционные отверстия, называемые отверстиями под ключ или монетными отверстиями. Отверстия для монет можно открывать или закрывать с помощью десятицентовика или небольшой отвертки. Вентиляционные отверстия с незакрепленным ключом требуют небольшого ключа, чтобы открывать или закрывать их. Любой из них — это всего лишь небольшой игольчатый клапан с металлическим седлом. Помимо того, что они практически неразрушимы, они дешевы! Единственный их недостаток — их нужно открывать и закрывать вручную. Если скапливается воздух, кто-то должен его выпустить. Если система оборудована ручными вентиляционными отверстиями, рекомендуется не реже одного раза в год открывать каждое вентиляционное отверстие, чтобы обеспечить выход накопившегося воздуха.

Большинство проблем с воздухом можно устранить путем тщательного проектирования, хорошего обслуживания и правильного первоначального запуска системы. Наиболее часто упускаемая из виду часть системы принудительного горячего водоснабжения — это правильный запуск.

После того, как система установлена, промыта и заполнена до надлежащего статического напора, котел следует запустить и медленно нагреть до температуры воды не менее 225 ° F и выдержать в таком состоянии примерно полчаса. Это высвободит увлеченный воздух из воды и направит его в расширительный бак.Чем горячее вода, тем больше воздуха она выделяет. Циркуляционный насос (ы) должен быть выключен во время этого начального нагрева. Теперь дайте котлу остыть до нормальной рабочей температуры, запустите все циркуляторы и откройте все клапаны зон, если они используются. Снова увеличьте температуру воды как минимум до 225 ° F и прокачивайте всю воду в течение 15–30 минут. Это вытеснит большую часть воздуха из пресной воды, и пока в системе нет утечек, проблемы с воздухом будут предотвращены. Каждый раз, когда система опорожняется, например, при ремонте, и снова заполняется, процедура запуска должна повторяться.

Рисунок 10.

На Рисунке 10 представлена ​​типовая котельная установка со стандартным расширительным баком. Подача холодной воды всегда должна поступать в систему в баке сжатия, чтобы любой увлеченный воздух немедленно попадал в бак.

Рисунок 11.

На рис. 11 показана система с расширительным баком под давлением или баллоном. Обратите внимание на встроенный воздушный сепаратор, который используется с поплавковым клапаном. Flo-регулирующие клапаны или flochecks — это клапаны специальной конструкции, похожие на поршневые клапаны, которые останавливают гравитационную циркуляцию в системе принудительного горячего водоснабжения, чтобы предотвратить перегрев, когда циркуляционный насос (ы) выключен.Клапаны управления потоком B&G SA оснащены ручным открывателем для обеспечения гравитационной циркуляции в аварийной ситуации, если насос выйдет из строя. Даже несмотря на то, что трубы системы горячей воды с принудительной циркуляцией имеют небольшие размеры, гравитационная циркуляция может быть весьма эффективной для сохранения тепла, если это необходимо.

Каждый водогрейный котел должен иметь предохранительный клапан, который будет поддерживать давление на уровне рабочего давления котла или ниже.

A.S.M.E. Кодекс (Американского общества инженеров-механиков) гласит: «Каждый водогрейный водогрейный котел должен иметь по крайней мере один официально установленный предохранительный клапан для сброса давления на уровне или ниже максимально допустимого рабочего давления котла.Предохранительные клапаны должны быть подключены к верхней части котла с вертикальным шпинделем, если возможно. Между предохранительным клапаном и котлом или на сливной трубе между таким клапаном и атмосферой не должно быть никаких запорных устройств любого описания ».

Предохранительный клапан должен удовлетворительно работать в двух условиях. Он должен сбрасывать давление за счет выпуска воды из-за теплового расширения и сброса давления за счет выпуска пара. Слив воды обычно является признаком переувлажнения расширительного бака или неисправного заправочного клапана.Диагностировать несложно. Если статическое давление холодного наполнения быстро увеличивается до уставки давления предохранительного клапана при розжиге котла, резервуар забивается водой. Слейте воду и заново наполните расширительный бачок до необходимого уровня воды и воздуха. Слишком маленький расширительный бачок для системы может показывать аналогичные симптомы. Если вы подозреваете, что резервуар слишком мал, пересчитайте размер резервуара и либо добавьте еще один резервуар, либо замените существующий резервуар на резервуар подходящего размера. Отверстие в расширительном бачке быстро приведет к его заболачиванию.Опять же, он наполнится водой и протечет. Расширительные баки в системах горячего водоснабжения не потеют, поэтому любая капля воды из расширительного бака свидетельствует о негерметичности бачка. Неисправный или негерметичный заправочный клапан приведет к чрезмерному увеличению статического давления заправки в холодной системе.

Выпуск пара через предохранительный клапан является аварийным состоянием и предъявляет критические требования к клапану. Когда температура воды в бойлере составляет около 212 ° F или выше, и предохранительный клапан срабатывает, внезапное падение давления заставляет воду вспыхивать и превращаться в пар.Емкость предохранительного клапана должна справиться с этим. Существует огромная разница между выпуском воды и выпуском пара. Фунт воды занимает 27,7 кубических дюйма пространства. Фунт пара при атмосферном давлении занимает 26,8 кубических футов! В 1600 раз больше места, чем воды! Таким образом, A.S.M.E. предохранительный клапан испытан и рассчитан на работу с паром, хотя это клапан для водогрейного котла.

Предохранительные клапаны подходящего размера должны выдерживать полную мощность котла. Предохранительные клапаны водогрейного котла рассчитываются в БТЕ в час при определенном номинальном давлении.Пока этот рейтинг соответствует или превышает номинальную мощность горелки, предохранительный клапан будет достаточно большим для котла. Чтобы облегчить выбор клапана, производители предохранительных клапанов печатают диаграммы, показывающие их пропускную способность при различных настройках давления. См. Рисунок 12.

Рисунок 12.

Двойные блоки, блоки, в которых сочетаются наполняющий клапан и предохранительный клапан, не соответствуют нормам.

Большинство производителей котлов теперь рекомендуют устанавливать на водогрейные котлы отсечки по низкому уровню воды.Это требуется по многим местным нормам. Несмотря на то, что котел может быть защищен от взрыва, потому что он имеет A.S.M.E. предохранительный клапан, сухой огонь все еще может его испортить. Большинство повреждений водогрейного котла связано с низким уровнем воды.

Существует неправильное представление о том, что редукционный клапан заполнения будет поддерживать систему заполненной при любых обстоятельствах. Это неправда. Чтобы проиллюстрировать проблему, типичная система будет иметь редукционный клапан заполнения, установленный на величину от 12 до 18 фунтов, и предохранительный клапан, установленный на открытие при давлении 30 фунтов.и близко к 26 фунтам. Если предохранительный клапан открывается для слива воды из-за избыточного давления, очевидно, что наполняющий клапан не восполнит потерю воды. Если подпиточная вода не восполняет потери через предохранительный клапан, это может привести к низкому уровню воды.

Есть много других причин, по которым система может потерять воду, что приведет к ее низкому уровню. Утечки в котле, трубопроводах или через уплотнения насоса. Небрежность, например, слить воду из бойлера для ремонта и забыть долить воду в систему, является еще одной распространенной причиной низкого уровня воды.Отключение при низком уровне воды спасет котел, поскольку не позволит горелке включиться до тех пор, пока не будет исправлен низкий уровень воды.

При определенных обстоятельствах отключения по низкому уровню воды может быть недостаточно для защиты. Топливный клапан мог открыться; контакты могут замкнуться при сварке из-за перегрузки или короткого замыкания, что сделает отключение по низкому уровню воды неэффективным. Лучшая рекомендация для охвата всех установок, чтобы обеспечить максимальную безопасность, — это использование комбинированного устройства подачи воды и низкого уровня воды. Часть питателя обычно способна подавать воду в котел так быстро, как она может быть выпущена через предохранительный клапан.Хотя комбинация отключения питателя увеличивает стоимость установки, по сравнению со стоимостью замены котла, это «дешевая» страховка. Помните, что коды минимальные требования , «как минимум», которые должны быть выполнены. Превышение требований кодекса — это всегда хорошая практика, особенно в том, что касается безопасности.

Хотя Climatic Control Company обычно не проектирует системы принудительного водяного отопления, знание того, что требуется, может помочь вам помочь клиенту найти проблему в проблемной системе, над которой он работает, и продать соответствующие устройства для устранения проблемы.

Процесс нагрева паром — Расчет нагрузки

Обычно паровой нагрев используется для

  • изменения температуры продукта или жидкости
  • поддержания температуры продукта или жидкости

Преимущество пара заключается в большом количестве тепла энергия, которую можно передать. Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000-2250 кДж / кг (в зависимости от давления) — по сравнению с водой с 80-120 кДж / кг (с разницей температур 20-30 o С ).

Изменение температуры продукта — нагрев продукта паром

Количество тепла, необходимое для повышения температуры вещества, можно выразить как:

Q = mc p dT (1)

где

Q = количество энергии или тепла (кДж)

м = масса вещества (кг)

c p = удельная теплоемкость вещества (кДж / кг o C) — Свойства материалов и теплоемкость обычных материалов

dT = повышение температуры вещества ( o C)

Имперские единицы? — Проверьте конвертер единиц!

Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не принимает во внимание скорость передачи тепла , которая составляет:

  • количество тепловой энергии, переданной в единицу времени

В применениях без проточного типа нагревается фиксированная масса или единичная партия продукта.В приложениях проточного типа продукт или жидкость нагревается, когда она постоянно течет по поверхности теплопередачи.

Непоточный или периодический нагрев

В приложениях без проточного типа технологическая жидкость хранится в виде одной партии в резервуаре или емкости. Паровой змеевик или паровая рубашка нагревают жидкость от низкой до высокой температуры.

Средняя скорость теплопередачи для таких приложений может быть выражена как:

P = mc p dT / t (2)

, где

P = средняя скорость теплопередачи или мощность (кВт (кДж / с))

м = масса продукта (кг)

c p = удельная теплоемкость продукта (кДж / кг. o C) — Свойства материалов и теплоемкость обычных материалов

dT = Изменение температуры жидкости ( o C)

t = общее время, в течение которого процесс нагрева происходит (секунды)

Пример — Время, необходимое для нагрева воды с прямым впрыском пара

Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла мощностью 200 кВт (кДж / с) можно рассчитать, преобразовав уравнение.От 2 до

t = mc p dT / P

= (75 кг) (4,2 кДж / кг o C) ((75 o C) — (20 o C) ) / (200 кДж / с)

= 86 с

Примечание! — когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.

При нагреве через теплообменник имеет значение коэффициент теплопередачи и разница температур между паром и нагретой жидкостью.Повышение давления пара увеличивает температуру и увеличивает теплопередачу. Время нагрева уменьшено.

Общее потребление пара может увеличиваться — из-за более высоких тепловых потерь или уменьшаться — из-за более короткого времени нагрева, в зависимости от конфигурации реальной системы.

Процессы проточного или непрерывного нагрева

В теплообменниках поток продукта или жидкости непрерывно нагревается.

Преимущество пара — это однородная температура поверхности нагрева, поскольку температура поверхностей нагрева зависит от давления пара.

Средняя теплопередача может быть выражена как

P = c p dT m / t (3)

где

P = средняя скорость теплопередачи (кВт (кДж / с) ))

м / т = массовый расход продукта (кг / с)

c p = удельная теплоемкость продукта (кДж / кг. o C)

dT = изменение температуры жидкости ( o C)

Расчет количества пара

Если мы знаем скорость теплопередачи — количество пара можно вычислить:

м с = P / ч e (4)

где

м с = масса пара (кг / с)

P = расчетная теплопередача (кВт)

ч e = энергия испарения пара (кДж / кг)

Энергию испарения при различных давлениях пара можно найти в таблице пара с единицами СИ или в таблице Steam с британскими единицами измерения.

Пример — периодический нагрев паром

Количество воды нагревается паром под давлением 5 бар (6 бар абс.) от температуры 35 o C до 100 o C за период 20 минут (1200 секунд) . Масса воды 50 кг, и удельная теплоемкость воды 4,19 кДж / кг. o С .

Скорость теплопередачи:

P = (50 кг) (4,19 кДж / кг o C) ((100 o C) — (35 o C)) / (1200 с)

= 11.35 кВт

Количество пара:

м с = (11,35 кВт) / (2085 кДж / кг)

= 0,0055 кг / с

= 19,6 кг / ч

Пример — непрерывный нагрев паром

Вода течет с постоянной скоростью 3 л / с нагревается от 10 o C до 60 o C паром при 8 бар (9 бар абс) .

Расход тепла можно выразить как:

P = (4.19 кДж / кг. o C) ((60 o C) — (10 o C)) (3 л / с) (1 кг / л)

= 628,5 кВт

Расход пара может можно выразить как:

м с = (628,5 кВт) / (2030 кДж / кг)

= 0,31 кг / с

= 1115 кг / ч

Тепловое расширение твердых тел и жидкости

Цели обучения

К концу этого раздела вы сможете:

  • Определите и опишите тепловое расширение.
  • Рассчитайте линейное расширение объекта с учетом его начальной длины, изменения температуры и коэффициента линейного расширения.
  • Рассчитайте объемное расширение объекта с учетом его исходного объема, изменения температуры и коэффициента объемного расширения.
  • Рассчитайте термическое напряжение на объекте с учетом его исходного объема, изменения температуры, изменения объема и модуля объемной упругости.

Рис. 1. Такие термические компенсаторы на мосту Окленд Харбор-Бридж в Новой Зеландии позволяют мостам изменять длину без потери устойчивости.(Источник: Ингольфсон, Wikimedia Commons)

Расширение спирта в градуснике — один из многих часто встречающихся примеров теплового расширения , изменения размера или объема данной массы в зависимости от температуры. Горячий воздух поднимается вверх, потому что его объем увеличивается, что приводит к тому, что плотность горячего воздуха меньше плотности окружающего воздуха, вызывая подъемную (восходящую) силу на горячий воздух. То же самое происходит со всеми жидкостями и газами, вызывая естественный теплоперенос вверх в домах, океанах и погодных системах.Твердые тела также подвергаются тепловому расширению. Например, железнодорожные пути и мосты имеют компенсаторы, позволяющие им свободно расширяться и сжиматься при изменении температуры.

Каковы основные свойства теплового расширения? Во-первых, тепловое расширение явно связано с изменением температуры. Чем больше изменение температуры, тем больше будет гнуться биметаллическая полоса. Во-вторых, это зависит от материала. В термометре, например, расширение спирта намного больше, чем расширение содержащего его стекла.

Какова основная причина теплового расширения? Как обсуждается в «Кинетической теории: атомное и молекулярное объяснение давления и температуры», повышение температуры означает увеличение кинетической энергии отдельных атомов. В твердом теле, в отличие от газа, атомы или молекулы плотно упакованы вместе, но их кинетическая энергия (в виде небольших быстрых колебаний) отталкивает соседние атомы или молекулы друг от друга. Это перемещение между соседними объектами приводит к увеличению расстояния между соседями в среднем и увеличению размера всего тела.Для большинства веществ в обычных условиях нет предпочтительного направления, и повышение температуры увеличит размер твердого вещества на определенную долю в каждом измерении.

Линейное тепловое расширение — тепловое расширение в одном измерении

Изменение длины Δ L пропорционально длине L . Зависимость теплового расширения от температуры, вещества и длины резюмируется в уравнении Δ L = αL Δ T , где Δ L — изменение длины L , Δ T — величина изменение температуры, и α — это коэффициент линейного расширения , который незначительно изменяется в зависимости от температуры.

В таблице 1 приведены типичные значения коэффициента линейного расширения, которые могут иметь единицы 1 / ºC или 1 / K. Поскольку величина кельвина и градуса Цельсия одинакова, значения α и Δ T могут быть выражены в кельвинах или градусах Цельсия. Уравнение Δ L = αL Δ T является точным для небольших изменений температуры и может использоваться для больших изменений температуры, если используется среднее значение α .

Таблица 1. Коэффициенты теплового расширения при 20ºC
Материал Коэффициент линейного расширения α (1 / ºC) Коэффициент объемного расширения β (1 / ºC)
Твердые вещества
Алюминий 25 × 10 6 75 × 10 6
Латунь 19 × 10 6 56 × 10 6
Медь 17 × 10 6 51 × 10 6
Золото 14 × 10 6 42 × 10 6
Чугун или сталь 12 × 10 6 35 × 10 6
Инвар (железо-никелевый сплав) 0.9 × 10 6 2,7 × 10 6
Свинец 29 × 10 6 87 × 10 6
Серебро 18 × 10 6 54 × 10 6
Стекло (обычное) 9 × 10 6 27 × 10 6
Стекло (Pyrex®) 3 × 10 6 9 × 10 6
Кварц 0.4 × 10 6 1 × 10 6
Бетон, кирпич ~ 12 × 10 6 ~ 36 × 10 6
Мрамор (средний) 2,5 × 10 6 7,5 × 10 6
Жидкости
Эфир 1650 × 10 6
Спирт этиловый 1100 × 10 6
Бензин 950 × 10 6
Глицерин 500 × 10 6
Меркурий 180 × 10 6
Вода 210 × 10 6
Газы
Воздух и большинство других газов при атмосферном давлении 3400 × 10 6

Пример 1.Расчет линейного теплового расширения: мост Золотые Ворота

Главный пролет моста Золотые Ворота Сан-Франциско составляет 1275 м в самые холодные дни. Мост подвергается воздействию температур от до от 15ºC до 40ºC. Каково изменение его длины между этими температурами? Предположим, что мост полностью стальной.

Стратегия

Используйте уравнение линейного теплового расширения Δ L = α L Δ T , чтобы рассчитать изменение длины, Δ L .{\ circ} \ text {C} \ right) = 0,84 \ text {m} \\ [/ latex]

Обсуждение

Это изменение длины заметно, хотя и невелико по сравнению с длиной моста. Обычно он распространяется на многие компенсаторы, поэтому расширение в каждом стыке невелико.

Тепловое расширение в двух и трех измерениях

Объекты расширяются во всех измерениях, как показано на рисунке 2. То есть их площадь и объем, а также их длина увеличиваются с температурой.Отверстия также увеличиваются с увеличением температуры. Если вы прорежете отверстие в металлической пластине, оставшийся материал расширится точно так же, как если бы заглушка все еще была на месте. Заглушка станет больше, а значит, и отверстие должно стать больше. (Представьте, что кольцо соседних атомов или молекул на стенке дыры отталкивает друг друга все дальше друг от друга при повышении температуры. Очевидно, что кольцо соседей должно становиться немного больше, поэтому дыра становится немного больше).

Тепловое расширение в двух измерениях

Для небольших изменений температуры изменение площади Δ A определяется как Δ A = 2αAΔ T , где Δ A — изменение площади A , Δ T — изменение температуры , а α — коэффициент линейного расширения, который незначительно меняется в зависимости от температуры.

Рис. 2. В общем, объекты расширяются во всех направлениях при повышении температуры. На этих чертежах исходные границы объектов показаны сплошными линиями, а расширенные границы — пунктирными линиями. (а) Площадь увеличивается из-за увеличения как длины, так и ширины. Увеличивается и площадь круглой пробки. (b) Если заглушку удалить, оставшееся отверстие становится больше с повышением температуры, как если бы расширяющаяся заглушка все еще была на месте. (c) Объем также увеличивается, потому что все три измерения увеличиваются.

Тепловое расширение в трех измерениях

Изменение объема Δ V очень близко к Δ V = 3 α V Δ T . Это уравнение обычно записывается как Δ V = βV Δ T , где β — коэффициент объемного расширения и β ≈ 3α. Обратите внимание, что значения β в таблице 1 почти точно равны 3α.

Обычно объекты расширяются с повышением температуры.Вода — самое важное исключение из этого правила. Вода расширяется с повышением температуры (ее плотность уменьшается ), когда она находится при температуре выше 4ºC (40ºF). Однако он расширяется с , понижая температуру , когда она находится между + 4ºC и 0ºC (от 40ºF до 32ºF). Вода самая плотная при + 4ºC. (См. Рис. 3.) Возможно, самым поразительным эффектом этого явления является замерзание воды в пруду. Когда вода у поверхности охлаждается до 4ºC, она становится плотнее, чем оставшаяся вода, и поэтому опускается на дно.Этот «оборот» приводит к образованию более теплой воды у поверхности, которая затем охлаждается. В конце концов, пруд имеет постоянную температуру 4ºC. Если температура в поверхностном слое опускается ниже 4ºC, вода становится менее плотной, чем вода внизу, и, таким образом, остается наверху. В результате поверхность водоема может полностью промерзнуть. Лед поверх жидкой воды обеспечивает изолирующий слой от резких зимних температур наружного воздуха. Рыба и другие водные животные могут выжить в воде с температурой 4ºC подо льдом благодаря этой необычной характеристике воды.Он также обеспечивает циркуляцию воды в пруду, что необходимо для здоровой экосистемы водоема.

Рис. 3. Плотность воды как функция температуры. Обратите внимание, что тепловое расширение на самом деле очень мало. Максимальная плотность при + 4ºC только на 0,0075% больше, чем плотность при 2ºC, и на 0,012% больше, чем при 0ºC.

Установление соединений: соединения в реальном мире — заполнение бака

Рис. 4. Поскольку при повышении температуры газ расширяется больше, чем бензобак, вы не можете проехать столько миль на «пустом» летом, как зимой.(Источник: Гектор Алехандро, Flickr)

Различия в тепловом расширении материалов могут привести к интересным эффектам на заправочной станции. Один из примеров — капание бензина из только что залитого бака в жаркий день. Бензин начинается при температуре земли под заправочной станцией, которая ниже, чем температура воздуха наверху. Бензин охлаждает стальной бак при его наполнении. Как бензин, так и стальной бак расширяются, когда они нагреваются до температуры воздуха, но бензин расширяется намного больше, чем сталь, и поэтому он может переливаться через край.

Эта разница в расширении также может вызвать проблемы при интерпретации показаний датчика бензина. Фактическое количество (масса) бензина, оставшегося в баке, когда манометр показывает «пустой», летом намного меньше, чем зимой. Бензин имеет тот же объем, что и зимой, когда горит лампочка «долейте топлива», но из-за того, что бензин расширился, масса меньше. Если вы привыкли зимой пробегать еще 40 миль «пусто», будьте осторожны — летом вы, вероятно, выбегаете намного быстрее.

Пример 2. Расчет теплового расширения: газ по сравнению с газовым баллоном

Предположим, ваш стальной бензобак объемом 60,0 л (15,9 галлона) заполнен бензином, поэтому температура и бака, и бензина составляет 15,0ºC. Сколько бензина вылилось к тому времени, когда они нагрелись до 35,0ºC?

Стратегия

Бак и бензин увеличиваются в объеме, но бензин увеличивается больше, поэтому количество пролитого является разницей в изменении их объема. (Бензобак можно рассматривать как стальной.) Мы можем использовать уравнение для объемного расширения, чтобы рассчитать изменение объема бензина и бака.

Решение
  1. Используйте уравнение для увеличения объема, чтобы рассчитать увеличение объема стального резервуара: Δ V с = β с V с Δ T .
  2. Увеличение объема бензина определяется следующим уравнением: Δ V газ = β газ V газ Δ T .
  3. Найдите разницу в объеме, чтобы определить количество разлитого V разлив = Δ V газ — Δ V с .

В качестве альтернативы мы можем объединить эти три уравнения в одно уравнение. (Обратите внимание, что исходные объемы равны.)

[латекс] \ begin {array} {lll} {V} _ {\ text {spill}} & = & \ left ({\ beta} _ {\ text {gas}} — {\ beta} _ {\ text {s}} \ right) V \ Delta T \\ & = & \ left [\ left (\ text {950} — \ text {35} \ right) \ times {\ text {10}} ^ {- 6} / ^ {\ circ} \ text {C} \ right] \ left (\ text {60} \ text {.{\ circ} \ text {C} \ right) \\ & = & 1 \ text {.} \ text {10} \ text {L} \ end {array} \\ [/ latex]

Обсуждение

Это значительное количество, особенно для резервуара объемом 60,0 л. Эффект такой поразительный, потому что бензин и сталь быстро расширяются. Скорость изменения тепловых свойств обсуждается в главе «Тепло и методы теплопередачи».

Если вы попытаетесь плотно закрыть резервуар, чтобы предотвратить переполнение, вы обнаружите, что он все равно протекает либо вокруг крышки, либо в результате разрыва резервуара.Сильное сжатие расширяющегося газа эквивалентно его сжатию, и как жидкости, так и твердые тела сопротивляются сжатию с чрезвычайно большими силами. Чтобы избежать разрыва жестких контейнеров, в этих контейнерах есть воздушные зазоры, которые позволяют им расширяться и сжиматься, не нагружая их.

Термическое напряжение

Термическое напряжение создается в результате теплового расширения или сжатия (обсуждение напряжения и деформации см. В разделе «Эластичность: напряжение и деформация»). Термическое напряжение может быть разрушительным, например, когда бензин разрывает бак при расширении.Это также может быть полезно, например, когда две части соединяются вместе путем нагревания одной при производстве, затем надевания ее на другую и охлаждения комбинации. Термический стресс может объяснить многие явления, такие как выветривание скал и тротуаров из-за расширения льда при замерзании.

Пример 3. Расчет термического напряжения: давление газа

Какое давление будет создано в бензобаке, рассмотренном в примере 2, если температура бензина повысится с 15?От 0 ° C до 35,0 ° C без возможности расширения? Предположим, что модуль объемной упругости B для бензина составляет 1,00 × 10 9 Н / м 2 .

Стратегия

Чтобы решить эту проблему, мы должны использовать следующее уравнение, которое связывает изменение объема Δ V с давлением:

[латекс] \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 \\ [/ latex]

, где [латекс] \ frac {F} {A} \\ [/ latex] — давление, V 0 — исходный объем, а B — модуль объемной упругости рассматриваемого материала.Мы будем использовать количество, пролитое в Примере 2, как изменение объема, Δ V .

Решение
  1. Измените уравнение для расчета давления: [латекс] P = \ frac {F} {A} = \ frac {\ Delta {V}} {V_0} B \\ [/ latex].
  2. Вставьте известные значения. Модуль объемной упругости для бензина составляет B = 1,00 × 10 9 Н / м 2 . В предыдущем примере изменение объема Δ V = 1,10 л — это количество, которое может разлиться. Здесь V 0 = 60.7 \ text {Pa} \\ [/ latex].
Обсуждение

Это давление составляет около 2500 фунтов / дюйм 2 , намного на больше, чем может выдержать бензобак.

Силы и давления, создаваемые термическим напряжением, обычно такие же большие, как в приведенном выше примере. Железнодорожные пути и дороги могут деформироваться в жаркие дни, если у них нет достаточных компенсационных швов. (См. Рис. 5.) Линии электропередач провисают больше летом, чем зимой, и в холодную погоду они лопнут, если провисания недостаточно.Трещины в оштукатуренных стенах открываются и закрываются по мере того, как дом нагревается и остывает. Стеклянные сковороды треснут при быстром или неравномерном охлаждении из-за различного сжатия и создаваемых им напряжений. (Pyrex® менее чувствителен из-за своего небольшого коэффициента теплового расширения.) Сосуды под давлением ядерных реакторов находятся под угрозой из-за чрезмерно быстрого охлаждения, и, хотя ни один из них не вышел из строя, некоторые из них охлаждались быстрее, чем считалось желательным. Биологические клетки разрываются при замораживании продуктов, что ухудшает их вкус.Повторные оттаивания и замораживания усугубляют ущерб. Даже океаны могут быть затронуты. Значительная часть повышения уровня моря в результате глобального потепления происходит из-за теплового расширения морской воды.

Рис. 5. Термическое напряжение способствует образованию выбоин. (кредит: Editor5807, Wikimedia Commons)

Металл регулярно используется в человеческом теле для имплантатов бедра и колена. Большинство имплантатов со временем необходимо заменять, потому что, помимо прочего, металл не сцепляется с костью.Исследователи пытаются найти более качественные металлические покрытия, которые позволили бы соединить металл с костью. Одна из проблем — найти покрытие с коэффициентом расширения, аналогичным коэффициенту расширения металла. Если коэффициенты расширения слишком разные, термические напряжения во время производственного процесса приводят к трещинам на границе раздела покрытие-металл.

Другой пример термического стресса — во рту. Зубные пломбы могут расширяться иначе, чем зубная эмаль. Может вызывать боль при поедании мороженого или горячем напитке.В наполнении могут образоваться трещины. На смену металлическим пломбам (золото, серебро и др.) Приходят композитные пломбы (фарфор), которые имеют меньший коэффициент расширения и ближе к зубам.

Проверьте свое понимание

Два блока, A и B, сделаны из одного материала. Блок A имеет размеры л × ш × в = л × 2 л × л и блок B имеет размеры 2 л × 2 л × 2 л .Если температура меняется, что такое

  1. изменение объема двух блоков,
  2. изменение площади поперечного сечения l × w и
  3. изменение высоты h двух блоков?

Рисунок 6.

Решение
  1. Изменение громкости пропорционально исходной громкости. Блок A имеет объем л × 2 л × л = 2 л 3 . Блок B имеет объем 2 л × 2 л × 2 L = 8 л 3 , , что в 4 раза больше, чем у блока A. Таким образом, изменение объема блока B должно быть в 4 раза больше, чем в блоке A.
  2. Изменение площади пропорционально площади. Площадь поперечного сечения блока A составляет л × 2 л = 2 л 2 , , в то время как площадь поперечного сечения блока B составляет 2 л × 2 л = 4 л 2 .Поскольку площадь поперечного сечения блока B вдвое больше, чем у блока A, изменение площади поперечного сечения блока B вдвое больше, чем у блока A.
  3. Изменение высоты пропорционально исходной высоте. Поскольку исходная высота блока B вдвое больше, чем у A, изменение высоты блока B вдвое больше, чем у блока A.

Сводка раздела

  • Термическое расширение — это увеличение или уменьшение размера (длины, площади или объема) тела из-за изменения температуры.
  • Тепловое расширение велико для газов и относительно невелико, но им нельзя пренебречь, для жидкостей и твердых тел.
  • Линейное тепловое расширение составляет Δ L = α L Δ T , где Δ L — изменение длины L , Δ T — изменение температуры, а α — коэффициент линейного расширение, которое незначительно меняется в зависимости от температуры.
  • Изменение площади из-за теплового расширения составляет Δ A = 2α A Δ T , где Δ A — изменение площади.
  • Изменение объема из-за теплового расширения составляет Δ V = βV Δ T , где β — коэффициент объемного расширения, а β ≈ 3α. Тепловое напряжение создается, когда ограничивается тепловое расширение.

Концептуальные вопросы

  1. Температурные нагрузки, вызванные неравномерным охлаждением, могут легко разбить стеклянную посуду. Объясните, почему Pyrex®, стекло с небольшим коэффициентом линейного расширения, менее восприимчиво.
  2. Вода значительно расширяется при замерзании: происходит увеличение объема примерно на 9%. В результате этого расширения и из-за образования и роста кристаллов при замерзании воды от 10% до 30% биологических клеток разрываются при замораживании материала животного или растительного происхождения. Обсудите последствия этого повреждения клеток для перспективы сохранения человеческих тел путем замораживания, чтобы их можно было разморозить в будущем, когда есть надежда, что все болезни излечимы.
  3. Один из методов обеспечения плотной посадки, например металлического штифта в отверстии в металлическом блоке, заключается в изготовлении штифта немного большего размера, чем отверстие.Затем вставляется колышек, когда температура отличается от температуры блока. Должен ли блок быть горячее или холоднее стержня во время вставки? Поясните свой ответ.
  4. Действительно ли помогает полить горячей водой плотную металлическую крышку стеклянной банки, прежде чем пытаться ее открыть? Поясните свой ответ.
  5. Жидкости и твердые тела расширяются с повышением температуры, потому что кинетическая энергия атомов и молекул тела увеличивается. Объясните, почему некоторые материалы сжимаются при повышении температуры.

Задачи и упражнения

  1. Высота монумента Вашингтона составляет 170 м в день при температуре 35 ° C.0ºC. Какой будет его высота в день, когда температура опустится до –10,0ºC? Хотя памятник сделан из известняка, предположим, что его коэффициент теплового расширения такой же, как у мрамора.
  2. Насколько выше Эйфелева башня становится в конце дня, когда температура повышается на 15ºC? Его первоначальная высота составляет 321 м, и можно предположить, что он сделан из стали.
  3. Как изменится длина столба ртути длиной 3,00 см, если его температура изменится с 37?От 0 ° C до 40,0 ° C, если ртуть не ограничена?
  4. Насколько большой следует оставить температурный зазор между стальными железнодорожными рельсами, если они могут достигать максимальной температуры на 35,0 ° C выше, чем при укладке? Их первоначальная длина 10,0 м.
  5. Вы хотите приобрести небольшой участок земли в Гонконге. Цена «всего» 60 000 долларов за квадратный метр! В праве собственности указано, что его размеры составляют 20 м × 30 м. Насколько изменилась бы общая цена, если бы вы измерили посылку стальной рулеткой в ​​день, когда температура была на 20ºC выше нормы?
  6. Глобальное потепление вызовет повышение уровня моря отчасти из-за таяния ледяных шапок, но также из-за расширения воды по мере повышения средней температуры океана.Чтобы получить некоторое представление о величине этого эффекта, рассчитайте изменение длины водяного столба высотой 1,00 км при повышении температуры на 1,00 ° C. Обратите внимание, что этот расчет является приблизительным, потому что потепление океана не равномерно по глубине.
  7. Покажите, что 60,0 л бензина при первоначальной температуре 15,0 ° C расширится до 61,1 л при нагревании до 35,0 ° C, как заявлено в Примере 2.
  8. (a) Предположим, что стержень из стали и стержень из инвара (сплав железа и никеля) имеют одинаковую длину при 0 ° C.Какова их разница в длине при 22,0ºC? (b) Повторите расчет для двух геодезических лент длиной 30,0 м.
  9. (a) Если стеклянный стакан емкостью 500 мл заполнен до краев этиловым спиртом при температуре 5,00 ° C, сколько его объема выльется при температуре 22,0 ° C? б) Насколько меньше воды могло бы перелиться через край при тех же условиях?
  10. В большинстве автомобилей есть резервуар для охлаждающей жидкости для сбора радиаторной жидкости, которая может вылиться при горячем двигателе. Радиатор сделан из меди и залит на 16.Емкость 0 л при температуре 10,0 ° C. Какой объем радиаторной жидкости переполнится, когда радиатор и жидкость достигнут своей рабочей температуры 95,0 ° C, учитывая, что объемный коэффициент расширения жидкости составляет β = 400 × 10 –6 / ºC? Обратите внимание, что этот коэффициент является приблизительным, потому что большинство автомобильных радиаторов имеют рабочие температуры выше 95,0 ° C.
  11. Физик делает чашку растворимого кофе и замечает, что по мере остывания кофе его уровень в стеклянной чашке падает на 3,00 мм.Покажите, что это уменьшение не может быть связано с термическим сжатием, рассчитав снижение уровня, если 350 см3 кофе находится в чашке диаметром 7,00 см, а температура снижается с 95,0 ° C до 45,0 ° C. (Большая часть падения уровня происходит из-за выхода пузырьков воздуха.)
  12. (a) Плотность воды при 0ºC составляет почти 1000 кг / м3 (на самом деле 999,84 кг / м 3 ), тогда как плотность льда при 0ºC составляет 917 кг / м 3 . Рассчитайте давление, необходимое для предотвращения расширения льда при замерзании, пренебрегая влиянием такого большого давления на температуру замерзания.(Эта проблема дает вам лишь представление о том, насколько велики могут быть силы, связанные с замораживанием воды.) (Б) Каковы последствия этого результата для замороженных биологических клеток?
  13. Покажите, что β ≈ 3α, вычислив изменение объема Δ V куба со сторонами длиной L .

Глоссарий

тепловое расширение: изменение размера или объема объекта при изменении температуры

коэффициент линейного расширения: α, изменение длины на единицу длины при изменении температуры на 1 ° C; константа, используемая при расчете линейного расширения; коэффициент линейного расширения зависит от материала и в некоторой степени от температуры материала

коэффициент объемного расширения: β , изменение объема на единицу объема при изменении температуры на 1 ° C

термическое напряжение: напряжение, вызванное тепловым расширением или сжатием

Избранные ответы на задачи и упражнения

1.{\ circ} \ text {C} \ right) \ right] \\ & = & \ text {61} \ text {.} 1 \ text {L} \ end {array} \\ [/ latex]

9. (а) 9,35 мл; (б) 7,56 мл

11. 0,832 мм

13. Мы знаем, как длина изменяется в зависимости от температуры: Δ L = α L 0 Δ T . Также мы знаем, что объем куба связан с его длиной соотношением V = L 3 , поэтому окончательный объем равен V = V 0 + Δ V = ( L 0 + Δ L ) 3 .Подстановка Δ L дает V = ( L 0 + α L 0 Δ T ) 3 = L 0 3 (1 + 1 ) 3 .

Теперь, поскольку αΔ T мало, мы можем использовать биномиальное разложение: V L 0 3 (1 + 3αΔ T ) = L 0 3 + 3α L 0 3 Δ T .

Таким образом, запись длины в единицах объемов дает V = V 0 + Δ V V 0 + 3α V 0 Δ T и, следовательно, Δ V = βV 0 Δ T ≈ 3α V 0 Δ T , или β ≈ 3α.


КАК ВЫБРАТЬ БИМЕТАЛЛИЧЕСКИЕ РАДИАТОРЫ НАГРЕВА — ECDFBURMA.ORG

Поделиться

Штифт

Твитнуть

Отправить

Поделиться

Отправить

С наступлением холодов каждый из нас все больше задумывается о том, насколько важна правильно подобранная и настроенная система отопления.Его главными критериями являются максимально допустимая теплопроводность, способность выдерживать значительные перепады давления, а также прочность и надежность конструкции — никто не хочет «заливать» соседей снизу. Проанализировав огромное разнообразие моделей, имеющихся в настоящее время в продаже, можно сделать вывод, что современные биметаллические радиаторы — модели, основанные на комбинации двух разнородных металлов — наиболее полно удовлетворяют этому требованию.

Содержание

  1. Как выбрать биметаллические радиаторы отопления — какая компания лучше
  2. Ключевые критерии выбора
  3. Тип радиатора
  4. Расчет необходимого количества секций
  5. Видео по выбору радиатора отопления

Как сделать выбрать биметаллические радиаторы отопления — какая компания лучше?

Учитывая популярность подобных устройств, их производство в настоящее время освоено многими производителями, так или иначе занимающимися производством сантехнического оборудования и отопительных приборов.Однако не все из них можно рекомендовать к покупке — отсутствие опыта вкупе с низкой производственной культурой и большим количеством браков делают свое дело. Об этом свидетельствует множество негативных отзывов покупателей в Интернете, которые необходимо учитывать. Лучшей по праву считается продукция тех производителей, которые давно работают в этой сфере и сумели избавить свою продукцию от большинства ошибок и «болячек»:

  1. Global style

  2. Rifar zin

  3. Skypril

  4. Tenrad

  5. Royal thermo

Ключевые критерии выбора

При выборе биметаллических радиаторов отопления необходимо обратить внимание на ряд технических особенностей, которые напрямую влияют на общую функциональность и ресурс. конкретное устройство.

Теплоотдача

Параметр, отображающий количество тепла, рассеиваемого в единицу времени. Внешний алюминиевый кожух отвечает за наиболее эффективную работу; именно этот металл характеризуется максимальным коэффициентом рассеивания тепла. Большинство стандартных моделей радиаторов со стандартным входным диаметром имеют теплоотдачу 170-200 кВт, что на 30-50% выше, чем у стандартных стальных или чугунных радиаторов.

Надежность

Чрезвычайно важный параметр, напрямую влияющий на общую производительность системы отопления, а также отсутствие проблем с соседями из-за затопления их квартиры.Ключевым параметром является прочность и толщина внутренней стальной оболочки. Для покупки можно порекомендовать модели с толщиной корпуса не менее 2-2,5 миллиметра. Этого вполне достаточно, чтобы выдержать рабочее давление в системе до 40-45 атмосфер, а опрессовку — порядка 55-60 атмосфер.

Рабочее давление и испытание под давлением

Параметры, указывающие, при каком максимальном давлении система отопления способна работать. Различают рабочее давление — величина, которая постоянно действует в системе охлаждения, а также испытание давлением — параметр, указывающий на пиковую нагрузку, необходимую для окончательного монтажа системы отопления.Практика показывает, что величина опрессовки почти всегда на 25-30% выше рабочей.

Способ подключения

Любая система отопления и ее радиаторы, в частности, имеют два отверстия — входное и выходное. Их расположение зависит от конкретной модели, а также напрямую влияет на конкретный способ подключения устройства. В зависимости от этого параметра различают следующие способы:

  1. Верхнее подключение — обе трубы системы подключаются вверху радиатора;

  2. Подключение снизу — вход и выход расположены снизу;

  3. Боковое подключение — вход и выход расположены с одной стороны, сверху и снизу соответственно;

  4. Подключение по диагонали — вход радиатора расположен слева внизу, выход вверху справа или наоборот;

Тип радиатора

Все модели радиаторов, имеющиеся в настоящее время в продаже, можно разделить на несколько условных групп:

Панельные радиаторы

Они являются одними из самых бюджетных вариантов, а потому пользуются большой популярностью у покупателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *