Презентация преимущества и недостатки люминесцентных ламп – «Энергосберегающие люминесцентные лампы и их использование в быту. Проект учащихся 8 класса ГУО «Межисетская СОШ» Долбика Вячеслава и Юркевича Александра.». Скачать бесплатно и без регистрации.

Презентация на тему: Люминесцентные лампы

Высокая светоотдача и большой срок службы достигаются благодаря генерированию света за счет газового разряда.

Люминесцентные лампы представляют собой газоразрядные ртутные лампы низкого давления.

Люминесцентные лампы

Принцип действия этих ламп заключается в следующем: под воздействием электрического поля в парах ртути, закачанной в стеклянную трубку, образуется невидимое ультрафиолетовое излучение.

Нанесенный на внутреннюю поверхность стекла люминофор преобразует ультрафиолетовое излучение в видимый свет. Подбирая соответствующие виды люминофора, можно изменять цветовые характеристики ламп.

Люминесцентные
лампы

Как все газоразрядные лампы, люминесцентные лампы не могут работать без ПРА: после зажигания с помощью стартера напряжение на лампе ниже напряжения сети. Разность этих напряжений учитывается дросселем, который ограничивает ток до такого значения, которое необходимо лампе для оптимальной работы.

Принцип работы КЛЛ

Компактные люминесцентные лампы вырабатывают свет по такому же принципу, как и обычные люминесцентные лампы.

Изогнув колбу обычной люминесцентной лампы и разделив ее на несколько меньших по размеру отдельных колб, разработчикам удалось создать компактную люминесцентную лампу (КЛЛ), которая по своим размерам идентична стандартной лампе накаливания.

Преимущества компактных люминесцентных ламп

1.Потребляют в 5 раз меньше электроэнергии, чем ЛН, при той же светоотдаче.

2.Имеют длительный срок службы – 6-8 тыс. часов и более (до 15 тыс. часов)

3.Меньше нагружают электрические сети

4.Пожаробезопасны

5.Экологичны

Термограммы КЛЛ и ЛН

Термографическое сравнение четко показывает: лампа накаливания 95 % электроэнергии преобразует в тепло и лишь 5 % в свет. КЛЛ для создания такой же яркости свечения расходует на 80 % меньше электроэнергии.

studfile.net

Люминисцентные лампы

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

В ноябре 2009 года президент подписал федеральный закон (N 261-ФЗ) об энергосбережении и о повышении энергетической эффективности. Этот закон, в частности, вводит ограничения на оборот ламп накаливания, устанавливает требования по маркировке товаров с учетом их энергоэффективности. Согласно документу, предполагается с 2011 года прекратить производство и продажу в РФ ламп накаливания мощностью 100 ватт и более, с 2013 года - мощностью 75 ватт и более, а с 2014 - мощностью 25 ватт. Одновременно правительству предлагается принять правила утилизации использованных энергосберегающих ламп.

Таким образом, хотим мы этого или нет, но нам придется в скором времени перейти на энергосберегающие лампы. Новое всегда пугает и вызывает недоверие. Но так ли это страшно? Попробуем разобраться!

(Слайд 1) Люминесцентные лампы используют в своей работе принцип электрического разряда в заполненной газом среде, как и другие газоразрядные лампы.

Еще в 1856 году Генрих Гайсслер впервые провел электрический ток через газ, пробив его с помощью включенного в цепь соленоида. Процесс сопровождался синим свечением стеклянной трубки, заполненной газом. Уже тогда была реализована стандартная схема включения газоразрядной лампы – для получения броска напряжения, пробивающего газ и возбуждающего разряд, был использован прообраз современного электромагнитного балласта – индуктивное сопротивление соленоида.

Люминесцентные лампы отличаются от обычных газоразрядных тем, что источником света в них является не сам разряд, а вторичное излучение, создаваемое специальным покрытием колбы – люминофором. Это вещество испускает видимый свет под воздействием ультрафиолета – невидимого глазу излучения. Изменяя состав люминофора можно менять оттенок получаемого света. Явление люминесценции известно человеку достаточно давно, еще с восемнадцатого века. Однако практический интерес к нему начал возникать лишь с конца девятнадцатого века.

(Слайд 3) Не обошлось здесь без неутомимого и многогранного изобретателя Томаса Эдисона, который после выдачи «путевки в жизнь» лампе накаливания увлекся другими принципами испускания света и в 1893 году представил на Всемирной выставке в Чикаго электрическую люминесцентную лампу.

В 1894 году М.Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех.

(Слайд 4) В 1901 Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет сине-зелёного цвета, и таким образом была непригодна в практических целях.

В отличие от ламп накаливания, люминесцентные лампы тогда широкого распространения не получили – они были сложны в изготовлении, дороги, громоздки, давали неровный и не слишком приятно окрашенный свет. Первыми пробили себе дорогу газоразрядные лампы, в которых для получения видимого света в заполнявшие колбу газы (азот и углекислый газ) добавляли пары металлов (ртути и натрия).

Практическое применение люминесцентные лампы получили только с 1926 года, когда развитие химических технологий позволило создать флуоресцентный порошок, испускающий при поглощении энергии ровный свет со спектром, близким к дневному свету.

(Слайд 5) Поэтому изобретателем лампы дневного света считается Эдмунд Джермер, разработавший первую такую лампу для серийного производства.

В газоразрядной лампе он увеличил давление газов, а стенки колбы покрыл изнутри порошком. Патент Джермера приобрела знаменитая General Electric, и уже к 1938 под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования. Купить люминесцентные лампы посчитали необходимым хозяева коммерческих фирм и промышленных предприятий, поскольку на рабочих местах клерков или операторов станков освещение получалось более естественным и меньше утомляющим глаза.

Так люминесцентные лампы начали свое победное шествие по общественным помещениям. Оказалось, что люминесцентные лампы ощутимо экономичнее ламп накаливания – на создание одинаковой освещенности они требуют в несколько раз меньшее количество электроэнергии. Да и больший срок службы многократно окупает их относительную дороговизну.

Особенности подключения.

С точки зрения электротехники люминесцентная лампа – устройство с отрицательным сопротивлением (чем больший ток через неё проходит – тем больше падает её сопротивление). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это лампы подключают через специальное устройство (балласт). 
(Слайд 6) В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта может применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов – электромагнитный и электронный.

Электромагнитный балласт.

(Слайд 7) Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки – относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул. На предприятии как-то особо не обращаешь внимания на тихое гудение, которым сопровождают свою работу люминесцентные лампы. Шума и без этого хватает. А вот дома, в тишине и покое, неприятный гул сердечника электромагнитного балласта может и из себя вывести. При этом «с возрастом» люминесцентные лампы начинают гудеть сильнее, да и свечение их может перестать быть равномерным – выгорая, люминофор теряет свои свойства послесвечения, и лампа начинает «пульсировать». Частота переменного тока раздражает человеческий глаз.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярной пилы, мешалки кухонного миксера, блока ножей вибрационной электробритвы и т.д.
Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Так что купить люминесцентные лампы для дома вплоть до середины 80-х годов двадцатого века хотел далеко не каждый. Что же изменилось? Прогресс не стоит на месте. Развитие электроники позволило создать электронные балласты.

Электронный балласт.

(Слайд 8) Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта, возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (мягкий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Миниатюризация электронных компонентов привела к тому, что электронный балласт стал помещаться в объем спичечной коробки. (Слайд 9) Кроме того, в результате создания высокостабильных узкополосных люминофоров стала возможна разработка компактных люминесцентных ламп (КЛЛ) для использования в домашних условиях (для освещения жилья).

Удалось значительно уменьшить диаметр разрядной трубки. Что касается сокращения габаритов ламп в длину, то эта задача была решена путем разделения трубок на несколько более коротких участков, расположенных параллельно и соединенных между собой либо изогнутыми участками трубки, либо вваренными стеклянными патрубками.

(Слайд 10) Энергосберегающие лампы (ЭСЛ) представляют собой разновидность газоразрядных ламп низкого давления, а именно компактных люминесцентных ламп. Но энергосберегающие лампы имеют существенное отличие от традиционных КЛЛ, это встроенный балласт.
Энергосберегающие лампы состоят из нескольких основных частей.

Цоколь энергосберегающей лампы может быть выполнен из металлизированного пластика, но чаще всего его изготавливают из меди и ее сплавов.

Колба. (Слайд 11) Колба энергосберегающей лампы представляет собой запаянную с 2 сторон трубку, заполненную парами ртути и аргона. Изнутри поверхность трубки покрыта слоем люминофора. В двух противоположных концах трубки расположены электроды.
Электроды энергосберегающей лампы представляют собой тройную спираль, покрытую оксидным слоем. Именно этот слой придает электродам их свойства создавать поток электронов (термоэлектродная эмиссия).

Чаще всего в энергосберегающих лампах применяются трехполосные люминофоры – это создает оптимальное соотношение хорошей цветопередачи и хорошей световой отдачи.

Как же работает колба? При подачи напряжения на электроды, через них начинает течь ток прогрева. Этот ток разогревает электроды до начала термоэлектродной эмиссии. При достижении определенной температуры поверхности, электрод начинает испускать поток электронов. При этом электрод, который испускает электроны, называется катодом, а электрод, который принимает анодом. Электроны, сталкиваясь с атомами ртути, вызывают ультрафиолетовое излучение (УФ-излучение), которое, попадая на люминофор, преобразовывается в видимый свет. Процесс столкновения потока электронов с атомами ртути называется ударной ионизацией. Электроны, сталкиваясь с атомами ртути выбивают с их орбиты крайний электрон, превращая молекулу ртути в тяжелый ион. Если электроны движутся встречно электрическому полю, вектор которого направлен от анода к катоду, ионы двигаются по направлению вектора электрического поля. Т.о. как только электрод перешел в режим катода его начинают бомбардировать тяжелые ионы ртути, разрушая оксидный слой. Частицы оксидного слоя вступают в реакцию с газом, которым заполнена колба, сгорают и оседают на колбе вблизи электрода. Именно поэтому нельзя использовать постоянное напряжение для питания КЛЛ, т.к. один электрод будет всегда анодом, а другой катодом, а значит, последний будет разрушаться в два раза быстрее. Оксидный слой значительно снижает сопротивление электрода, а значит, при его разрушении сопротивление электрода растет. Визуально конечная стадия процесса разрушения электродов выглядит так. Энергосберегающая лампа запускается с сильно заметным мерцанием. Световой поток заметно увеличивается. В течение незначительного времени энергосберегающая лампа выходит из строя.
В принципе в процессе работы в колбе происходит достаточно интенсивное, хаотичное движение электронов и ионов. Поэтому слой люминофора тоже подвержен разрушению и с течением времени световой поток лампы снижается. Стоит отметить, что в колбе применяются пары ртути, а ртуть является очень токсичным веществом. Но с другой стороны, ртути в колбе содержится крайне мало (не более 3мг, что в сотни раз меньше чем в бытовом термометре).
Газ внутри колбы находится под очень низким давлением, и незначительное изменение температуры окружающей среды, приводит к изменению давления внутри колбы и, как следствие, к снижению светового потока. Для уменьшения степени влияния температуры окружающей среды, некоторые производители применяют вместо ртути амальгаму (соединение ртути с металлом), она делает световой поток более стабильным.

Балласт. (Слайд 12) Пускорегулирующий аппарат или балласт это светотехническое изделие, с помощью которого осуществляется питание газоразрядных ламп от электрической сети, обеспечивающее необходимые режимы зажигания, разогрева и работы газоразрядных ламп. Как уже говорилось выше, в современных энергосберегающих лампах используют электронный балласт.
Основные функциональные элементы балласта:
– предохранитель;
– выпрямитель;
– помехозащитный фильтр;
– ВЧ-генератор;
– пусковой контур;
– РТС;
– емкостной фильтр питающей сети.

Балласт представляет собой достаточно простое электронное устройство, построенное на активных элементах.
Основным элементом электронного балласта является ВЧ-генератор, а точнее блокинг-генератор с трансформаторной положительной обратной связью. Основным элементом генератора являются два транзистора выполняющие функцию ВЧ-ключей. Правильный выбор транзисторов определяет надежность и срок службы генератора. Основное назначение генератора – это преобразование постоянного напряжения в переменное напряжение 320В 50КГц (значения напряжения и частоты зависят от производителя, мощности лампы и конструкции балласта). Такое напряжение снижает износ электродов и устраняет пульсации светового потока (стробоскопический эффект).
Постоянное напряжение поступает на вход генератора с двухполупериодного выпрямителя, реализованного на 4 диодах. После выпрямителя форма постоянного напряжения далека от идеальной и имеет значительные пульсации. Для уменьшения этих пульсаций применяют емкостной фильтр в виде электролита. Так как генератор вырабатывает ВЧ-напряжение (50КГц), то необходимо исключить вероятность попадания ВЧ-помех в питающую сеть. Для этого применяется помехозащитный фильтр. Он состоит из катушки индуктивности и конденсатора.
Напряжение с ВЧ-генератора, через пусковой контур (ПК) поступает на выводы электродов.
ПК необходим для создания высокого напряжения запуска лампы. Но подавать напряжение на плохо разогретые электроды недопустимо, т.к. это ускоряет процесс разрушения электродов. Для обеспечения принудительного прогрева электродов служит позистор РТС (терморезистор с положительным температурным коэффициентом). Он обеспечивает задержку запуска лампы 2-3с.
Процесс запуска энергосберегающей лампы происходит так. В момент подачи напряжения на лампу, запускается ВЧ-генератор. Он начинает вырабатывать ВЧ-напряжение. С ВЧ-генератора напряжение поступает на ПК. Через электроды и РТС начинает течь ток прогрева. Пус

urok.1sept.ru

Люминесцентные лампы - технические характеристики

Практически каждый из нас в выборе освещения для каких-либо целей сталкивался с трудностью выбора того или иного  осветительного прибора.

Сейчас на рынке этой сферы представлено великое множество вариантов, каждый из которых отличается своими положительными качествами и, конечно, некоторыми недостатками.

Тем не менее, есть и те продукты производства, которые уже долгое время сохраняют признание потребительского сегмента.

К числу таких изделий можно отнести люминисцентные лампы, которые нашли широкое применение практически повсеместно. Их эксплуатационные характеристики отмечены на самом высоком уровне, а недостатки можно счесть не слишком значительными.

Словом, для монтажа системы освещения это довольно оптимальный вариант, который к тому же отличается своей экономичностью.

Что такое люминесцентные лампы и их характеристики

Люминесцентная лампа – это довольно распространенное явление в нашей жизни.

Наверняка каждый из нас посещал какие-либо общественные учреждения и замечал специфику освещения в этих зданиях. Однако о том, что именно представляет собой это изделие, знает мало кто.

Люмиисцентные лампы относятся к газозарядным устройствам, основывающим свою работу на воздействии с физической стороны электрического разряда в газах.

В таком устройстве содержится ртуть, обеспечивающая ультрафиолетовое излучение, которое в самой лампе превращается в свет.

Происходит этот процесс с помощью очень важного элемента – люминофора.

Люминофор может быть смесью каких либо химических элементов, например, галофосфата кальция с чем-либо. Подбирая люминофор какого-либо типа, можно добиться самых интересных эффектов, например, изменения цветового решения света лампы.

 

При выборе изделия стоит обратить внимание на один из самых важных показателей – общий индекс цветопередачи. Обозначается он сочетанием букв Ra, и чем большее значение указано в сопроводительной документации к лампе, тем лучше она будет производить свою работу.

 

 

Благодаря такой системе освещения люминисцентная лампа стала явным лидером перед теми же лампами накаливания.

А если учесть, что эксплуатационные характеристики ее обеспечивают куда более длительный срок пользования, то о правильности выбора, обращенного в пользу люминисцентной лампы, задумываться не стоит.

К содержанию ↑

Преимущества и недостатки люминесцентных ламп

Как и все вокруг нас, люминесцентные лампы обладают своими положительными и отрицательными сторонами. К счастью, вторых гораздо меньше.

 

Как было сказано ранее, люминесцентные лампы – явный лидер среди средств освещения. Превосходство перед лампами накаливания не трудно заметить даже самому не опытному в электрике человеку.

Достоинства

К числу достоинств этого элемента относятся следующие:

  • светоотдачу она совершает в куда большей степени, да и качество света несколько выше, чем у других осветительных элементов;
  • длительный срок эксплуатации, обеспечивающий отсутствие перебоев в работе с лампами;
  • КПД такого изделия значительно выше;
  • Рассеянный свет, оказывающий меньший вред на состоянии сетчатки глаза, а значит, при эксплуатации этой лампы вы сможете значительно уменьшить риск проблем со зрением;
  • широкий диапазон в плане цветовых решений света.

Недостатки

Конечно, негативные качества у люминесцентных ламп тоже имеют место быть. В этот перечень входят следующие пункты:

  • Содержание ртути в таких изделиях представляют некоторую химическую опасность и требуют специальной утилизации;
  • Ленточный спектр распределяется не равномерно, а это может вызвать некоторое неудобство в плане восприятия реального цвета предметов, которые освещаются люминесцентной лампой; однако, здесь следует допустить некоторую оговорку: существуют экземпляры, которые представляют практически полноценный сплошной спектр, но степень светоотдачи в этом случае падает;
  • Люминофор, содержащийся в этих лампах, со временем производит свою работу с меньшей эффективностью, это уменьшает коэффициент полезного действия лампы и снижает степень светоотдачи;
  • В установке люминесцентной лампы обязательно нужно купить дополнительный пускорегулирующий элемент, который либо обойдется потребителю в довольно крупную сумму, но будет отличаться оптимальными эксплуатационными качествами, либо по цене он будет несколько дешевле, зато обеспечит высокий уровень шума и ненадежность работы;
  • Низкий показатель мощности, следовательно, этот вариант не слишком подходит для электросети.Имеют место быть и менее значительные недостатки, однако, их влияние играет не слишком значимую роль в применении люминесцентных ламп.

Классификация и типология люминесцентных ламп

Естественно, что прогресс в производстве таких изделий, как люминесцентные лампы, не стоит на месте, и если ранее применялись в основном аналогичные экземпляры со схожими техническими характеристиками, то сегодня потребитель может подобрать себе тот вариант, который будет для него наиболее оптимальным и эффективным.

Существует множество признаков, по которым можно классифицировать эти лампы, но тем не менее, самым основным из, все же, будет признак показателей давления.

На данный момент на рынке представлены газозарядные ртутные экземпляры высокого и низкого давления.

Лампы высокого давления нашли свое применение в основном в освещении вне помещений. Поскольку такие изделия обладают высокой мощностью, то внутри здания их свет будет довольно неприятен для восприятия его глазом.

Также лампы высокого давления отлично подходят для сборки каких-либо осветительных установок.

Лампы низкого давления обладают сравнительно меньшей мощностью, а значит, подходят для применения внутри зданий.

Назначение помещения может быть абсолютно любым: люминесцентные лампы такого показателя подойдут и для цеховых и производственных зданий, и для жилых помещений.

Помимо разделения ламп по принципу давления существует еще и классификация по диаметру трубки или колбы лампы, а также по схеме зажигания.

Для примера можно взять продукты самых известных производителей, например, Osram и Philips. Если внимательно присмотреться к данным на упаковке, то можно увидеть букву и цифру рядом. Это и есть маркировки типа изделия.

Итак, люминесцентные лампы подразделяются на:

  • Т5 – лампы с таким показателем являются довольно редким явлением, не нашедшим признания у покупательского сегмента. Стоимость их довольно высока, однако степень светоотдачи показывает прекрасные результаты – до 110 лм/ватт. Стоит отметить, что сейчас производители значительно увеличили объемы производства люминесцентных ламп с таким показателем.
  • Т8 – новый продукт, имеющий довольно высокую цену и рассчитанный на нагрузку не более 0,260 А.
  • Т10 – аналог лампам маркировки Т12, отличающийся довольно низким качеством и уровнем эффективности.
  • Т12 – лидер рынка люминесцентных ламп. Включает в себя широкое разнообразие подтипов, что говорить, практически все стандартные модели относятся к этой группе. В их число входят представители практически всех производителей люминесцентных ламп.

Упомянутый выше принцип классификации по схеме зажигания имеет под собой два типа: требующие стартера и не требующие его.

Мощность тоже является довольно значимой характеристикой люминесцентных ламп, соответственно, это тоже стало фактором для выделения отдельной классификации.

По показателям мощности лампы подразделяются на:

  • Стандартные – с маркировкой Т12;
  • HO – лампы высокой мощности, однако, отличаются сравнительно меньшей светоотдачей;
  • VHO – лампы, способные выдержать нагрузку до 1,5 А;
  • «Эконом» — варианты люминесцентных ламп.

К числу критериев, по которым можно распределить лампы по группам, относят и длину.

Вариантов эта дифференциация представляет великое множество. Как правило, производители в обязательном порядке указывают эти данные в инструкции или на упаковке.

Классификация по  использованию стартера

Стоит отметить и тот факт, что люминесцентные лампы можно разделить на виды и по типу подключения их.

 

 

Однако в этом случае выделить какие-либо точные категории довольно сложно, поскольку каждый тип, выделенный, например, по мощности или необходимости присутствия стартера, требует соблюдения своих нюансов.

К содержанию ↑

Где применяются люминесцентные лампы

Как было сказано ранее, люминесцентные лампы находят довольно широкое применение практически повсеместно.

Несмотря на некоторые отрицательные стороны применения этого изделия, достоинства его, все же переоценить довольно трудно.

Каждый из нас учился в школе, посещал учреждения здравоохранения, административные здания и т.д.

Так вот система освещения в этих помещения как раз основывается на применении люминесцентных ламп.

Как правило, это довольно масштабные по своим размерам трубки, обеспечивающие качественное освещение в зданиях с некоторыми архитектурными особенностями.

Но если общественные здания отличаются своими габаритами, например, высокими потолками, большими по площади залами и комнатами, где освещение требуется довольно мощное и постоянное, то в домашних условиях люминесцентные лампы, которые оптимально будут эксплуатироваться там, не подойдут.

К счастью, уровень производственных навыков значительно вырос, а значит, появились адаптированные к домашним условиям люминесцентные лампы.

Они отличаются куда меньшими размерами, имеют в своем составе электронные балласты, которые возможно подключать в патроны, применяемые в домашней электронике.

И несмотря на свежесть этого новшества, адаптированные лампы уже прочно завоевывают этот сегмент рынка.

 

Кстати, существует довольно интересный факт. Уже привычные нам плазменные телевизоры имеют в своем механизме как раз люминесцентные лампы!

 

Конечно, это тоже адаптированный в соответствии со спецификой применения вариант, но, тем не менее, принцип его работы заключается в том же самом явлении. Жидкокристаллические экраны, кстати, ранее изготовлялись только с применением люминесцентных ламп, однако позже они были заменены на светодиоды.

Все мы видели световую рекламу на улицах города. Она тоже не обошлась без применения люминесцентной лампы! Фасады зданий также освещают именно этим изделием.

Хотя на данный момент конкуренцию в области световой рекламы люминесцентным лампам составляют SMD и DIP экраны.

Также люминесцентные лампы получили широкое применение в области растениеводства для выращивания растений.

Если говорить в общем, выделяя основную мысль применения люминесцентной лампы, то можно сделать вывод: их имеет смысл применять в тех случаях, когда требуется снабдить светом помещение больших размерных показателей.

Совместная работа с системами цифрового интерфейса освещения с возможностью адресации позволяет обеспечить и высокую светоотдачу, и, в то же время, не потратить крупных сумм на оплату электроэнергии, ведь по сравнению с лампами накаливания люминесцентные лампы позволяют сократить потребление энергии более чем в половину! Тем самым, являясь энергосберегающими.

Помимо этого, лампы сокращают расходы и длительностью своего применения.

Вывод

Итак, в данной статье мы рассмотрели самую основную информацию о таком благе современных технологий как люминесцентные лампы.

 

Для проведения работ по подключению этого устройства требуется обладать не только четкими представлениями об основах электроники и электротехники, но и быть предельно внимательным при выборе того или иного типа изделия.

 

Соблюдение этих минимальных, но очень важных требований обеспечит вам совершенно беспроблемную эксплуатацию ламп и максимальную полезность от их применения.

К содержанию ↑

Расскажите друзьям!

Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.

Подписывайтесь на обновления по E-Mail:

Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:

zavodsvetodiodov.ru

Преимущества и недостатки люминесцентных ламп

Содержание:

  1. Общие сведения
  2. Технические характеристики
  3. Особенности эксплуатации
  4. Плюсы и минусы

За продолжительный период эксплуатации были хорошо изучены преимущества и недостатки люминесцентных ламп, что позволило наиболее рационально использовать их в осветительных приборах. В настоящее время большую популярность завоевывают компактные энергосберегающие устройства, нашедшие широкое применение в бытовых условиях.


Общие сведения

Люминесцентные лампы относятся к категории газоразрядных источников света низкого давления. В газовой среде возникает разряд электрического тока, вызывающий появление ультрафиолетового излучения, невидимого для обычного зрения. Попадая на стенки колбы с люминофорным покрытием, оно превращается в видимый световой поток.

Сама лампочка изготовлена в виде цилиндрической стеклянной трубки, внутри которой находится инертный газ и пары ртути. Торцы герметично закрыты крышками, с впаянными в них электродами. При подключении тока они создают электрический разряд, после чего запускаются все процессы, в конечном итоге вызывающие свечение лампы.

Все люминесцентные лампы обеспечивают создание мягкого равномерного светового потока. Он трудно поддается управлению и регулировке в связи с большой площадью излучающей поверхности. Форма трубок может быть линейная, кольцевая, U-образная, круглая. Собственные конфигурации предусмотрены для компактных люминесцентных ламп. Диаметр стеклянной колбы отображается в количестве восьмых частей дюйма. Например, маркировка Т5 соответствует 5/8 дюйма или около 16 мм. В каталогах и международных стандартах эта величина указывается только в миллиметрах.

Сегодня выпускается свыше 100 видов ламп общего назначения с собственными типоразмерами. Наибольшее распространение получили устройства мощностью 15, 20, 30 ватт под напряжение 127 вольт и 40, 80, 125 Вт – для 220 В. Срок эксплуатации в среднем составляет примерно 10 тысяч часов.

Все известные недостатки и преимущества люминесцентных ламп, их параметры и технические характеристики напрямую связаны с температурой окружающей среды. Наиболее подходящей температурой для ртутных паров считается 40 градусов, при которых достигается максимальная световая отдача.


Технические характеристики

Свойства каждой лампы отражены в ее параметрах, указанных производителями в маркировке или на упаковке. Обычно такой информации вполне хватает, чтобы сделать правильный выбор.

Прежде всего, следует обращать внимание на питающее напряжение. Для российских сетей предусмотрена маркировка 220-240V/50Hz, что полностью соответствует общепринятым параметрам. Точно так же на лампочке указывается значение потребляемой мощности. Иногда на упаковке приводится сравнение светового потока с лампой накаливания при одинаковом энергопотреблении.

Высокое качество известных производителей определяет преимущества люминесцентных ламп по данному показателю в 4-5 раз. Довольно часто встречается обозначение типа 16 Вт = 80 Вт. Это значит, что при одинаковом световом потоке люминесцентная лампа потребит всего 16 ватт, а обычная лампочка накаливания – целых 80 ватт.

Некоторые достоинства и недостатки определяются световым потоком, обозначающим величину мощности света с общем потоке излучения. Эта величина устанавливается лабораторным путем, измеряется в люменах (лм) и наносится на упаковку или отражается в паспорте.

Большое значение имеет показатель цветовой температуры, показывающей, насколько свечение приближено к естественному освещению. Этот параметр измеряется в Кельвинах и рассматривается в трех диапазонах:

  • Теплый белый диапазон – 2700-3200 К. Такие люминесцентные лампы производят мягкое белое световое излучение, с небольшим оттенком желтоватого цвета и лучше всего подходят для жилых помещений.
  • Холодный белый цвет находится в диапазоне 4000-4200 К. Лампы с такими показателями используются для освещения рабочих помещений, офисов и общественных зданий.
  • Диапазон дневного белого цвета – 6200-6500 К. Применяется в системах освещения улиц, нежилых помещений, театральных сцен и других аналогичных объектов. Отличается резким белым светом ярко выраженного холодного тона.

Выбирая лампу следует обязательно учитывать цветовую температуру. В случае замены изделие должно обладать такими же характеристиками.


Особенности эксплуатации

Рассматривая плюсы и минусы ламп дневного света, следует подробно остановиться на особенностях их эксплуатации, существенно отличающихся от обычных лампочек накаливания.

Поэтому, используя люминесцентные лампы, нельзя забывать о следующих обязательных правилах:

  • Эти источники света плохо переносят частые включения и выключения. Подобная ситуация связана с использованием в схеме стартера и дросселя. При каждом пуске происходит испарение электродов, в результате, концы трубок начинают чернеть. Высокое потребление тока пускорегулирующей аппаратурой во время пусков, вызывает повышенные нагрузки и преждевременный выход ее из строя. Поэтому маломощные лампы, до 15 Вт, рекомендуется включать и выключать один раз в день. Если же без этого никак не обойтись, нужно купить более дорогие лампы с системой плавного старта, которые будут работать без каких-либо проблем.
  • Повышенная чувствительность ламп дневного света к перепадам напряжения, особенно в сторону понижения. Пусковое устройство начинает еще больше потреблять тока, иначе пуск лампы просто не состоится. В результате, частое низкое напряжение вызывает преждевременный износ ПРА.
  • Люминесцентные лампы требуют предельно аккуратного обращения. Прежде всего это связано с парами ртути, содержащимися внутри колбы. Если ее разбить, то вредные вещества попадут в окружающую среду. Поэтому во время транспортировки или при хранении, светильники должны находиться в надежном устойчивом положении. Замена лампы осуществляется в перчатках, поскольку следы жира на колбе при нагреве могут привести к взрыву.
  • Необходимость контроля продолжительности работы лампочек. С этой целью дата ввода в эксплуатацию заносится в специальный журнал. Это делается в связи с ухудшением качества светового потока с течением времени. В реальности данное правило почти не соблюдается и замена лампы производится только после того, как она выйдет из строя.
  • Для люминесцентных ламп рекомендуется использовать светильники открытого типа. Во время работы некоторые из них сильно нагреваются, а закрытие приборы освещения не обеспечивают нужной вентиляции. Кроме того, матовая поверхность плафона задерживает световой поток и пропускает его лишь частично. Открытые светильники вообще не нагреваются и создают максимальную яркость при тех же энергозатратах.
  • Экономия электроэнергии, которую планируется получить, во многом зависит от производителя ламп дневного света. Дешевые устройства изготовлены из таких же материалов, поэтому качество света и срок службы оставляют желать лучшего. Лучше приобретать изделия известных брендов, максимально приближенных к заявленным техническим характеристикам.

Плюсы и минусы

Рассмотрев устройство и работу люминесцентных ламп, правила их эксплуатации, их плюсы и минусы, можно сделать вполне определенные выводы об положительных и отрицательных качествах.

Несомненными достоинствами этих изделий являются:

  • Повышенная экономичность по сравнению с традиционными лампочками накаливания. Коэффициент полезного действия выше в несколько раз. Серьезным конкурентом могут выступить светодиодные лампы, но их высокая стоимость тормозит широкое применение.
  • Высокая световая отдача, позволяющая осветить большие площади в помещениях и на прилегающих территориях.
  • Устройства с люминофором отличаются продолжительным сроком эксплуатации. У некоторых модификаций он составляет десятки тысяч часов при условии соблюдения всех правил и отсутствия частых включений и выключений. В них нет нитей накаливания, которые могут быстро перегореть.
  • Большинство моделей люминесцентных ламп не подвержены сильному нагреву и могут использоваться в светильниках, где максимально допустимая температура ограничена жесткими рамками.
  • Свет рассеивается с большой площади поверхности лампы и равномерно распределяется по всему помещению.

Отрицательные качества и недостатки проявляются в следующем:

  • Ртуть, содержащаяся в колбе, является опасным веществом, поэтому лампам требуется специальная утилизация.
  • С течением времени свойства люминофора теряются и его эффективность падает. В результате, снижается не только световая отдача, но и КПД.
  • Необходимость использования пускорегулирующей аппаратуры, без которой работа лампы невозможна.

Существуют и другие недостатки, но они не оказывают заметного влияния на использование люминесцентных ламп.

electric-220.ru

Презентация на тему: Люминесцентные лампы

Выход из строя

1.Распыление электродов

При периодической кратковременной работе (< 3 ч)

При частых холодных стартах

2.Отказ пусковой аппаратуры

Конструктивные неисправности (дефекты)

Нестандартная рабочая среда

Истечение времени работы

Перегорание вследствие распыления электродов

Распыление люминофора

Поглощение паров ртути

1. Электрическое освещение

САЭЭС

Люминесцентные лампы

1 - 32

Достоинства

Эффективность

КПД = 22% (у ламп накаливания 5-10%)

ψ = 16 – 100 лм/Вт (в среднем 50-67 лм/Вт)

Долговечность

В 10-20 раз дольше, в сравнении с лампами накаливания

Более равномерная светимость

Более низкое тепловыделение (65-75%)

Снижение размеров, цены и мощности кондиционирования

1. Электрическое освещение

САЭЭС

Люминесцентные лампы

1 - 33

Недостатки

Проблемы со здоровьем

Возможное отравление парами ртути

Проблемы у людей с повышенной чувствительность к УФ, эпилептиков, подверженных синдрому хронической усталости

Головные боли и усталость

Необходимость использования пусковой аппаратуры

Увеличение цены

Возможен низкочастотный гул

Сниженный коэффициент мощности

Радиочастотное зашумление

Искажение параметров электроэнергии

Зависимость от параметров окружающей среды

Мерцание и возможный стробоскопический эффект

Трудность повторного использования и утилизации

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 34

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. по-английски светодиод называется light emitting diode, или LED.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 35

Конструкция светодиода

LED состоит из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 36

Конструкция светодиода

Свечение возникает при рекомбинации электронов и дырок в области p-n- перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими. Однако одного р-п-перехода в кристалле недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 37

Конструкция светодиода

В отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 38

Основные характеристики

Материал: соединения Кремния

Потребляет от 2 до 4 В постоянного напряжения

КПД: 93-94%

Световой поток, лм : от 7 до 1200

tг.ср. = 100 000 ч.

Достоинства

Сверхдолгий срок службы

Низкое энергопотребление

Работа при низких температурах

Стойкость к механическим воздействиям

Высокая светоотдача

Экологическая и пожарная безопасность

Недостатки

Большая стоимость

При подключении светодиода необходимо соблюдать полярность

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 40

Техническ

Светодиодная

Люминесцентная лампа 20 W

 

ие хара-ки

лампа

 

 

 

УНИПРО-60

 

 

Утилизация

Не требует

Все люминесцентные лампы содержат ртуть (в дозах от

 

специальной

40 до 70 мг), ядовитое вещество. Эта доза может

 

 

утилизации

причинить вред здоровью, если лампа разбилась или

 

 

нарушилась герметичность, и если постоянно

 

 

 

подвергаться пагубному воздействию паров ртути, то они

 

 

будут накапливаться в организме человека, нанося вред

 

 

здоровью. Требует специальной утилизации.

 

Недостатки

Более высокая

- содержание ртути

 

 

цена

- зависимость световых характеристик от температуры

 

 

окружающей среды

 

-значительное снижение светового потока к концу срока службы

-пульсации светового потока

-мерцание ламп, что повышает утомляемость

-относительно долгий запуск

-большее потребление энергии

-дроссель может издавать низкочастотный неприятный гул.

1. Электрическое освещение

САЭЭС

studfile.net

Люминесцентные лампы: преимущества и недостатки

В настоящее время люминесцентные лампы являются вторыми по популярности источниками освещения, уступая только лампам накаливания. В таких приборах используется ртуть, которая при нагревании в парах создает электрический разряд, формирующий ультрафиолетовое излучение. Затем специальное вещество (люминофор) поглощает это излучение, выделяя свет в привычном для человеческого глаза спектре. Длина и поперечное сечение трубки люминесцентной лампы определяют рабочее напряжение и напряжение зажигания, а также ток. Чем изделие толще, тем ниже сопротивление и, соответственно, больше мощность.

Сегодня люминесцентные лампы нашли широкое применение при освещении коммерческих объектов, общественных зданий, торговых и офисных центров, киностудий. Не менее популярны они и для бытового применения.

Положительные стороны люминесцентных ламп

Среди ключевых достоинств люминесцентных ламп следует выделить:

  1. Экономичность. Поскольку КПД этих источников освещения значительно выше, чем у ламп накаливания, потребление энергии у них ниже (примерно в 5 раз). В плане экономии с люминесцентными лампами могут конкурировать только светодиоды, но они имеют свою специфику.
  2. Высокую световую отдачу, что позволяет освещать помещения большой площади.
  3. Длительный срок службы. Ресурс эксплуатации источников освещения, работающих с использованием люминофора, составляет несколько десятков тысяч часов при условии отсутствия частых включений-выключений. В отличие от ламп накаливания, они не выходят из строя в результате перегорания нити накаливания.
  4. Минимальный нагрев, что позволяет использовать люминесцентные лампы для светильников с ограниченным уровнем максимально допустимой температуры.
  5. Большая площадь поверхности, за счет чего свет в помещении распределяется намного равномернее.

Эксплуатационные преимущества люминесцентных ламп сопровождаются и эстетическими достоинствами — разнообразие оттенков освещения позволяет подобрать решение для любого интерьера. Это же касается уровня освещенности, который можно очень легко изменить при помощи замены источников освещения на более мощные.

Недостатки люминесцентных ламп

Существуют и определенные минусы. Главным из них является содержание ртути, поэтому предъявляются повышенные требования к их утилизации. Следует отметить и линейчатый (ненатуральный) спектр света у дешевых люминесцентных ламп с многокомпонентным люминофором. Кроме того, неизбежна деградация вещества при продолжительной эксплуатации — она проявляется снижением теплоотдачи и «дрейфом спектра» (мерцанием, от которого устают глаза). В случае перегорания электродов вся лампа выходит из строя. Чтобы избежать негативных моментов, рекомендуется покупать только качественную и сертифицированную продукцию у проверенных поставщиков.

Немаловажным будет и правильный выбор люминесцентных ламп. При этом следует учитывать не только размер светильника и тип цоколя, но также на цветовую температуру генерируемого света. Цвет, конечно же, следует подбирать под интерьер.

Таким образом, люминесцентные лампы станут отличным источником освещения для больших помещений, где будет наблюдаться наиболее выраженный экономический эффект. Кроме того, за счет длительного эксплуатационного ресурса, они идеально подойдут для установки в труднодоступных местах (менять их придется очень редко).

Выбрав качественную люминесцентную лампу, вы обеспечите себя надежным и долговечным источником освещения, который в прямом смысле слова будет радовать глаз!

www.lamps.ru

Презентация на тему: Люминесцентные лампы

Выход из строя

1.Распыление электродов

При периодической кратковременной работе (< 3 ч)

При частых холодных стартах

2.Отказ пусковой аппаратуры

Конструктивные неисправности (дефекты)

Нестандартная рабочая среда

Истечение времени работы

Перегорание вследствие распыления электродов

Распыление люминофора

Поглощение паров ртути

1. Электрическое освещение

САЭЭС

Люминесцентные лампы

1 - 32

Достоинства

Эффективность

КПД = 22% (у ламп накаливания 5-10%)

ψ = 16 – 100 лм/Вт (в среднем 50-67 лм/Вт)

Долговечность

В 10-20 раз дольше, в сравнении с лампами накаливания

Более равномерная светимость

Более низкое тепловыделение (65-75%)

Снижение размеров, цены и мощности кондиционирования

1. Электрическое освещение

САЭЭС

Люминесцентные лампы

1 - 33

Недостатки

Проблемы со здоровьем

Возможное отравление парами ртути

Проблемы у людей с повышенной чувствительность к УФ, эпилептиков, подверженных синдрому хронической усталости

Головные боли и усталость

Необходимость использования пусковой аппаратуры

Увеличение цены

Возможен низкочастотный гул

Сниженный коэффициент мощности

Радиочастотное зашумление

Искажение параметров электроэнергии

Зависимость от параметров окружающей среды

Мерцание и возможный стробоскопический эффект

Трудность повторного использования и утилизации

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 34

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. по-английски светодиод называется light emitting diode, или LED.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 35

Конструкция светодиода

LED состоит из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 36

Конструкция светодиода

Свечение возникает при рекомбинации электронов и дырок в области p-n- перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими. Однако одного р-п-перехода в кристалле недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 37

Конструкция светодиода

В отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 38

Основные характеристики

Материал: соединения Кремния

Потребляет от 2 до 4 В постоянного напряжения

КПД: 93-94%

Световой поток, лм : от 7 до 1200

tг.ср. = 100 000 ч.

Достоинства

Сверхдолгий срок службы

Низкое энергопотребление

Работа при низких температурах

Стойкость к механическим воздействиям

Высокая светоотдача

Экологическая и пожарная безопасность

Недостатки

Большая стоимость

При подключении светодиода необходимо соблюдать полярность

1. Электрическое освещение

САЭЭС

Светодиодные лампы

1 - 40

Техническ

Светодиодная

Люминесцентная лампа 20 W

 

ие хара-ки

лампа

 

 

 

УНИПРО-60

 

 

Утилизация

Не требует

Все люминесцентные лампы содержат ртуть (в дозах от

 

специальной

40 до 70 мг), ядовитое вещество. Эта доза может

 

 

утилизации

причинить вред здоровью, если лампа разбилась или

 

 

нарушилась герметичность, и если постоянно

 

 

 

подвергаться пагубному воздействию паров ртути, то они

 

 

будут накапливаться в организме человека, нанося вред

 

 

здоровью. Требует специальной утилизации.

 

Недостатки

Более высокая

- содержание ртути

 

 

цена

- зависимость световых характеристик от температуры

 

 

окружающей среды

 

-значительное снижение светового потока к концу срока службы

-пульсации светового потока

-мерцание ламп, что повышает утомляемость

-относительно долгий запуск

-большее потребление энергии

-дроссель может издавать низкочастотный неприятный гул.

1. Электрическое освещение

САЭЭС

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *