Tl431 — схема и принцип включения, характеристики, использование
Все люди, которые интересуются электрикой и все, что с ней связано, изучают различные микросхемы, в том числе цоколевку TL431. Что собой представляет tl431 схема включения, какие у нее основные технические характеристики, как ее использовать, каков источник опорного напряжения на tl431? Об этом и другом далее.
Что это такое
Цоколевка TL431 является одной из микросхем, которая массово стала выпускаться с 1978 года. Ее можно было найти в большинстве советской электронике. Делая точное описание, необходимо сказать, что это прецизионный программируемый источник опорного напряжения. Он популярен из-за того, что имеет низкую стоимость, высокую точность и универсальность.
Основные разновидности цоколевки TL431Характеристики
Обладает анодно-катодным напряжением в 36 вольт, анодно-катодным током до 100 микроампер, опорным источником напряжения от 0,5 до 2%. Работает в широком диапазоне напряжений, имеет маленькие токовые импульсные параметры в 100 микроампер.
Обратите внимание! Чтобы получить более мощный параллельный ток, то интегральный стабилитрон должен стать источником опорного напряжения, который бы регулировал функцию в качестве мощного транзистора.
Основные технические характеристики прецизионного программируемого источника опорного напряженияОсобенности эксплуатации
TL431 обладает мощным корпусом, программируемым выходным напряжением, низким эквивалентным температурным и световым коэффициентом, не содержит свинца и имеет низкий выход шума сигнализатора. Проверяется мультиметром.
Принцип работы очень просто понять, смотря на структурную схему. В момент того, когда напряжение на выходе ниже, чем на опоре, то на конце операционный усилитель будет работать с такой же силой. Если же этот показатель будет в норме, то усилителем будет открыт транзистор и по катоду с анодом будет течь заряд.
Использование и принцип включения цоколевки TL431Компенсационный стабилизатор напряжения
Принцип его работы такой же, как и у обычного стабилитрона. Благодаря разности напряжения у входа и выхода компенсируется мощного вида биполярный транзистор. Однако стабилизированная точность выше благодаря выходу стабилизатора.
Обратите внимание! Для стабилизации тока используется промежуточный вид усилительного каскада. Оба транзисторных устройства работают с эмиттерным повторителем, то есть усиливается ток и не повышается показатель силы.
Подключение компенсационного стабилизатора напряженияРеле времени
Важно понимать, что TL431 многофункциональный. Благодаря показателю в 4 микроампера входного тока, можно сделать реле времени. Когда основной контакт разомкнется, медленно начнет заряжаться транзистор. При получении напряжения в 2,5 вольт, транзистор на выходе будет открыт, и благодаря оптопаровому светодиоду будет протекать электроток. В соответствии с этим будет открыт фототранзистор и замкнута внешняя цепь.
Согласно приведенной ниже схеме, второй резистор осуществляет ограничение тока с помощью оптрона и стабилизатора, третий же предупреждает тот момент, чтобы зажегся светодиод.
Стабилизатор тока
Представленная ниже схема это термостабильный вид токового стабилизатора. Резистор в данном случае это своеобразный шунт, который поддерживает токовое напряжение в размере 2,5 вольт. Так при пренебрегании токовой базы, можно получить ток, имеющий нагрузку Iн=2,5/R2. При формировании значения в Омах, ток будет представлен в Амперах и наоборот.
Стабилизатор тока на TL431 схемаЗарядное устройство для литиевого аккумулятора
Главным отличием зарядника от блока питания является четкое разграничение токового заряда. Следующая картинка представлена в двух ограничиваемых режимах: тока и напряжения. Пока выходное напряжение менее 4,2 вольт, осуществляется ограничение выходного тока. Как только оно достигнет этого показателя, то начнет электроток понижаться.
Следующая схема предусматривает ограничение электротока внешними транзисторами. R1 осуществляет шунтовую функцию, VT1 осуществляет открытие и закрытие второго транзистора. В этот момент напряжение в третьем падает. Ток падает и вовсе прекращается. Так осуществляется токовая стабилизация.
Обратите внимание! В момент подбора к 4,2 вольтовому уровню, функционировать начинает DA1 и осуществляет ограничение напряжения на выходе зарядника.
Чем можно заменить
Заменить устройство сегодня можно отечественным и зарубежным аналогом. Отлично справляются со своей задачей TL431, TL431A, TL431ACD, TL431ACZ, TL431CLP, TL431CD и другие.
Основной аналог цоколевки TL 431 — TL431CDВ целом, цоколевка TL431 является регулируемым стабилитроном, используемым как источник опорного напряжения в разных блоках питания. С самого начала выпуска ее использовали в компьютерах, ноутбуках и прочей электронике. Принцип ее работы прост: операционный усилитель открывает транзистор и к аноду начинает протекать ток. Имеет свое реле, стабилизатор тока и зарядник. Аналогом оборудования служит TL431CLP, TL431CD и другие.
TL431 datasheet, TL431 схема включения, цоколевка, аналог
Про светодиоды уже написал достаточно много, теперь читатели не знают как их правильно и питать, чтобы они не сгорели раньше положенного срока. Теперь продолжаю ускоренно пополнять раздел блоков питания, стабилизаторов напряжения и преобразователей тока.
В десятку популярных электронных компонентов входит регулируемый стабилизатор TL431 и его брат ШИМ контроллер TL494. В источниках питания он выступает в качестве «программируемого источника опорного напряжения, схема включения очень простая. В импульсных блоках питания на ТЛ431 бывает реализована обратная связь и опорное напряжение.
Ознакомитесь с характеристикам и даташитами других ИМС применяемых для питания LM317, TL431, LM358, LM494.
Содержание- 1. Технические характеристики
- 2. Схемы включения TL431
- 3. Цоколёвка TL431
- 4. Datasheet на русском
- 5. Графики электрических характеристик
Технические характеристики
Вид корпусов ТЛ431
Широкое применение получила благодаря крутости своих технических характеристик и стабильностью параметров при разных температурах. Частично функционал похож на известную LM317, только она работает на малой силе тока и предназначена для регулировки. Все особенности и типовые схемы включения указаны в datasheet на русском языке. Аналог TL431 будет отечественная КР142ЕН19 и импортная К1156ЕР5, их параметры очень похожи. Других аналогов особо не встречал.
Основные характеристики:
- ток на выходе до 100мА;
- напряжение на выходе от 2,5 до 36V;
- мощность 0,2W;
- температурный диапазон TL431C от 0° до 70°;
- для TL431A от -40° до +85°;
- цена от 28руб за 1 штуку.
Подробные характеристики и режимы работы указаны в даташите на русском в конце этой страницы или можно скачать tl431-datasheet-russian.pdf
Пример использования на плате
Стабильность параметров зависит от температуры окружающей среды, она очень стабильная, шумов на выходе мало и напряжение плавает +/- 0,005В по даташиту. Кроме бытовой модификации TL431C от 0° до 70° выпускается вариант с более широким температурным диапазоном TL431A от -40° до 85°. Выбранный вариант зависит от назначения устройства. Аналоги имеют совершенно другие температурные параметры.
Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, не всегда элемент полностью выходит из строя, может просто подгореть.
Схемы включения TL431
Рабочие характеристики стабилизатора задаются двумя резисторами. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Часто применяется в стабилизаторах тока в зарядных USB устройствах, промышленные блоки питания, принтеров и другой бытовой техники.
TL431 есть практически в любом блоке питания ATX от компьютера, позаимствовать можно из него. Силовые элементы с радиаторами, диодными мостами тоже там есть.
На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Выпускаются радиоконструкторы для самостоятельной сборки своими руками. Количество вариантов применение очень большое, хорошие схемы можно найти на зарубежных сайтах.
Цоколёвка TL431
Как показывает практика, цоколевка TL431 может быть разной, и зависит от производителя. На изображении показана распиновка из даташита Texas Instruments. Если вы её извлекаете из какой нибудь готовой платы, то цоколевку ножек можно увидеть по самой плате.
Datasheet на русском
..Многие радиолюбители не очень хорошо знают английский язык и технические термины. Я достаточно неплохой владею языком предполагаемого противника, но при разработке меня всё равно напрягает постоянное вспоминание перевода электрических терминов на русский. Перевод TL431 datasheet на русском сделал наш коллега, которого и благодарим.
Графики электрических характеристик
Реверс-инжиниринг TL431, крайне распространенной микросхемы, о которой вы и не слышали
Кен, как и планировал, провёл реверс-инжиниринг микросхемы по фотографиям, сделанным BarsMonster. Барс в статье упомянул своё общение с Кеном, но этой переводимой статьи тогда еще не было.Фото кристалла интересной, но малоизвестной, микросхемы TL431, используемой в блоках питания, даёт возможность разобраться в том, как аналоговые схемы реализуются в кремнии. Несмотря на то, что схема на фото выглядит как какой-то лабиринт, сама микросхема относительно проста, и может быть исследована без большого труда. В своей статье я попытаюсь объяснить каким образом транзисторы, резисторы и другие радиодетали запакованы в кремний для выполнения своих функций.
Фото кристалла TL431. Оригинал Zeptobars.
TL431 является «программируемым прецизионным источником опорного напряжения» [1] и обычно используется в импульсных источниках питания для реализации обратной связи в случае, когда выходное напряжение слишком велико или, наоборот, мало. Используя участок цепи, называемый бандгапом (источник опорного напряжения, величина которого определяется шириной запрещённой зоны), TL431 предоставляет стабильный источник опорного напряжения в широком температурном диапазоне. На блок-схеме TL431 видны 2.5-вольтовый источник опорного сигнала и компаратор, но, глядя на фото кристалла, можно заметить, что внутреннее устройство микросхемы отличается от чертежа.
Блок-схема TL431, взятая из даташита.
У TL431 длинная история: он был выпущен еще в 1978 [2] году и с тех пор побывал во множестве устройств. Он помогал стабилизировать напряжение в блоке питания для Apple II, а сейчас используется в большинстве ATX блоков питания [3] и даже в зарядных устройствах для iPhone и прочих девайсов. И MagSafe-коннекторы, и адаптеры для ноутбуков, и микрокомпьютеры, LED драйверы, блоки питания для аудиотехники, видеоприставки, телевизоры [4]. Во всей этой электронике присутствует TL431.
Фотографии ниже показывают TL431 внутри шести различных БП. TL431 выпускается самых разных форм и размеров. Два наиболее популярных форм-фактора показаны ниже. [5] Возможно, причина того, что TL431 не привлекает особого внимания, заключается в том, что он больше похож на обычный транзистор чем на микросхему.
Шесть примеров схем БП, использующих TL431. Верхний ряд: дешёвый 5-вольтовый БП, дешёвое ЗУ для телефона, ЗУ для Apple iPhone (на фото можно еще заметить GB9-вариацию). Нижний ряд: MagSafe адаптер, ЗУ KMS USB, Dell ATX БП (на переднем плане — оптопары)
Как же радиоэлектронные компоненты выглядят в кремнии?
TL431 очень простая микросхема, и вполне возможно понять её логику на кремниевом уровне пристальным изучением фото. Я покажу, каким же образом транзисторы, резисторы, перемычки и конденсаторы реализованы. А затем уже проведу полный реверс-инжиниринг данной микросхемы.
Реализация транзисторов различных типов
Микросхема использует как n-p-n, так и p-n-p биполярные транзисторы (в отличие от микросхем навроде
6502, в которых использовались MOSFET). Если вы изучали электронику в школе или в университете, вы возможно видели схему n-p-n транзистора (вроде той, что ниже), на которой показаны коллектор (обозначен как C), база (B) и эмиттер (E). Транзистор изображен в виде своеобразного бутерброда с P-слоем между двумя N-слоями, такое расположение слоёв характеризует транзистор как n-p-n. Однако, выясняется, что в микросхеме нет совершенно ничего схожего с этой схемой. Даже база находится не в центре!
Символьное обозначение и структура n-p-n транзистора.
На фотографии ниже можно рассмотреть один из транзисторов TL431. Цветовые различия в розовых и фиолетовых регионах вызваны разным легированием кремния, для формирования N и P областей. Светло-желтые области — металлический слой микросхемы, располагающийся поверх кремниевого. Такие области нужны для обеспечения возможности подключения проводников к коллектору, эмиттеру и базе.
В нижней части фотографии нарисовано поперечное сечение, примерно изображающее как конструируется транзистор. [6] Можно заметить, что на нём куда больше деталей, чем в n-p-n бутерброде из книг, Однако, если внимательно присмотреться, то в поперечном сечении под эмиттером (E) можно найти то самое n-p-n, которое формирует транзистор. Проводник эмиттера соединяется с N+ кремнием. Под ним располагается P-слой, подключенный к контакту базы. Еще ниже — слой N+, соединенный с коллектором (не напрямую). [7] Транзистор заключен в P+ кольцо для изоляции от соседних компонентов. Так как большинство транзисторов в TL431 принадлежат к n-p-n типу, то, после того как разобрались в первый раз, их очень просто находить на фотографии и определять нужные контакты.
n-p-n транзистор из фотографии кристалла TL431, и его структура в кремнии.
Выходной n-p-n транзистор намного больше остальных, так как ему необходимо выдерживать полную нагрузку по току. Большинство транзисторов работает с микроамперами, а этот выходной транзистор поддерживает ток до 100 миллиампер. Для работы с такими токами он и сделан более крупным (занимает 6% всего кристалла), и имеет широкие металлические коннекторы на эмиттере и коллекторе.
Топология выходного транзистора сильно отличается от других n-p-n транзисторов. Он создаётся, так сказать, боком, планарная структура вместо глубинной, и база располагается между эмиттером и коллектором. Металл слева подсоединён к десяти эмиттерам (синеватый кремний N-типа), каждый из которых окружен розовым P-слоем, который является базой (средний проводник). Коллектор (правая часть) имеет только один большой контакт. Проводники эмиттера и базы образуют вложенную «гребёнку». Обратите внимание, что металл коллектора становится шире сверху вниз для того, чтобы поддерживать большие токи на нижней части транзистора.
Транзисторы p-n-p типа имеют совершенно другое строение. Они состоят из округлого эмиттера (P), окруженного кольцом базы (N), которую, в свою очередь, обступает коллектор (P). Таким образом, получается горизонтальный бутерброд, вместо обычной вертикальной структуры n-p-n транзисторов. [8]
Схема снизу показывает один из таких p-n-p транзисторов, а поперечное сечение изображает кремниевую структуру. Стоит отметить то, что хотя металлический контакт для базы находится в углу транзистора, он электрически соединен через N и N+ области с активным кольцом, пролегающим между коллектором и эмиттером.
Структура p-n-p транзистора.
Реализация резисторов в микросхеме
Резисторы являются ключевым компонентом почти в любой аналоговой схеме. Они реализованы как длинная полоса легированного кремния. (Похоже, что в этой микросхеме использовался кремний P-типа). Различные сопротивления достигаются использованием различной площади материала — сопротивление пропорционально площади.
Снизу заметно три резистора — их формируют три длинных горизонтальных полоски кремния. Желтоватые металлические проводники проходят через них. Места соединения металлического слоя и резистора выглядят как квадраты. Расположение этих контактов и задаёт длину резистора и, соответственно, его сопротивление. К примеру, сопротивление нижнего резистора немного больше остальных потому, что контакты расположены на большем расстоянии. Верхние два резистора объединены в пару металлическим слоем сверху слева.
Резисторы.
Резисторы в микросхемах имеют очень плохой допуск — сопротивление может различаться на 20% между микросхемами из-за вариаций в производственном процессе. Очевидно, что это серьезная проблема для таких точных микросхем, как TL431. Поэтому TL431 спроектирован таким образом, что важной характеристикой является не конкретное сопротивление, а отношение сопротивлений. Конкретные значения сопротивлений не сильно важны, если сопротивления меняются в одной пропорции. Вторым методом уменьшения зависимости от эффекта изменчивости является сама топология микросхемы. Резисторы располагаются на параллельных дорожках одинаковой ширины для снижения эффекта от любой асимметрии в сопротивлении кремния. Кроме того, они размещены рядом друг с другом для минимизации отклонений в свойствах кремния между разными частями микросхемы. Помимо всего этого, в следующей главе я расскажу о том, как перед корпусированием кристалла можно настроить сопротивления для регулирования производительности микросхемы.
Кремниевые перемычки для настройки сопротивлений
Вот чего я не ожидал в TL431, так это перемычек для подстройки сопротивлений. Во время производства микросхем эти перемычки могут быть удалены для того, чтобы отрегулировать сопротивления и повысить точность микросхемы. На некоторых
более дорогих микросхемахесть сопротивления, которые могут быть удалены лазером, просто выжигающим часть резистора перед корпусированием. Точность настройки таким методом куда выше чем у перемычек.
Цепь с перемычкой показана на фото снизу. Она содержит параллельных два резистора (на фото они выглядят как один элемент) и перемычку. В обычном состоянии, эта перемычка шунтирует резисторы. При изготовлении микросхемы, её характеристики могут быть замерены, и если требуется большее сопротивление, то два щупа подсоединяются к площадкам и подаётся высокий ток. Этот процесс сжигает перемычку, добавляя немного сопротивления цепи. Таким образом, сопротивление всей схемы может быть немного подкорректировано для улучшения характеристик микросхемы.
Перемычка для настройки сопротивления
Конденсаторы
TL431 содержит всего два внутренних конденсатора, но они выполнены в двух совершенно разных манерах.
Первый конденсатор (под текстом «TLR431A») сформирован обратносмещенным диодом (красноватые и фиолетовые полосы). У инверсного слоя в диоде есть ёмкостное сопротивление, которое может быть использовано для формирования конденсатора (подробнее). Главное ограничение такого типа конденсаторов в том, что ёмкостное сопротивление разнится в зависимости от напряжения, потому что меняется ширина инверсного слоя.
Конденсатор, образованный p-n переходом. Вендорная строка написана с помощью металла, нанесенного поверх кремния.
Второй конденсатор сконструирован совершенно другим методом, и больше похож на обычный конденсатор с двумя пластинами. Даже не на что поглядеть — он состоит из большой металлической пластины с подложкой из N+ кремния в качестве второй пластины. Для того чтобы уместиться рядом с другими частями цепи, он имеет неправильную форму. Данный конденсатор занимает около 14% площади кристалла, иллюстрируя то, что конденсаторы в микросхемах очень неэффективно используют пространство. В даташите упоминается, что оба конденсатора по 20 пикоФарад, но я не знаю насколько этому можно верить.
Конденсатор.
Реверс-инжиниринг TL431
Промаркированный кристалл TL431.
На схеме сверху выделены и поименованы элементы на кристалле, и затем перенесены на чертеж снизу. После всех разъяснений ранее, я думаю, структура любого элемента должна быть ясна. Три пина микросхемы подсоединены к площадкам «ref», «anode» и «cathode». Микросхема имеет один уровень металлизации (светло-желтый) для соединения компонентов. На чертеже сопротивление задаётся относительно неизвестного R. Наверное, 100 Ом вполне подходит, но я не знаю точного значения. Самым большим сюрпризом было то, что характеристики элементов сильно отличились от тех, что были опубликованы ранее в других схемах. Данные характеристики фундаментально сказываются на том, как в целом работает стабилитрон с напряжением запрещённой зоны.
[9]
Чертеж TL431
Как работает микросхема?
Работа TL431 извне выглядит довольно незатейливо — если на контакт «ref» подаётся напряжение выше 2.5 вольт, то выходной транзистор проводит ток между катодом и анодом. В блоке питания это увеличивает ток, идущий к управляющей микросхеме (косвенно), и влечёт за собой уменьшение мощности БП, после чего происходит спад напряжения до нормального уровня. Таким образом, БП используют TL431 для того, чтобы стабильно держать необходимое выходное напряжение.
Наиболее интересная часть микросхемы это источник опорного напряжения, равного ширине запрещённой зоны. [10]. Ключевые элементы видны на фото кристалла: область эмиттера транзистора Q5 в 8 раз больше чем у Q4, поэтому два транзистора по-разному реагируют на температуру. Выходные сигналы с транзисторов объединяются через резисторы R2, R3, R4 в нужной пропорции для компенсации температурных эффектов, и формируют стабильный опорный сигнал. [11] [12]
Напряжения из стабилизированного по температуре бандгапа посылаются в компаратор, входом которого являются Q6 и Q1, а Q8 и Q9 управляют им. Наконец, выход компаратара проходит через Q10 для управления выходным транзистором Q11.
«Открываем» микросхему низко-технологичным методом
Получение фотографии кристалла микросхемы обычно требует её растворения в опасных кислотах, и фотографирование самого кристалла с помощью дорогого металлографического микроскопа. (Zeptobars описывал этот процесс
здесь). Мне было интересно что получится, если я просто разломаю TL431 зажимными щипцами и взгляну на него в дешёвый микроскоп. В процессе я переломил кристалл пополам, но всё равно получил интересные результаты. На изображении виден большой медный анод внутри корпуса, который еще работает и как радиатор. Рядом с ним кристалл (по крайней мере, большая его часть), который был установлен на аноде внутри белого круга. Заметили, насколько сам кристалл меньше своего корпуса?
Корпус TL431, внутренний анод и большая часть от кристалла.
Используя простой микроскоп, я получил фото снизу. Несмотря на то, что, очевидно, я не получил такого же качественного снимка как у Zeptobars, структура микросхемы видна значительно лучше чем я ожидал. Данный эксперимент показывает, что вы можете проводить снятие корпуса микросхем и фотографирование кристалла даже не касаясь разных опасных кислот. Сравнивая свой снимок дешевого TL431, заказанного на eBay, с TL431, сфотографированного Zeptobars, вижу их идентичность. Так как его микросхема не совпадает с опубликованными чертежами, то я гадаю, не прекратили ли они в определенный момент производство того странного варианта микросхемы. Но думаю, что это предположение неверно.
Кусок кристалла, сфотографированный через микроскоп.
Заключение
На самом ли деле TL431 наиболее распространенная микросхема о которой не слышали люди? Нет надежного способа проверить, но я думаю что это хороший кандидат. Похоже, никто не публиковал данные, в которых другая микросхема была бы произведена в больших количествах. Некоторые источники утверждают что таймер 555 является наиболее распространенной микросхемой с миллиардными тиражами каждый год (не очень мне верится в такое большое число). Но TL431 точно располагается достаточно высоко в списке по распространенности. Вы, скорее всего, имеете TL431 в каком-то устройстве на расстоянии вытянутой руки прямо сейчас (ЗУ для телефона, адаптер питания для ноутбука, блок питания PC или монитора). Разница между 555 или 741 и TL431 в том, что эти микросхемы настолько широко известны, что уже стали чуть ли не частью поп-культуры —
книги,
майкии даже
кружки. Но если вы не работаете с блоками питания, достаточно высоки шансы, что вы никогда и не слышали о TL431. Таким образом, я отдаю свой голос TL431 в такой странной номинации. Если у вас есть какие-то другие варианты микросхем, которые незаслуженно обошли вниманием, оставляйте комментарии.
Признательности
Снимки кристалла сделаны
Zeptobars(за исключением моего). Чертёж и анализ основываются на работе
Cristophe Basso[12]Кроме того, я значительно улучшил свой анализ с помощью дискуссий с Михаилом из Zeptobars и
Visual 6502 group, в частности B. Engl.
Заметки и ссылки
1. Из-за того, что у TL431 не самая обычная функция, стандартного названия для элемента такого рода не существует. Разные даташиты дают такие имена:
«регулируемый шунтирующий стабилизатор»,
«программируемый прецизионный источник опорного напряжения»,
«программируемый шунтирующий источник опорного напряжения»,
«программируемый стабилитрон».
↑2. Я раскопал истоки возникновения TL431 в
Voltage Regulator Handbook, опубликованным Texas Instruments в 1977 году. Предшественником этой микросхемы был TL430, выпущенный как регулируемый шунтирующий стабилизатор в 1976. TL431 был создан в том же 1976 как обновление для TL430 с улучшенной точностью и стабильностью, и поэтому был назван как регулируемый прецизионный шунтирующий стабилизатор. В 1977 его анонсировали как один из будущих продуктов TI, а выпустили в продажу уже в 1978. Другим анонсом являлся TL432, который должен был бы называться «Компоновочный блок из таймера/стабилизатора/компаратора» и состоять из источника опорного напряжения, компаратора и транзисторного усилителя, согласно
предварительному даташиту. Но на момент выпуска TL432, план по предоставлению «компоновочных блоков» был забыт. TL432 превратился в аналог TL431 с другими расположением контактов для более удобной разводки плат (
даташит).
↑3. Современные ATX блоки питания (
пример раз,
пример два) зачастую содержат по три TL431. Один для обратной связи при резервном питании, второй для обратной связи в основной схеме питания, а третий берётся в качестве линейного регулятора для 3.3В выходного напряжения.
↑4. Интересно взглянуть на импульсные БП, которые не используют TL431. Более ранние модели использовали опорный стабилитрон в качестве источника опорного напряжения. Например, такое практиковалось в первых экземплярах блоков питания для Apple II (Astec AA11040), но вскорости в них сделали замену стабилитрона на TL431 —
Astec AA11040, ревизия B. В Commodore CBM-II, модель B, применялось необычное решение — TL430 вместо TL431. Оригинальный блок питания для IBM PC использовал опорный стабилитрон (вместе с кучей операционных усилителей). Позднее БП для PC часто использовали ШИМ-контроллер
TL494, который уже содержал источник опорного напряжения для вторичной цепи. Другие БП могли содержать
SG6105, уже включающий в себя два TL431.
В зарядных устройствах для телефонов обычно применяют TL431. Редко можно встретить дешёвую подделку этого элемента: проще взять опорный стабилитрон вместо него и сэкономить пару центов. Другим исключением могут являться такие зарядные устройства,
как для iPad’a. В них реализована стабилизация в первичной цепи и не требуется совсем никакой обратной связи от выходного напряжения.
В своей статье про блоки питанияя описал это подробнее.
↑5. TL431 доступен в большем числе вариантов корпуса чем я думал. На двух фотографиях TL431 выполнен в «транзисторном» корпусе с тремя ножками (TO-92). На остальных фотографиях показан SMD-вариант в SOT23-3. TL431 также может быть в 4-контактном, 5-контактном, 6-контактном и 8-контактном SMD-корпусе (SOT-89, SOT23-5, SOT323-6, SO-8 или MSOP-8). Кроме того, его можно встретить в более крупном варианте TO-252 или даже в виде 8-контактного микросхемы (DIP-8). (
картинки).
↑6. Более детальную информацию о том, как устроен в кремнии биполярный транзистор, можно найти много где.
Semiconductor Technologyдаёт неплохой обзор об устройстве n-p-n транзистора. Презентация
Basic Integrated Circuit Processingочень детально описывает производство микросхем. Даже схемы с
википедииочень интересны.
↑7. Возможно, вы гадаете, почему это идёт терминологическое разделение на коллектор и эмиттер, если в нашей простой схеме транзистора они абсолютно симметричны? Ведь оба подключаются к N-слою, чему там различаться? Но как можете видеть на фото кристалла, коллектор и эмиттер не только сильно отличаются по размеру, но и легирование проходит по-разному. Если поменять коллектор и эмиттер местами, по у транзистора будет очень
слабый коэффициент передачи.
↑8. p-n-p транзисторы в TL431 имеют круговую структуру, которая их очень сильно отличает от n-p-n. Эта круговая структура проиллюстрирована в книге
Designing Analog Chipsот Hans Camenzind, автора таймера 555. Если вы хотите узнать больше о том, как работают аналоговые микросхемы, то я рекомендую эту книгу, в которой детально разъясняется этот вопрос с минимумом математики.
Бесплатный PDFили
бумажная версия.
Кроме того, о структуре p-n-p транзисторов можно почитать в
«Principles of Semiconductor». А книга
«Analysis and Design of Analog Integrated Circuits»рассказывает о детальных моделях биполярных транзисторов и о том, как они имплементируются в микросхемах.
↑9. Транзисторы и резисторы на кристалле, который я исследовал, имеют совершенно другие характеристики по сравнению с теми, что публиковались ранее. Эти характеристики фундаментально задают работу стабилитрона с напряжением запрещённой зоны. Конкретно говоря, на предыдущих схемах R2 и R3 были в отношении 1 к 3, а у Q5 зона эмиттера была в два раза больше чем у Q4. Глядя на фото кристалла, я вижу что R2 и R3 имеют одинаковое сопротивление, а Q5 имеет зону эмиттера в 8 раз большую по сравнению с Q4. Исходя из таких отношений между характеристиками, мы получим другое ΔVbe. Для того чтобы компенсировать разницу между фактическими характеристиками и вычисленными, в прошлых схемах R1 и R4 так же были сделаны иными чем на кристалле. Я разъясню этот момент более подробно дальше в статье, но просто отмечу: Vref = 2*Vbe + (2*R1+R2)/R4 * ΔVbe должно быть около 2.5 вольт. Обратите внимание, важно не конкретное сопротивление резисторов, а именно их отношения. Как я писал ранее, это помогает нейтрализовать плохой допуск резисторов в микросхеме. На кристалле Q8 сформирован из двух параллельных транзисторов. Но я не могу понять, что стоит за этим странным решением. Я ожидал, что Q8 и Q9 будут идентичны, чтобы построить сбалансированный компаратор. Моя основная теория заключается в том, что это сделано для настройки опорного напряжения, чтобы оно достигало 2.5В. B. Engl предположил, что это могло помогать устройству лучше работать при низком напряжении.
↑10. Я не буду здесь углубляться в детали реализации стабилитрона с напряжением запрещённой зоны, разве упомяну что пусть его название и звучит как имя какого-то безумного квантового устройства, но, на самом деле, это просто пара транзисторов. Чтобы разобраться в том, как работает данный стабилитрон, можете поглядеть статью
«How to make a bandgap voltage reference in one easy lesson»за авторством Paul Brokaw, изобретателя
одноименного стабилитрона опорного напряжения. Кроме того есть еще такая
презентация.
↑11. В известном смысле, цепь бандгапа в TL431 работает в противоположном направлении, по сравнению с обычным бандгапом, который подводит к эмиттеру правильные напряжения, чтобы получить на выходе необходимое значение. TL431 же берёт опорное напряжение в качестве входного, а эмиттеры использует как входные сигналы для компаратора. Другими словами, в противоположность блок-схеме, внутри TL431 входной «ref» сигнал не сравнивается ни с каким стабильным опорным напряжением. Вместо этого, вход «ref» генерирует два сигнала для компаратара, которые совпадают если входное напряжение 2.5 вольта.
↑12. Существует много статей о TL431, но они все с уклоном в матан и ожидают от читателя каких-либо начальных знаний по теории автоматического управления, графикам Боде, и так далее.
«The TL431 in Switch-Mode Power Supplies loops»— классическая статья от Christophe Basso и Petr Kadanka. Она объясняет работу TL431 в цепи компенсации обратной связи в действующих блоках питания. Книжка содержит детальные чертежи и описания внутреннего устройства элемента. Еще есть интересные статьи на
powerelectronics.com. В статье
«Designing with the TL431»от Ray Ridley, для Switching Power Magazine, содержится подробное объяснение того, как использовать TL431 в цепях обратной связи для БП и так же объясняется работа компенсатора. Можно обратить внимание на презентацию
«The TL431 in the Control of Switching Power Supplies»от ON Semiconductor. Конечно же,
даташиттоже содержит чертежи внутреннего устройства микросхемы. Странно, но сопротивления на этих чертежах отличаются от тех, что я получил, исследуя фото кристалла.
↑Схема включения и параметры TL431
Устройство TL431 является стабилизатором напряжения и программируемым источником опорного напряжения. Оно является наиболее популярным в сфере использования импульсных источников питания. В статье объясняется, что это такое, имеется описание того, где и как используются TL431 и TL431A, рассказывается, какие существуют особенности конструкции. Также указаны технические характеристики и прилагаются схемы подключения и применения устройства.
Что это такое
Параллельный стабилизатор TL431 работает так же, как стандартный стабилизатор. Различие уровня напряжения выхода и входа компенсируется благодаря мощному транзистору биполярного типа. Стабилизация будет лучше при условии того, что обратная связь поступает с выхода самого стабилизатора.
Резистор R1 должен быть рассчитан на минимальный ток, который равен 5 мА. Резисторы R2 и R3 рассчитываются аналогично, как для стабилизатора параметрического типа. Через каждый резистор протекает ток, у которого сила обратно пропорциональна значению сопротивления резистора. Существует два типа соединений резисторов: параллельное и последовательное соединение в форме цепи.
Где и как используется
Такие устройства, как правило, используются для компенсации колебаний напряжения в сети. Например, когда включена большая машина, потребность в энергии внезапно становится намного выше. Стабилизатор напряжения компенсирует изменение нагрузки. Стабилизаторы напряжения обычно работают в диапазоне напряжений, например, 150-240 В или 90-280 В.
Стабилизаторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют напряжения постоянного тока. В автомобильных генераторах и центральных электростанциях-генераторах стабилизаторы напряжения контролируют мощность установки.
Выпускать устройство TL431 начали в 1977 году. Оно применяется в качестве источника опорного напряжения в схемах различных блоков питания ТВ, DVD, тюнеров и других разновидностей видео- и аудиотехники.
Также устройство необходимо для реализации обратной связи: выходное напряжение очень большое или же очень маленькое. Эксплуатируя участок цепи, который называется бандгап (источник опорного напряжения; его величина определяется шириной запрещённой зоны), TL431 является стабильным источником опорного напряжения в широких температурных диапазонах.
Особенности конструкции
У TL431 есть альтернативная версия TL43LI, у которой более лучшая стабильность, а также более низкий температурный дрейф (VI (dev)). Также у улучшенной версии более низкий опорный ток, которой необходим для повышения уровня точности всей системы.
Устройство TL431 является трёхконтактным и регулируется шунтирующим регулятором с термической стабильностью. Напряжение на выходе может устанавливаться между значением источника опорного напряжения (Vref) 2.5 и 36 В с двумя внешними резисторами. У устройства на выходе стандартный электрический импенданс – 0,2 Ом. Схема активного выхода обеспечивает очень точный способ включения. Эта возможность делает аппарат превосходной заменой диодов Зенера (стабилитронов) во многих областях применения, таких как встроенное регулирование и переключение источников питания.
Другая версия устройства – TL432 – имеет те же функциональные и технические характеристики, что и верися TL431, но имеет различные выводы для цоколевки DBV, DBZ и PK. Обе версии TL431 и TL432 представлены в трех классах с изначальными температурными пределами (при 25 градусах) 0.5%, 1% и 2% для B, A и стандартного класса соответственно. Более того, низкий дрейф на выходе в зависимости от температуры обеспечивает хорошую стабильность во всем диапазоне рабочих температур.
Цоколевка TL431 имеет следующий вид:
Распиновка TL431 выглядит так:
Технические характеристики TL431 и TL431A
У TL431A и TL431 такие параметры:
- Мощность составляет 0.2 Вт.
- Электрический ток на выходе достигает 100 мА.
- Напряжение на выходе варьируется от 2,5 до 36 В.
- Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
- Рабочая температура TL431A варьируется от -40 до +85 градусов.
Также важны другие параметры.
Выходное напряжение
Оно может поддерживаться постоянным только в указанных пределах.
Регулировка нагрузки
Эта характеристика является изменением выходного напряжения для данного текущего тока нагрузки
Линейное регулирование или регулирование на входе
Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.
Температурный коэффициент выходного напряжения
Это показатель изменения температуры (усредненное по заданному температурному диапазону).
Изначальная точность регулятора напряжения (или точность напряжения)
Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.
Падение напряжения
Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.
Пусковой ток или импульсный входной ток
Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.
Ток покоя в цепи регулятора
Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.
Переходная реакция
Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.
Расчёт напряжения TL431
Схемы применения TL431
Для того, чтобы правильно подключить, важно соблюдать технику безопасности и следовать последовательности, как, например, при применении схемы подключении двухклавишного выключателя или при применении схемы подключения узо.
Работа микросхемы
Извне принцип работы аппарата выделяется довольно несложно. Если подать на контакт ref напряжение, которое превышает 2 В, тогда выходной транзистор проведёт электрически ток между анодом и катодом. Ток, который идёт к микросхеме, в блоке питания в таком случае увеличивается. Это вызывает уменьшение мощности блока питания. Затем происходит уменьшение напряжения до допустимого уровня. Следовательно, для блока питания применяют TL431 с целью того, чтобы поддерживалось стабильное выходное напряжение.
Одна из самых важных частей микросхемы – источник опорного напряжения. Он эквивалентен ширине запрещённой зоны. Основные составляющие есть на фото кристалла – пространство эммитера транзистора Q5 в восемь раз превышает Q4. Так, два транзистора имеют разные реакции на температуру. Объединение выходных сигналов с транзисторов происходит посредство объединения через резисторы R4, R3 и R2 в необходимой пропорции с целью компенсации эффектов температуры. Итого, формируется стабильный опорный сигнал.
В компаратор по температуре из стабилизированной запрещённой зоны посылается напряжение. Входом компаратора служат Q9 и Q8, Q1 и Q6. Выход же компатора идёт через Q10, чтобы управлять резистором Q11 (выходной).
Схема включения TL431
Схема включения и контроля напряжения TL431A
Нередко терморезистор выполняет функцию датчика температуры, уменьшая степень своего сопротивления в случае возрастания температуры. Это происходит по причине отрицательного температурного коэффициента сопротивления (ТКС). Те резисторы, у которых сопротивление увеличивается вместе с увеличением температуры (с положительным значением ТКС), имеют название позисторы. В этом терморегуляторе в случае превышения температуры заданного лимита, заработает реле или любое другое устройство с подобными функциями. Оно сразу же отключит нагрузку или включит систему охлаждения в зависимости от ситуации.
Данная схема имеет малый гистерезис, и чтобы его увеличить, нужно ввести ООС (отрицательная обратная связь) между выводами 1-3. К примеру, подстроченный резистор с сопротивлением 1.0-0.5 мОм. Надо подобрать экспериментальным путём подобрать в зависимости от требуемого гистерезиса. Если требуется, чтобы устройство срабатывало во время температурного снижения, тогда следует поменять местами регуляторы и датчик. Иначе говоря, включить в верхнее плечо термистор, а в нижнее – переменное сопротивление с самим резистором.
Подключение устройства TL431 требует внимания и является ответственной операцией, при которой важно не пренебрегать правилами безопасности, как например при подключении электроплиты.
TL431: стабилизатор напряжения, тока и усилитель ошибки | Приключения электроника
Пришло время попсового контента 🙂
Думаю, многие видели или даже использовали микросхему TL431.
Этот параллельный стабилизатор напряжения / программируемый стабилитрон / источник опорного напряжения (ох, как только его не классифицируют) весьма популярен и находит много применений как в самоделках, так и в промышленно выпускаемых устройствах.
Простейшая схема включенияПростейшая схема включения
Имеет множество аналогов разных производителей: LM431, AS431, KA431 и т.д. и т.п. Существует и отечественный — КР142ЕН19А.
Основные характеристики
- Диапазон входных напряжений 2,5…36 В
- Ток катода 1…100 мА
- Минимальный ток стабилизации 0,4…1 мА
- Точность опорного напряжения 2 / 1 / 0,5% (для версии без буквы в названии / с буквой A / с буквой B)
Для лучшего понимания схем рассмотрим принцип работы TL431:
REF — вход сравнения с опорным напряжениемREF — вход сравнения с опорным напряжением
«Английское» название данного регулятора (shunt regulator, шунтирующий) весьма хорошо описывает, как работает TL431:
Когда напряжение на входе REF превышает опорное 2,495 В, транзистор открывается, шунтируя нагрузку. Точно так же работают и обычные стабилитроны.
И, также как и стабилитрону, TL431 нужен резистор, задающий ток стабилизации. Считается он так:
Ну, и наконец, схемы с участием TL431.
Стабилизатор / ИОН с задаваемым напряжением
Сама на себяСама на себя
В простейшем случае напряжение напрямую сравнивается с опорным и на выходе будет опорное напряжение 2,495 В.
Выставить нужное выходное напряжение можно с помощью резистивного делителя напряжения:
Расчет был на 9 ВРасчет был на 9 В
Выходное напряжение равно:
Uref = 2,495 В, Iref = 2…4 мкАUref = 2,495 В, Iref = 2…4 мкА
Ток, втекающий в REF, можно не учитывать, если брать не очень большие сопротивления резисторов делителя (производитель советует, чтобы их сопротивление было около порядка 10 кОм). Тогда можно задаться одним из резисторов и посчитать другой:
Uref = 2,495 ВUref = 2,495 В
В моем примере взят R2 = 2,37 кОм, R1 по расчету 6,179 кОм, если брать из ряда Е48 — то 6,19 кОм рядом стоит 🙂
Подбирать резисторы надо весьма точно…
В отличие от обычных стабилитронов, TL431 не очень любит емкостные нагрузки и может самовозбудиться и колебаться.
При желании можно сделать один из резисторов переменным, и регулировать напряжение на выходе стабилизатора.
Встречаются схемы, где вместо R1 устанавливается терморезистор, и при повышении температуры TL431 включает транзистор, который включает вентилятор.
Тока 100 мА может быть недостаточно, поэтому используется:
Схема регулятора на TL431 с транзистором
Замечу, что это уже последовательный регулятор напряженияЗамечу, что это уже последовательный регулятор напряжения
Методика расчета та же, только резистор R выбирается такой, чтобы через TL431 шел ток стабилизации не меньше 1 мА.
Можно также использовать и MOSFET или транзистор Дарлингтона для умощнения стабилизатора.
Очень часто можно встретить TL431 в схемах источников дежурного напряжения в блоках питания (например, ATX). Выступает она там как
Усилитель ошибки
Приведу несколько примеров найденных в интернете схем:
Резисторы в делителе подобраны таким образом, чтобы если на линии питания напряжение больше, чем 5 В, на входе REF TL431 было напряжение больше 2,5 В.
При этом TL431 «откроется» и начнет пропускать через себя и светодиод ток. Из-за этого открывается фототранзистор оптрона, шунтируя вход обратной связи ШИМ-контроллера, заставляя его снизить коэффициент заполнения, а вместе с ним снижается и напряжение на линии питания.
Для наглядностиДля наглядности
Конденсатор С1 играет роль интегратора (часто последовательно с ним ставят еще один резистор). R — задает ток стабилизации и ограничивает ток светодиода оптрона.
Из TL431 можно получить и источник тока:
Источник втекающего тока
Микросхема сравнивает напряжение на резисторе R1 с опорным. А так как напряжение на резисторе R1 прямо пропорционально втекающему току, то этот самый ток можно задать по формуле:
Uref = 2,495 ВUref = 2,495 В
Ничто не мешает нам поставить нагрузку «вниз» и получить
Ограничитель вытекающего токаТолько при расчете необходимо учитывать, что теперь в ток нагрузки входит и ток Iка, текущий через TL431:
Iка — ток катод-анодIка — ток катод-анод
В примере видно, что R1 задан ток 10 мА, и к нему приплюсовываются 3,6 мА со стабилитрона.
Бывают и более экзотичные применения:
Кто-то умудрялся делать из TL431 усилители…
Решила повторитьРешила повторить
Ну, что сказать, усиливает… Квадратиш, практиш, гуд 🙂
Видела еще схемы генераторов, но у меня чего-то модель не запустилась…
Поэтому советую этот программируемый стабилитрон использовать по назначению, например, как в моем блоке питания, где TL431 используется в качестве стабилизатора со сниженным шумом.
Источники опорного напряжения
Источники опорного напряжения
Источник опорного напряжения — определение
Источники опорного напряжения (ИОН) – специализированные элементы силовой электроники, формирующие стабильное выходное напряжение, уровень которого является опорным для различных узлов устройства. ИОНы – это своеобразные «кварцевые генераторы» эталонного выходного напряжения, которое используется в качестве напряжения сравнения в ШИМ-генераторах, различных компараторных устройствах измерительных блоках и т.д.[Интегральные источники опорного напряжения. Михаил Пушкарев. КОМПОНЕНТЫ И ТЕХНОЛОГИИ. №6. 2007. с. 71-76].
Основное требование к источникам опорного напряжения – высокая стабильность выходного напряжения. Стабильность по отношению к входному напряжению, температурная и временная стабильность. По внутреннему принципу работы ИОНы подразделяются на а – стабилитронные, б – на ширине запрещенной зоны, в – на XFET-ячейке. По схемотехнике включения – на параллельные и последовательные.
ИОН TL431 — «регулируемый стабилитрон»
Наиболее популярным параллельным ИОН является «регулируемый стабилитрон» TL431. Внутренняя структура TL431 и условное обозначение представлены на рисунке VR.1.
Рисунок VR.1 — Внутренняя структура и условное обозначение программируемого стабилитрона TL431
Внутри TL431 находится компаратор один их входов которого подключен к источнику опорного напряжения, а другой подключен выводу Ref «программируемого стабилитрона». Компаратор управляет биполярным транзистором параллельно которому включен обратный диод. Если напряжение на входе R превышает напряжение внутреннего опорного источника, то компаратор открывает транзистор. Если напряжения на катоде и управляющем входе Refсвязаны (например, через резисторный делитель), то возникает отрицательная обратная связь обеспечивающая свойство стабилизации напряжения между катодом и анодом.
Рисунок VR.2 — Базовая схема включения программируемого стабилитрона TL431
Принцип работы схемы представленной на рисунке VR.2 заключается в следующем. Если напряжение на выходе резисторного делителя R1R2 превышает опорное напряжение стабилитрона, то стабилитрон приоткрывается и ток через токоограничивающий резистор увеличивается. Соответственно напряжение между катодом и анодом стабилитрона уменьшается и устанавливается на некотором стабильном уровне определяемом коэффициентом деления резисторного делителя R1R2. Аналогично работают и другие схемы на основе «программируемого стабилитрона».
Основные параметры ИОН
1. Выходное напряжение (напряжение стабилизации, опорное напряжение) (Reference voltage) — Vref – пороговое напряжение между теми или иными входами ИОН, при котором срабатывает схема стабилизации.
2. Отклонение выходного напряжения от номинального значения (Deviation of reference input voltage) VI(dev) – абсолютное отклонение напряжения от уровня порогового напряжения Vref. Обычно указывается во всем диапазоне температур. Этот параметр характеризует стабильность ИОН.
3. Температурный коэффициент выходного напряжения (temperature coefficient of thereference input voltage) αVref — относительное отклонение выходного (опорного) напряжения под действием изменения температуры.
4. Коэффициент стабилизации выходного напряжения по отношению к напряжению питания (Ratio of change in reference voltage to the change in cathode voltage) ΔVref/ΔVKA – показывает отношение изменения выходного напряжения (напряжения стабилизации) к вызвавшему его изменению напряжения катод-анод (для параллельных ИОН) или входного напряжения (для последовательных ИОН).
5. Коэффициент стабилизации выходного напряжения по отношению к протекающему по ИОН току нагрузки — показывает отношение изменения выходного напряжения (напряжения стабилизации) к вызвавшему его изменению тока в цепи катод-анод (для параллельных ИОН) или выходного тока (для последовательных ИОН).
6. Максимальное входное напряжение (для последовательных ИОН), напряжение катод-анод (для параллельных ИОН) (Cathode voltage) VKA – максимальное входное напряжение ИОН / напряжение между катодом и анодом ИОН.
7. Максимальный постоянный ток нагрузки ИОН, ток катода для последовательных ИОН (Continuous cathode current range) IKA – максимальное значение постоянного тока в цепи нагрузки ИОН.
8. Минимальный входной ток вывода Ref (Minimum cathode current for regulation) Imin – минимальный уровень входного тока вывода Ref При котором обеспечивается стабилизация выходного напряжения.
9. Ток утечки ИОН в непроводящем состоянии (ток катода для параллельных ИОН) (Off-state cathode current) Ioff – выходной ток (ток катода) при выключенном стоянии ИОН.
10. Максимальная температура кристалла (Operating virtual junction temperature) TJ .
Примеры использования ИОН
Примеры использования ИОН TL431 представлены на рисунке VR.3.
Рисунок VR.3 . Примеры использования ИОН TL431: a – элемент обратной связи по напряжению на выходе источника питания; b – последовательный линейный стабилизатор напряжения; c — генератор постоянного тока.
Прикладное и прикладное моделирование TL431
TL431 — управляемый прецизионный регулятор напряжения. Его выходное напряжение может быть произвольно установлено на любое значение от Vref (2,5 В) до 36 В с двумя резисторами. Типичный динамический импеданс этого устройства составляет 0,2 Ом. Он используется во многих приложениях для замены стабилитронов, таких как цифровые вольтметры, схемы операционного усилителя, источники питания с регулируемым напряжением, импульсные источники питания и так далее.
Параметры, на которые мы должны обратить внимание:
Схематические символы TL431 являются следующими:
Его внутренняя эквивалентная схема выглядит следующим образом (не реальная цепь):
Его главное приложение для получения опорного напряжения, выходной ток способность в целом, он может быть использован в качестве стабильного опорного уровня используется.
Общие формы схемы следующие:
Конкретный принцип работы заключается в следующем: когда входное напряжение увеличивается, а выходное напряжение увеличивается, выборка на выходе увеличивается.В это время внутренняя схема настраивается для увеличения тока, протекающего через себя, что также увеличивает ток, протекающий через резистор ограничения тока. Таким образом, падение напряжения резистора, ограничивающего ток, увеличивается, и выходное напряжение становится равным входному напряжению минус падение напряжения резистора, ограничивающего ток. Увеличение входного напряжения и падение напряжения резистора, ограничивающего ток, приводят к снижению выходного напряжения и достижению регулирования.
Проще говоря, в частности, так, в последовательном сопротивлении обмена избыточного напряжения, т.е. TL431 выходных опорный терминал REF является постоянным напряжением, при увеличении входного напряжения, TL431 тока через цепь становится большим, так что строка в сопротивление Напряжение становится больше, то есть часть входного напряжения, которое увеличивается, нагружается на последовательно включенном сопротивлении, тем самым достигая стабилизации напряжения.
2.496V выход опорного напряжения, как показано на фиг моделирования:
4.985V опорного выходного напряжения, как показано на фиг смоделированы (выход Расчет напряжения формула: УО = 2.5 * {1+ (R1 / R2)}, где 2,5 является приближением, должно быть около 2.495):
Как работает шунтирующий регулятор TL431, техническое описание, приложение
В этом посте мы узнаем, как микросхема шунтирующего регулятора обычно работает в схемах SMPS. Мы возьмем пример популярного устройства TL431 и попытаемся понять его использование в электронных схемах с помощью нескольких замечаний по его применению.
Электрические характеристики
Технически TL431 называется программируемым шунтирующим стабилизатором, проще говоря, это регулируемый стабилитрон.
Давайте узнаем больше о его технических характеристиках и примечаниях к применению.
TL431 обладает следующими основными характеристиками:
- Регулируемое или программируемое выходное напряжение от 2,5 В (минимальное опорное напряжение) до 36 В.
- Выходное сопротивление низкое динамическое, около 0,2 Ом.
- Допустимая нагрузка по току приемника до 100 мА.
- В отличие от обычных стабилитронов, уровень шума незначителен.
- Молниеносная реакция на переключение.
Как работает IC TL431?
TL431 — это трехконтактный транзистор, подобный (например, BC547) регулируемому или программируемому стабилизатору напряжения.
Выходное напряжение можно измерить, используя всего два резистора на указанных выводах устройства.
На схеме ниже показана внутренняя блок-схема устройства, а также обозначения контактов.
На следующей схеме показаны выводы реального устройства. Давайте посмотрим, как это устройство можно сконфигурировать в практических схемах.
Примеры схем с использованием TL431
Схема ниже показывает, как указанное выше устройство TL431 можно использовать в качестве типичного шунтирующего регулятора.
На приведенном выше рисунке показано, как с помощью пары резисторов TL431 можно подключить как шунтирующий стабилизатор для генерации выходных сигналов от 2,5 до 36 В. R1 — переменный резистор, который используется для регулировки выходного напряжения.
Последовательный резистор на положительном входе питания можно рассчитать по закону Ома:
R = Vi / I = Vi / 0,1
Здесь Vi — вход питания, который должен быть ниже 35 В. 0,1 или 100 мА — это Максимальный шунтирующий ток, указанный в спецификации ИС, а R — резистор в Ом.
Расчет резисторов шунтирующего стабилизатора
Следующая формула подходит для получения значений различных компонентов, используемых для фиксации напряжения шунта.
Vo = (1 + R1 / R2) Vref
В случае, если 78XX необходимо использовать вместе с устройством, можно использовать следующую схему:
Заземление катода TL431 соединено с контактом заземления 78XX. Выход из 78XX IC связан с цепью делителя потенциала, который определяет выходное напряжение.
Детали можно идентифицировать по формуле, показанной на диаграмме.
Вышеуказанные конфигурации ограничены максимальным током на выходе 100 мА. Для увеличения тока можно использовать транзисторный буфер, как показано на следующей схеме.
На приведенной выше схеме расположение большинства деталей аналогично конструкции первого шунтирующего регулятора, за исключением того, что здесь катод снабжен положительным резистором, а точка также становится базовым триггером подключенного буферного транзистора.
Выходной ток будет зависеть от величины тока, который транзистор может потреблять.
На приведенной выше диаграмме мы видим два резистора, значения которых не указаны, один последовательно с входной линией питания, другой — на базе транзистора PNP.
Резистор на входе ограничивает максимально допустимый ток, который может быть поглощен или шунтирован транзистором PNP. Это можно рассчитать так же, как обсуждалось ранее для первой схемы регулятора TL431.Этот резистор защищает транзистор от сгорания из-за короткого замыкания на выходе.
Резистор на базе транзистора не критичен и может произвольно выбирать любое значение от 1 кОм до 4 кОм.
Области применения ИС TL431
Хотя вышеуказанные конфигурации могут использоваться в любом месте, где может потребоваться точная установка напряжения и эталоны, в настоящее время они широко используются в схемах SMPS для генерации точного опорного напряжения для подключенного оптопары, которая в Turn побуждает входной МОП-транзистор SMPS отрегулировать выходное напряжение точно до желаемых уровней.
Для получения дополнительной информации перейдите по ссылке https://www.fairchildsemi.com/ds/TL/TL431A.pdf
Схемы TL431 — Руководство для начинающих
Нужны ли вам цепи питания для вашей конфигурации с разомкнутым контуром или для проекта линейного регулятора? Или вы ищете схему, которая служит компаратором для всех видов напряжения? Тогда схемы TL431 — идеальный выбор. Кроме того, они идеально подходят для работы с обычным эталонным напряжением с запрещенной зоной или программируемым шунтирующим эталонным напряжением.
Цепь TL431 имеет решающее значение для микросхемы управления напряжением и питанием, хотя ее настройка немного сложна.Кроме того, он поставляется с опорным напряжением для запрещенной зоны с температурной компенсацией.
Другими словами, схема TL431 довольно сложна. Кроме того, это может запутать вас, особенно если вы новичок.
К счастью, мы создали эту подробную статью, чтобы дать вам подробную информацию о схемах TL431.
Вы готовы? Тогда приступим!
1. Что такое схемы TL431?Цепь TL431, которая входит в контур импульсного источника питания, представляет собой трехконтактную интегральную схему.И вы можете использовать его как регулируемый прецизионный шунтирующий стабилизатор напряжения. Таким образом, вы можете присоединить к реальной цепи обратной связи источника питания TL431 внешний делитель напряжения. Кроме того, вы можете регулировать номинальное напряжение от 2,5 до 36 с максимальным током резервного источника питания 100 мА и переходным конденсатором.
2. Каковы характеристики цепей TL431?Прежде чем мы погрузимся в принцип работы этой схемы, рассмотрим особенности схемы TL431:
Имеет хорошие допуски по опорному напряжению при температуре 25 ° C для:
- Стандартный допуск по маркам и выходной конденсатор (2%)
- Допуск по классу А и традиционный конденсатор (2%)
- Допуск класса B (2%)
- TL431 также имеет регулируемое выходное напряжение от Vref до 36 В
- Выдерживает воздействие температуры от −40 ° C до 125 ° C
- Имеет типичный температурный дрейф (TL43xB):
- 14 мВ (I Temp, Q Temp)
- Шесть мВ (C Temp)
- Создает низкий выходной шум
- Имеет типичное выходное сопротивление 0.2-Ом
- Имеет ток потребления от 1 мА до 100 мА
- Тип конденсатора в TL431 имеет переменную емкость с напряжением
Как мы упоминали ранее, TL431 по сути является контроллером напряжения с 8-выводным корпусом IC. Но это только на фундаментальном уровне. Углубляясь, мы обнаруживаем, что TL431 является альтернативой регулируемому стабилизатору напряжения на стабилитроне. Он также поддерживает корпус SOT23-3 для поверхностного монтажа и корпус, подобный транзистору.
Plus, вы можете установить выходное напряжение с помощью:
- Разнообразие упаковок
- Большая упаковка
- Внешний прецизионный резистор делителя
Но это еще не все!
Первый конденсатор схемы также работает с диодом с обратным смещением и диодом для сравнения.
Как работают схемы TL431?Итак, как это работает?
Схема определяет значения сопротивления резисторов R1 и R2.Кроме того, он создает обратную связь и плохие допуски резисторов, которые зависят от парциального давления Vo.
Значит, когда Vo увеличивается, увеличивается и обратная связь, и шунт TL431. По сути, увеличение шунта снижает давление и подробную схему Vo.
Кроме того, вам нужно что-то сделать, когда напряжение на клеммах REF и предыдущая схема равны опорному напряжению. Здесь идеально поддерживать стабильность отрицательной обратной связи и внутренней схемы схемы.На этом этапе у вас будет Vo = (1 + R1 / R2) Vref.
Также вы можете получить любое выходное напряжение и максимальный ток от 2,5 до 36 В. И это происходит, когда вы выбираете разные значения для резисторов R1 и R2.
Обратите внимание, что перед тем, как TL431 сможет работать, необходимо выполнить некоторые необходимые условия. Один из них включает выбор подходящего резистора, медного анода и основного уровня внутреннего анода. Следовательно, ток, проходящий через анодные штыри и катод TL431, должен быть больше 1 мА.
Подводя итог, можно сказать, что выходное напряжение схемы и выходная дискретизация увеличиваются при увеличении входного напряжения. Короче говоря, это принцип работы и уровень снятия чипов TL431.
Кроме того, вы можете настроить внутреннюю цепь для увеличения тока, протекающего через нее. Кроме того, схема ограничения тока также увеличивает падение напряжения на резисторе ограничения тока.
Итак, для достижения стабилизации напряжения;
Выходное напряжение = входное напряжение — токоограничивающее сопротивление.
4. 9 приложений, использующих схемы TL431Вот девять приложений, использующих схему TL431.
1. Цепь регулируемого регулятора с использованием TL431Применение регулируемой схемы регулятора и частоты переключения довольно просто, когда вы используете интегральную схему TL431.
Схема регулируемого регулятора
Источник: Wikimedia Commons
Итак, схема может регулировать плохое усиление и напряжение в диапазоне 2.Номинальное напряжение 5–36 В. Плюс это зависит от следующего:
- Входное напряжение питания
- Макет платы
- Изменение значений компонентов R2 и R1
Кроме того, схема регулируемого регулятора использует следующую формулу и блок-схему для расчета;
V0 = Vref (1 + R1 / R2), Vref = 2,5 В.
Однако ток не превышает 100 мА. Следовательно, вы можете увеличить ток с помощью транзистора, бустерного транзистора или пары транзисторов, если захотите.
Можете ли вы связать напряжение этой цепи с (Vi — Vo)? Затем потребляемая мощность R увеличивается, когда разница напряжений огромна. Затем он становится программируемым шунтирующим регулятором с полупроводниковой технологией со стабилизированной температурой запрещенной зоны.
2. Прецизионный источник опорного напряжения TL431В прецизионном источнике опорного напряжения используется необычный вариант TL431 в цепи управления изолированных источников питания.Следовательно, вы можете использовать TL431 для обеспечения точного опорного напряжения и настройки его в качестве контроллера аналоговых цепей.
Почему? Потому что он оснащен встроенным усилителем ошибки.
Принципиальная схема прецизионного источника опорного напряжения
Источник : Wikimedia Commons
Кроме того, схемы прецизионных источников опорного напряжения имеют большой выходной транзистор, стабильное опорное напряжение и хорошую температурную стабильность.Однако убедитесь, что вы следите за значением CL при подключении емкостных нагрузок. Таким образом можно предотвратить самовозбуждение и получить стабильное опорное напряжение (Vref).
3. Схема детектора напряжения с использованием TL431Схема детектора напряжения — это еще одна простая схема уровня давления, которую можно построить с помощью интегральной схемы TL431. Итак, вы можете использовать блок питания 5 В в цифровой схеме, биполярные транзисторы и настоящий транзистор.Кроме того, вход общего сигнала питания станет высококлассной логикой — высвобождая выход 5 В.
Итак, когда логический уровень низкий, выходной уровень снижается до 1,8 В. Таким образом, легко собрать эту схему с регулируемым шунтирующим регулятором для достижения петли обратной связи и желаемых результатов.
4. Схема защиты TL431 от перенапряженияСхема защиты от перенапряжения
Источник : Wikimedia Commons
Как следует из названия, схема обеспечивает защиту от высоких напряжений и обеспечивает температурную компенсацию аналоговых микросхем.Оборудование с этой входной схемой вывода автоматически отключается, когда его мощность превышает фиксированное значение напряжения. Сбалансированные опорные напряжения компаратора IC служат в качестве низкотемпературного регулируемого стабилитрона. Кроме того, вы можете запрограммировать его от Vref до 36 В с помощью двух внешних резисторов.
Эта однослойная схема имеет значительный диапазон тока от 1,0 мА до 100 мА для работы и типичное динамическое сопротивление 0,22 Вт. Таким образом, когда Vi проходит установленный предел напряжения обратной связи, он запускает TL431.При этом тиристор включается и генерирует значительный пульсирующий ток. Этот ток большего разнообразия перегорает предохранитель для защиты задней цепи. Следовательно, точка защиты V равна (1 + R1 / R2) Vref.
5. Цепь источника постоянного тока TL431Вы можете использовать шунтирующий регулятор TL431 в регуляторе постоянного тока серии pass. Наиболее значимым фактором в этом выходе является RCL, а не R1. Хотя у R1 есть своя формула, это не так важно.
Формула Vref = 2,5 В.
Значение постоянного минимального напряжения зависит от внешнего сопротивления и положительных опорных значений напряжения.
Принципиальная схема источника постоянного тока
Источник: Wikimedia Commons
Поэтому важно учитывать запас при выборе силового транзистора для этой схемы. Более того, вы можете использовать этот источник тока в качестве ограничителя тока, если не подключаете его к стабилизированной цепи.
6. TL431 КомпараторКомпаратор TL431 проводит и включает оптопару. И это происходит, когда напряжение на нем превышает предел.
Принципиальная схема компаратора
Источник: Wikimedia Commons
Но помните, что TL431 имеет три контакта. VT измеряет напряжение на нем, которое пропорционально выходному напряжению.Таким образом, он грамотно использует критическое напряжение Vref = 2,5 В. Кроме того, формы выходных и входных сигналов хорошо отслеживаются из-за большого расстояния до TL431.
7. Монитор напряжения TL431Монитор напряжения TL431 — еще одно приложение с единственной целью. Здесь схема загорается светодиодом, когда достигает целевого номинального напряжения. Следовательно, он идеально подходит для зарядных устройств аккумуляторов, таких как адаптер питания ноутбука, показывая, когда аккумуляторы полностью заряжены.
Зарядные устройства для телефонов также являются хорошими примерами устройств питания с этой схемой.
Итак, монитор напряжения использует простой верхний предел = Vref (1 + R1 / R2). Здесь верхний предел — это целевое напряжение, при достижении которого загорается светодиод с напряжением эмиттера.
Принципиальная схема монитора напряжения
Источник : Wikimedia Commons
Опорное напряжение на TL431 составляет 2,5 В.Кроме того, R1 и R2 образуют делитель напряжения, который позволяет вам установить желаемый диапазон верхнего предела.
8. Функции управляемого шунта TL431В этом приложении что-то происходит, когда напряжение на клемме REF немного изменяется. Он изменяет шунт от катодного напряжения. Также процесс меняет анод в пределах 1 — 100 мА. Таким образом, это влияет как на катодный, так и на анодный ток.
Благодаря управляемым характеристикам шунта вы можете использовать небольшие изменения напряжения для управления световым индикатором, реле и т. Д.Кроме того, вы даже можете напрямую управлять текущими звуковыми нагрузками.
Схема элементов управляемого шунта
Источник: Wikimedia Commons
9. Импульсный источник питания TL431Импульсные блоки питания предыдущего поколения отличались одной функцией.
TL431 отправил выходной ток обратно на входную клемму переменного тока после усиления ошибки.Однако новейшие технологии позволяют большинству отраслей электроэнергетики принять новую схему.
Схема импульсного блока питания
Источник: Wikimedia Commons
Здесь TL431 отправляет выходной сигнал в виде обратной связи по напряжению, чтобы он мог усилить ошибку. Затем тонущий конец TL431 приводит в действие светоизлучающую секцию оптопары. Благодаря этому вы можете получить обратную связь по напряжению от оптопары.Также вы можете использовать его для настройки времени текущего режима ШИМ-контроллера. Таким образом, делая выходное напряжение постоянного тока стабильным.
Заключительные словаПодводя итог, можно сказать, что схемы TL431 имеют различное применение — не ограничиваясь девятью перечисленными выше приложениями. Например, схема помогает вам контролировать входное напряжение ваших устройств, как программируемый стабилитрон. Итак, если вам нужен компаратор напряжения, выберите TL431.
Перед тем, как завернуть эту статью, вы должны знать следующее:
Точность ваших резисторов определяет точность вашего монитора напряжения.Следовательно, вы можете настроить это с помощью последовательного резистора R2. И вы можете найти его последовательно с переменным резистором малого номинала и другими электронными компонентами.
Вам все еще трудно понять, что такое схемы TL431? Тогда свяжитесь с нами. Мы будем рады помочь!
Конфигурация контактов, характеристики и применение
В 1977 году компания Texas Instruments представила стабилизирующий диод TL431, работающий аналогично стабилитрону.Это трехконтактный биполярный транзистор, который эквивалентен идеальному транзистору n-типа без потерь на гистерезис. Это регулируемый шунтирующий регулятор напряжения. Эквивалентными сериями регуляторов TL431 являются регуляторы ATL431, TL432, LM431, KS431, TS431 и 142Eh29.
Функции этих схем регуляторов аналогичны, за исключением того, что они отличаются размером, точностью, компоновкой, рабочими токами и скоростными характеристиками. Это 8-контактный стабилизатор, выпускаемый в корпусе TO-92. В этой статье подробно рассказывается о работе регулятора TL431 с простыми схемами.
Что такое регулятор TL431?
Регулятор TL431 представляет собой регулируемый прецизионный шунтирующий стабилизатор напряжения IC. Изменяя номиналы подключенных резисторов, можно программировать выходное напряжение. Поэтому он называется программируемым шунтирующим регулятором. Эта микросхема работает почти так же, как стабилитрон, за исключением того, что номинальное напряжение программируется.
Его также называют регулируемым стабилитроном. Он в основном используется в электрических цепях для обеспечения положительного или отрицательного опорного напряжения.Его стоимость невысока и обычно используется в качестве источника опорного напряжения в изолированных цепях питания. Микросхема регулятора TL431 показана на рисунке ниже. ’
Конфигурация выводов регулятора TL431Это 3-контактная интегральная схема с шунтирующим диодом стабилизатора напряжения, выпускаемая в корпусе типа To-92. Резисторный делитель, подключенный к опорному выводу ИС, регулируется для изменения номинального выходного напряжения с 2,5 В до 36 В. Рабочий ток составляет от 1 мА до 100 мА с типичным значением импеданса 0.22 Ом.
Обеспечивает стабильную работу в широком диапазоне рабочих температур. В различных приложениях он используется, когда необходима замена стабилитронов, поскольку его работа почти аналогична работе стабилитрона, за исключением того, что выходное напряжение является программируемым и регулируемым. Он широко используется в схемах контроля повышенного и пониженного напряжения, схемах контроля оконного напряжения и источниках питания в качестве источника опорного напряжения.
Конфигурация выводов регулятора TL431 / схема выводов
Регулятор TL431 представляет собой 3-контактный шунтирующий регулятор с определенной термической стабильностью в применимых температурных диапазонах автомобильного, военного и коммерческого назначения.Расположение выводов регулятора TL431 / схема выводов показана на рисунке ниже. Схематическое обозначение диода-регулятора TL431 показано на рисунке ниже.
Схематический символ TL431- Pin1 (Ссылка): Он используется для установки номинального напряжения стабилитрона
- Pin2 (анод): Это анодный вывод эквивалентного стабилитрона
- Pin3 (Cathode): Это катодный вывод эквивалентного стабилитрона.
TL431 Технические характеристики
Технические характеристики TL431 или технические характеристики следующие:
- Это стабилитрон, который программируется
- Выходное напряжение колеблется от 2 до 2.От 5 до 36 вольт
- Допуск выходного напряжения будет + -4%
- Диапазон выходного тока или потребляемого тока от 1 мА до 100 мА
- Выходное сопротивление будет 0,22 Ом
- Трехконтактный TL431 выпускается в корпусе To-92. 8-контактный TL431 доступен в корпусах SOIC и PDIP.
- Диапазон рабочих температур от -40 ° C до 125 ° C
- Выходной шум низкий.
- Типичный температурный дрейф: 6 мВ (C temp) и 14 мВ (I Temp, Q temp)
- При 25 ° C допуск опорного напряжения будет 1% (класс A), 0.5% (марка B), 2% (стандартная марка)
- Его стоимость очень низкая.
Принципиальная схема / Как использовать
Принципиальная схема интегральной схемы регулятора TL431 представлена на рисунке ниже.
Принципиальная схема регулятора TL431Из приведенной выше принципиальной схемы мы видим, что NPN-транзистор смещен от операционного усилителя с точным номинальным опорным напряжением 2,5 В на неинвертирующей клемме. Коллекторный вывод транзистора подключен к катодному выводу микросхемы TL431, а вывод эмиттера транзистора подключен к анодному выводу микросхемы TL431.
Теперь рассмотрим, что микросхема регулятора TL431 работает как компаратор. На одной стороне компаратора будет точное напряжение 2,5 В, а на другой стороне устанавливается опорный вывод. Эта функция в основном применима в импульсных источниках питания (SMPS), поскольку ИС регулятора TL431 может сравнивать полученное выходное напряжение с желаемым выходным напряжением и управлять частотой переключения, обеспечивая путь обратной связи. Для изоляции высоковольтной части с этой схемой обычно используется оптрон.
Теперь давайте изучим несколько основных и простых схем с использованием основного электронного компонента регулятора TL431.
Прецизионная цепь опорного напряжения
Принципиальная схема цепи прецизионного опорного напряжения с использованием регулятора TL431 приведена ниже. Он обеспечивает лучшую температурную стабильность и большой выходной ток. Чтобы избежать самовозбуждения, следует внимательно учитывать значение CL при подключении к емкостным нагрузкам.
Прецизионная схема опорного напряженияРегулируемый регулируемый источник питания
Регулируемый диапазон выходного напряжения Vo находится в пределах 2.6 Вольт и 36 Вольт.
Выражение для выходного напряжения Vo записывается как,
Vo = Vref (1 + R1 / R2)
, поскольку Vref установлен на 2,5 В
Напряжение, которое может выдержать схема, связано с (Vo-Vi). Если есть большая разница напряжений, то мощность, потребляемая резистором, увеличивается. Принципиальная схема регулируемого стабилизированного источника питания с использованием этого стабилизирующего диода показана ниже.
Регулируемый источник питанияКомпаратор напряжения
В этом приложении напряжение Vref = 2.5 Вольт используется эффективно. Небольшое внутреннее сопротивление, присутствующее в диоде стабилизатора TL431, помогает очень легко и эффективно отслеживать формы входных и выходных сигналов. Принципиальная схема компаратора напряжения с диодом-стабилизатором TL431 представлена на рисунке ниже.
Принципиальная схема компаратора напряженияМонитор напряжения
Передаточные характеристики регулятора практически используются при разработке монитора напряжения. При верхнем и нижнем пределе напряжения мощность светодиода, верхнее и нижнее напряжения будут (1 + R1 / R2) и (1 + R3 / R4) соответственно.На приведенной ниже принципиальной схеме показан монитор напряжения с использованием диода стабилизатора TL431.
Схема контроля напряженияСхема защиты от перенапряжения
Когда входное напряжение Vi превышает определенное значение, регулятор начинает срабатывать. В этот момент тиристор включается, чтобы генерировать большой мгновенный ток. Это помогает сжечь предохранитель и защитить заднюю цепь. В точке защиты напряжение будет (1 + R1 / R2) Vref. Принципиальная схема, иллюстрирующая защиту от перенапряжения с использованием TL431, показана ниже.
Схема защиты от перенапряженияГде использовать / области применения регулятора TL431
Применение регулятора TL431 приведено ниже.
- Используется в импульсных источниках питания (SMPS)
- Применяется в цепях изолированного питания.
- Используется в компараторах напряжения со встроенным эталоном
- Используется в цепях регулирования тока.
- Используется в цепях прецизионных источников опорного напряжения
- Используется в регулируемых цепях питания, регулируется
- Используется в цепях защиты от перенапряжения
- Используется в мониторах напряжения
- Используется в цепях источника постоянного тока
- Используется в регулируемых характеристиках шунта
- Используется, когда требуется замена стабилитронов.
- Используется в солнечных батареях
- Используется в цепях монитора и зарядного устройства
Альтернативные регуляторы TL431 — стабилитрон и варианты регуляторов TLV431, LM431 и TS431L1.
Таким образом, это все об обзоре таблицы данных регулятора TL431, которая включает в себя — определение, спецификации, конфигурацию контактов / схему контактов, принципиальную схему / как использовать и где использовать / приложения регулятора TL431. Вот вам вопрос: «Каковы преимущества регулятора TL431? «
Код 404 страница не найдена.К сожалению, страница отсутствует или перемещена.Ниже приведены основные подразделы этого сайта.
»Главная
» Эл. адрес
»Пожертвовать
» Преступление
»Электроника для хобби »Архив 1
»Архив 2
»Архив 3
»Архив 4
»Архив 5 Веб-сайт Авторские права Льюис Лофлин, Все права защищены. |
TL431 Распиновка, характеристики и техническое описание регулятора
TL431 — это диод-стабилизатор , выходное напряжение которого можно программировать, изменяя номиналы подключенных к нему резисторов. Он действует почти как стабилитрон, за исключением того, что номинальное напряжение этой ИС является программируемым. Обычно он используется для обеспечения отрицательного или положительного опорного напряжения.
Конфигурация контактовНомер контакта | Имя контакта | Описание |
1 | Номер ссылки | Этот вывод устанавливает номинальное напряжение стабилитрона. |
2 | Анод | Анод эквивалентного стабилитрона |
3 | Катод | Катод эквивалентного стабилитрона |
- Программируемый стабилитрон
- Выходное напряжение: 2.От 5 В до 36 В
- Выходной ток: от 1 мА до 100 мА (ток стока)
- Допуск выходного напряжения: ± 4%
- Выходное сопротивление: 0,22 Ом
- Доступен в корпусах To-92 (3 контакта) и PDIP, SOIC (8 контактов)
Примечание: Полные технические подробности можно найти в таблице данных TL431 , приведенной в конце этой страницы.
TL431 АльтернативаСтабилитроны
ВариантыTLV431, TS431LI, LM431
TL431 ОбзорTL431 — это программируемый шунтирующий регулятор , который может обеспечивать как положительное, так и отрицательное опорное напряжение.Это стабилитрон, номинальное напряжение которого можно регулировать в зависимости от номинала резисторов, подключенных к опорному выводу. Он обычно используется в качестве недорогого источника опорного напряжения в изолированных цепях питания.
Из показанной выше внутренней схемы микросхемы мы можем заметить, что она состоит из NPN-транзистора с операционным усилителем, который имеет точное напряжение 2,5 В на неинвертирующем выводе. Коллектор и эмиттер транзистора образуют катод и анодный вывод IC соответственно.Теперь вы можете думать об ИС как о компараторе, у которого одна сторона компаратора имеет точное 2,5 В, а другая сторона может быть настроена с помощью эталонного вывода.
Это свойство очень удобно для импульсных источников питания, где TL431 может использоваться для сравнения выходного напряжения с желаемым напряжением и обеспечения обратной связи для управления частотой переключения. Обычно вместе с этой установкой используется оптопара для изоляции стороны высокого напряжения. Помимо этого, микросхема находит применение во многих схемах, где можно использовать стабилитрон, некоторые из них перечислены ниже.
Приложения- Импульсный режим Источники питания
- Изолированные цепи питания
- Компараторы напряжения
- Цепи регулирования тока
Микросхема также доступна в 8-выводном корпусе. Размеры упаковки ТО-92 указаны ниже
TL431 — Ссылки с программируемой точностью
% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / Заголовок (TL431 — Ссылки с программируемой точностью) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > транслировать BroadVision, Inc.2021-08-04T15: 42: 16 + 02: 002021-08-04T15: 41: 29 + 02: 002021-08-04T15: 42: 16 + 02: 00application / pdf
Введение в TL431 — Инженерные проекты
Всем привет! Я надеюсь, что вы все будете в полном порядке и весело проведете время.Сегодня я расскажу вам о Introduction to TL431. TL 431 — это программируемые диоды шунтирующего стабилизатора с тремя выводами. Это диод с низким температурным коэффициентом, который может быть запрограммирован от опорного напряжения (Vref) до 36 В при подключении к 2 внешним резисторам.
TL 431 имеет сопротивление 0,22 Ом и диапазон тока от 1 мА до 100 мА. В нескольких различных приложениях стабилитроны могут быть заменены диодом TL 431 из-за его эффективности. Эти приложения включают источники питания, схемы операционного усилителя (ОУ) и цифровые вольтметры.TL-431 может использоваться как положительный или отрицательный источник опорного напряжения, поскольку он работает как шунтирующий стабилизатор. TL-431 имеет низкое выходное шумовое напряжение. Он не содержит свинца (Pb), галогенов и соответствует требованиям RoHS. Дополнительные сведения о TL 431, например, его особенности, характеристики и конфигурация контактов будут объяснены позже в этом руководстве.
Введение в TL431
TL431 — это шунтирующий диод стабилизатора, поэтому его можно использовать как положительный или отрицательный источник опорного напряжения. Он имеет низкое выходное шумовое напряжение.TL-431 можно заменить стабилитроном во многих приложениях, например. цифровые вольтметры, схемы операционного усилителя, источники питания и т. д. TL-431 показан на рисунке ниже.
1. Распиновка TL431
- TL-431 имеет всего три контакта: опорный, анодный и катодный.
- Все три контакта вместе с их символом приведены в таблице, приведенной ниже.
2. Конфигурация контактов TL431
- Правильно обозначенная схема контактов любого устройства улучшает положение пользователя.
- Я сделал полностью размеченную схему диода TL 431 вместе с его анимацией.
- Полная распиновка вместе с анимацией, символьным представлением и реальным изображением TL-431 показана на рисунке ниже.
3. Пакеты TL431
- TL-431 имеет два разных типа пакетов SOT-23 (3) и SOT-23 (5).
- Обе упаковки вместе с их размерами и номерами деталей приведены в таблице, приведенной ниже.
4. Схема TL431
- Принципиальная схема устройства помогает нам понять его внутренние функции.
- Я предоставил помеченную принципиальную схему TL 431, как показано на рисунке ниже.
5. Рейтинги TL431
- Номинальные значения тока, напряжения и мощности любого устройства показывают его потребляемую мощность, то есть количество тока и напряжения, достаточное для его работы.
- Я указал значения тока, мощности и напряжения TL-431 в приведенной ниже таблице.
6. Приложения TL431
Существует множество приложений, связанных с TL-431, некоторые из реальных приложений TL 431 приведены ниже.
- Контроль напряжения.
- Компаратор со встроенным эталоном.
- Регулируемое опорное напряжение.
- Замена стабилитрона.
- Регулируемая привязка по току.
Итак, это все из учебника Введение в TL431. Надеюсь, вам понравился этот замечательный урок.Если у вас есть какие-либо проблемы, вы можете спросить меня в комментариях в любое время, даже не колеблясь. Я постараюсь как можно лучше разобраться с вашими проблемами, если это возможно. Наша команда также доступна 24/7, чтобы помочь вам. Я изучу дополнительные микросхемы и диоды в своем следующем руководстве и обязательно поделюсь ими с вами. Итак, до тех пор, Береги себя 🙂
Автор: Сайед Зайн Насир
https://www.theengineeringprojects.com/Я Сайед Зайн Насир, основатель Инженерные проекты (TEP). Я программист с 2009 года, до этого я просто занимаюсь поиском, делаю небольшие проекты, а теперь я делюсь своими знаниями через эту платформу. Я также работаю фрилансером и выполнял множество проектов, связанных с программированием и электрическими схемами.