От чего зависит прочность бетона – Сколько лет бетон набирает полную прочность. От чего зависит и как быстро происходит набор прочности бетона

Прочность бетона — что влияет на прочностные характеристики

Прочность бетона – ключевой показатель его качества, определяющий назначение и параметры использования ЖБИ. Процесс проектировки конструкций осуществляется таким образом, чтобы изделия могли выдерживать соответствующие нагрузки на сжатие. Этот показатель определяется классом и маркой бетона, которые могут быть определены через 28 суток после заливки.

Динамика роста прочности за указанный период позволяет оценить его характеристики, в то время, как окончательное затвердение смеси происходит в течение нескольких лет. Качественный бетон спустя 28 суток должен обеспечить прочностный показатель при сжатии с усилием 200кгс/см2. Наряду с технологией, влияющей на прочность бетона, присутствует ряд объективных факторов, определяющих качество железобетонных изделий.

Факторы, влияющие на прочность

К основным технологическим факторам, определяющим прочность бетона, относят:

  • активность цемента;

  • содержание цемента;

  • соотношение цемента и воды;

  • тип и качество наполнителей;

  • параметры уплотнения;

  • возраст бетона;

  • характеристики отверждения;

  • применение повторного вибрирования.

Цементы повышенной активности, которая определяется зависимостью Rb= f(RЦ), традиционно обладают большей прочностью и применяются в строительстве многоэтажных, промышленных зданий, в дорожном и инженерном строительстве. Такие марки обладают большим сроком эксплуатации, надежны и не подвержены механическим и биологическим повреждениям. Марочная прочность определяется видом используемых легких или тяжелых бетонов. Использование сульфастойких цементов позволяет получить высокую прочность бетона при воздействии внешних факторов, в качестве которых выступают различные агрессивные среды. Практическая сфера применения легирующих добавок актуальна при формировании на основе смеси для конструкций, задействованных при строительстве домов, несущих конструкций гражданского или промышленного назначения, мостов.

Тяжелый бетон характеризуется повышенным показателем объемного веса, который изменяет свое значение в пределах 2200 – 2800 кг/м3 в зависимости от вида заполнителя. В качестве последнего могут применяться карбонатные, кварцевые, гранитные породы. При формировании опор в виде фундаментов находит применение бетон марки 100, для монолитных конструкций в виде колонн, перекрытий и балок — марки 150, обычнее сборные конструкции формируются на основе марок 200-250. Монолитные конструктивы с предварительным напряжением могут армироваться марками от 300 до 600, в то время как наиболее высокие марки редко находят практическое применение.

Количественный показатель содержания цемента в бетонной смеси также определяет ее прочностные характеристики — он растет до определенного уровня с повышением концентрации цемента. Следует помнить, что излишек цемента в составе смеси снижает ее устойчивость к усадке и увеличивает ползучесть. Максимально допустимым количеством считается до 600 кг цемента в 1 кубометре товарного бетона.

Соотношение воды и цемента в составе смеси также влияет на ее прочностные характеристики – чем оно выше, тем ниже прочность. При правильной технологии для затвердения и обеспечения прочности требуется воды в объеме 20% от массы цемента. Однако в случае с ЖБИ расход воды увеличен, поскольку смесь не должна быть слишком пересушенной для формирования равномерной и плотной смеси.

Бетон тем прочнее, чем более крупные наполнители использованы в процессе его приготовления. Не рекомендуется превышать рекомендованное количество песка, исходное сырье необходимо максимально очистить от глины и мелкозернистых фракций. Крупнозернистый заполняющий состав способствует лучшему проникновению цементного теста в образовавшиеся пустоты и обеспечению лучших параметров сцепления всех составляющих будущего изделия. Форма заполнителя играет определяющую роль. Сцепление обеспечивается намного лучше с заполнителями неправильной геометрии, в то время как округленность либо загрязнение заполнителя оказывает обратный эффект.

Тщательность вымешивания смеси также отражается на прочностных показателях. Для ЖБИ важен также порядок укладки бетонных смесей, который подразумевает промывку и обработку стыков, от чего зависит прочность, предотвращающая сколы и появление трещин.

Показатели прочности бетона оцениваются в возрасте 28 суток и зависят от температуры, при которой происходило отверждение смеси в соотношении с пределом достигаемой прочности при застывании при температуре +20оС:

  • +5оС – 65%;

  • +10оС – 80%;

  • +30оС – 115%.

Повторное вибрирование, выполненное до завершения процесса полного схватывания, позволяет увеличить показатели прочности до 20%, это единственный технологический процесс, способный качественно повлиять на эксплуатационные характеристики. Технология производства может предусматривать разнообразные методики виброштампования, вибрирования под нагрузкой или вибропроката, которые направлены на усовершенствование прочностных показателей бетона.

В результате повторного вибрирования повышается плотность и увеличивается скорость процесса гидратации входящего в состав смеси цемента.

на растяжение, при сжатии, как определить?

Прочность бетона – определяющий показатель бетонного раствора, который обуславливает задачи и условия его использования. Бетонная смесь используется повсеместно в проведении ремонтно-строительных работ частных и промышленных объектов. Рецептов приготовления бетона существует множество, состав и пропорции компонентов напрямую влияют на свойства и характеристики, а также сферу использования цементного раствора.

Прочность бетона – определяющая характеристика, которая отображается в маркировке. Непосредственно прочность определяет марку и класс раствора. Данные показатели указываются в различных ГОСТах, СНиПах, нормативных документах, определяют эксплуатационные качества и свойства бетонных элементов, конструкций, зданий и т.д.

Знание показателей прочности бетона очень важно при выполнении любых работ, так как позволяет точно выполнить расчеты, верно подобрать смесь подходящих марки и класса для конкретной задачи, будучи уверенным в прочности, надежности и долговечности элемента, конструкции. Застройщики в обязательном порядке проверяют прочность бетона на растяжение, сжатие, изгиб и т.д. прежде, чем начинать работы.

испытания бетона на прочность на сжатие

Какие показатели определяют прочность бетона:
  1. Марка – значение средней прочности, обозначается буквой М, находится в пределах 50-1000, зависит от объема и качества цемента в смеси. Отображает прочность на сжатие в кгс/м2 через 28 суток после заливки. Чем больше цифра рядом с индексом, тем более прочным считается бетон и тем дороже он стоит. Высокопрочный раствор обычно более сложен в работе: быстрее застывает, трудно укладывается.
  2. Класс – гарантируемая прочность на сжатие, которую бетонное изделие демонстрирует в 95% проверках, обозначается буквой В, находится в диапазоне 3.5-80, считается в МПа.

Любой класс приравнивается к определенной марке (то же правило действует и наоборот). Обычно в проектных документах указывают класс прочности, а в заказах на покупку – марку.

Что это такое и основные виды

Пытаясь разобраться, от чего зависит прочность бетона, что это такое и какие есть основные виды показателя, необходимо изучить все основные аспекты процесса приготовления смеси, состав, условия и особенности.

Факторы, влияющие на прочность бетона:
  • Качество цемента в составе – чем более высокая марка самого вяжущего, тем прочнее будет бетон.
  • Объем цемента в растворе – считается из расчета на 1 кубический метр. Качество и количество цемента взаимосвязаны – при условии большого объема и низкой марки или высокой марки и недостаточного количества результат будет не тем, который ожидается. Готовить нужно по рецепту, указанному в ГОСТе и из цемента подходящей марки.
  • Объем воды – также напрямую влияет на прочность: недостаточное количество приведет к невозможности правильно уложить смесь, превышение объема способствует более быстрому прохождению процесса гидратации, что делает бетон слабее за счет появляющихся пор и трещин.
  • Качество заполнителей – форма, фракция, чистота. Наполнители с шероховатой поверхностью неправильной формы обеспечивают лучшую адгезию материалов, входящих в бетон (прочность повышается), грязные частицы и гладкая поверхность понижают сцепляемость и прочность соответственно.

каким бывает щебень для бетона

  • Качество перемешивания компонентов – продолжительность, способ также влияют: если раствор смешивали меньшее время, чем нужно, компоненты не занимают свое место в тесте и прочность понижается.
  • Порядок укладки, способ обработки стыка после перерыва в укладке – все это влияет на качество и прочность монолита.
  • Вибрация – очень важный процесс, который повышает предел прочности бетона в среднем на 10-30% в сравнении с тем, что уплотнялся вручную.
  • Условия твердения – температура, влажность, от чего во многом зависит прочность. Самые высокие показатели у смеси, которая твердеет во влажной среде со средней температурой, а вот в жаре и сухости раствор быстро теряет влагу, может покрываться трещинами. При температуре ниже нуля бетон вообще прекращает твердеть.
  • Замерзание – если твердение дошло до определенной точки, временное замерзание монолита просто приостанавливает процесс, потом он продолжается без потерь свойств. Если же бетон замерзает на ранней стадии прохождения реакции, конечная прочность существенно понижается.

как определить прочность бетона

Основные виды прочности бетона:
  1. Проектная – та, что указана в нормативных документах и предполагает способность монолита полностью выдерживать указанные нагрузки после того, как прошел полный срок твердения (28 суток).
  2. Нормативная – та, что указана в ТУ или ГОСТе.
  3. Фактическая – среднее значение, которое высчитывают по результатам проведенных испытаний.
  4. Требуемая – максимально допустимый показатель для эксплуатации, который устанавливает лаборатория предприятия.
  5. Распалубочная – та, при которой можно демонтировать опалубку, разбирать формы.
  6. Отпускная – показатель, при котором допускается отгружать изделие потребителю.

Виды прочности касательно марки и качества: прочность бетона при сжатии, на изгиб, осевое растяжение, а также передаточная прочность.

прочность бетона на сжатие и предел прочности

Прочность на сжатие

В контексте данной характеристики бетон можно сравнить с камнем – он намного лучше сопротивляется сжатию, чем с растяжением. Основной критерий прочности бетона – это предел прочности на сжатие.

Данный показатель считается самым важным среди всех технических характеристик раствора – именно он влияет на сферу использования конструкции или элемента, обеспечивает надежность и долговечность.

Для определения значения из раствора заливают образцы в виде куба, их помещают под специальный пресс. Давление постепенно увеличивается и в момент, когда образец трескается, экран прибора фиксирует значение. Расчетный показатель прочности на сжатие определяет присвоение бетону класса. Высыхает и твердеет смесь в течение 28 суток (и больше), по завершению этого срока осуществляют проверку, так как смесь уже должна достичь расчетной/проектной прочности.

Прочность на сжатие представляет собой характеристику механических свойств материала, стойкости к нагрузкам и давлению. Это показатель границы сопротивления, которое оказывает застывший раствор механическому воздействию сжатия, отображенному в кгс/см2. Наименьшей прочностью на сжатие обладает смесь М15, наибольшей – М800.

Прочность на сжатие отображается и в марке, и в классе. Класс В – это кубиковая прочность, обозначается в МПа. Марка М – предел прочности на сжатие в кгс/см2. Данные соответствия марок, классов и показателей указаны ниже в таблице.

испытания бетона под прессом

Прочность на изгиб

Данный показатель повышается по мере увеличения цифрового обозначения марки. Обычно показатели прочности на изгиб и растяжение меньше в сравнении с нагрузочной способностью бетона. Молодой бетон демонстрирует значение 1/20, старый – 1/8. Прочность на изгиб обязательно учитывается в проектировании перед строительством.

Чтобы понять, какой уровень прочности на изгиб демонстрирует бетон, заливают заготовку в виде бруса с размерами, к примеру, 60 х 15 х 15 сантиметров (эталонный образец). Бетон заливают в формы, штыкуют, оставляют на несколько дней, потом извлекают из форм и дают полностью застыть в течение 28 суток при оптимальных условиях: температура минимум 15-20 градусов и влажность до 80-90%. Периодически образцы обкладывают сырыми опилками (их увлажняют регулярно) или поливают водой.

Когда заготовка полностью затвердевает, ее устанавливают на подпорки, которые находятся на определенном расстоянии, в центре же размещают нагрузку, постепенно ее увеличивая до тех пор, пока образец не будет разрушен.

Для этого может использоваться специальный гидравлический пресс. Размеры балки и расстояния между двумя подпорками могут отличаться.

Формула для подсчета прочности на изгиб: R изг = 0.1 PL / bh3.

Тут:
  • L – это расстояние между подпорками
  • Р – масса нагрузки + масса образца
  • b и h – ширина и высота сечения образца (бруса)

Существенно повысить значение до определенной величины можно с помощью армирования – это сравнительно недорогой и эффективный метод.

Осевое растяжение

Данный параметр при проектировании несущих конструкций, как правило, не учитывается вовсе. Он важен для определения способности бетона не покрываться трещинами в случае резких перепадов температуры/влажности. Растяжение – это некоторая составляющая прочности на изгиб.

Значение осевого растяжения определяется довольно трудно. Один из используемых способов – растяжение образцов балок на предусмотренном для этого специальном оборудования. Бетонный монолит разрушается и от воздействия двух противоположных растягивающих сил. Способность противостоять осевому растяжению играет важную роль в приготовлении бетона, который используется для дорожного покрытия и резервуаров, где трещины просто недопустимы.

Как правило, мелкозернистые составы демонстрируют более высокий показатель прочности на растяжение в сравнении с крупнозернистыми (при условии аналогичного показателя прочности сжатия).

Данный показатель обозначается буквами Bt, находится в диапазоне 0.4-6 МПа.

испытания бетона на прочность

Передаточная прочность

Данный вид прочности – это нормируемый показатель напряженных элементов при передаче на него напряжения от армирующих деталей. Прочность передаточная указывается в нормативных документах и ТУ для отдельного вида изделий. Обычно назначается минимум 70% проектной марки, напрямую зависит от свойств арматуры.

Рекомендуемым значением считается минимум 15-20 МПа с учетом вида армирования. Если обозначать передаточную прочность, то это показатель, который демонстрирует уровень, при котором армировочные стержни не проскальзывают с кондукторов при снятии.

Минимальная величина Rbp обеспечивает трещиностойкость и прочность изделия при обжатии, перевозке и подъеме. Чем ниже Rbp, тем большими будут потери от ползучести и выше сила обжатия. Но чем выше Rbp, тем длительнее должна быть термообработка, тем дороже обходится конструкция. По опыту многие мастера указывают, что оптимальной Rbp считается 0.7 В.

создание бетонных образцов для исследований

Методы определения прочности

Понимая, как определить прочность бетона, можно более точно составлять проектную документацию, выполнять расчеты для тех или иных конструкций. Как правило, прочность бетона определяют в условиях лаборатории, с использованием специальных приборов, на контрольных образцах и отобранных пробах. Испытания контролируются и регламентируются по ГОСТу, принятому для того или иного вида бетонной смеси.

Кроме того, прочность бетона определяется на строительном объекте в процессе выполнения работ, что позволяет контролировать качество смеси.

Основных методов определения прочности бетона существует два: разрушающие и неразрушающие. Обычно прочность бетона в промежуточном возрасте не определяется, чаще всего используют уже застывшие образцы или куски монолита.

прибор для проверки прочности бетона

Разрушающий способ

Данная группа методов требует разрушения опытного образца, который готовится из контрольной пробы бетонного раствора либо же изымается из монолита алмазным буром. Выпиленные цилиндры или залитые кубики раздавливаются под прессом. Нагрузку повышают непрерывно, равномерно в течение не очень длительного времени, пока контрольный образец не разрушится. Результаты критических нагрузок фиксируют, дальше считают показатели.

Разрушающий метод – наиболее точный из всех, используемых для определения прочности бетона. Так, обследование здания способом раздавливания бетонных проб позволяет определить прочность монолита на сжатие. По действующим СНиПам, это обязательная процедура до сдачи сооружения в эксплуатацию.

Неразрушающий способ

Эта группа методов не требует разрушения образцов и вообще может не предполагать их использования. Испытания осуществляют с применением разных инструментов и приборов.

Виды неразрушающих методов исследования по типу применяемых инструментов:
  1. Ударное воздействие
  2. Частичное разрушение
  3. Ультразвуковое обследование

Способ ударного воздействия базируется на применении силового воздействия ударного типа к бетонной поверхности.

виды прочности бетона

Три основных способа исследования прочности ударом:
  • Упругий отскок – определяется величина отскока от монолита бойка ударника.
  • Метод ударного импульса – фиксируется сила удара и появляющаяся при этом энергия.
  • Пластическая деформация – силовое воздействие на бетонный монолит прибором с закрепленными на его ударной поверхности штампов в виде диска или шарика. В соответствии с глубиной отпечатков удара считают прочность.

Частичное разрушение предполагает местное воздействие на бетонный монолит и повреждает его несильно.

Методы частичного разрушения:
  • Скалыванием – предполагает механическое скользящее воздействие на ребро конструкции с фиксацией усилий, которые провоцируют откалывание участка.
  • На отрыв – заключается в прикреплении к участку монолита металлического диска на специальный клей, а потом его отрыв. Необходимое для разрушения материала усилие фиксируют, используют для вычислений показателя прочности.
  • Отрыв со скалыванием – дает больше точности: на участке монолита закрепляют анкерные устройства, потом их отрывают.

Ультразвуковое исследование предполагает использование специального прибора, который выдает ультразвуковые волны. В процессе определяется скорость ультразвука, который проходит через бетонную конструкцию. Таким образом исследуются как поверхность бетона, так и его глубинные слои. Но есть погрешность в расчетах.

определение класса и марки бетона

Классификация и применение бетонов

Деление бетона на виды достаточно условное. Как правило, легкими считают бетоны марок М10-М200, обычными М250-М400, тяжелыми М450 и выше.

На классы бетон делится не только по прочности, но и по морозостойкости, плотности. Существуют и особые бетоны, используемые для конкретных задач и сфер. Наиболее распространенные марки бетона и его применение:
  • М100 – обычно выбирают для подбетонки, различных подготовительных работ, когда важно просто сцепить между собой зерна гравийно-песчаной подушки.
  • М150 – состав более крепкий, из него делают отмостки, тротуары, цементные стяжки, ЖБИ малого размера.
  • М200 – популярная марка для произведения работ в частном строительстве, подходит для небольших фундаментов, ненагруженных стен в малоэтажном строительстве.
  • М250 – актуален для создания лестничных маршей, опорных/несущих конструкций.
  • М300 – самый популярный бетон в строительстве, используется в любых работах (от создания основания для тяжелых домов до заливки монолитных перекрытий, стен).
  • М350 – прочный бетон, который подходит для создания конструкций с повышенными нагрузками (балки, колонны и т.д.).
  • М400 и выше марки применяются для создания особых конструкций специальных объектов – гидротехнические сооружения, военные объекты и т.д.

соответствие классов и марок бетона

Виды бетона по плотности:
  1. Легкий (облегченный) – производится с включением в состав пористых заполнителей (туф, пемза, керамзит): крупнопористый, ячеистый бетоны, газо/пенобетон и т.д. Плотность до 1200 кг/м3, используются в малоэтажном строительстве, актуальных для утепления, отличаются сравнительно невысокой прочностью.
  2. Тяжелый бетон – производится с введением в состав горных пород (диабаз, гранит, известняк), плотность равна 1800-2500 кг/м3. Применяется для железобетонных, бетонных конструкций гражданских, промышленных зданий, для создания транспортных и гидротехнических объектов в том числе.
  3. Особо тяжелый бетон – готовится с использованием железной руды, опилок, стружки. Актуальна смесь для строительства специальных объектов, способных противостоять радиоактивному излучению, плотность выше 2500 кг/м3.

Виды бетона по классу морозостойкости:
  • F15 – подходит для внутренних работ (создание перегородок, заливка пола и т.д.)
  • F25 – самое малое значение для кладки внешних стен отапливаемых зданий.
  • F50 и более – подходит для фундамента в регионах со средним морозом.

Водостойкость бетона обозначается буквой W, может варьироваться в пределах W2-W20, говорит о максимальном давлении водяного столба, которое способен выдержать бетон, единицы измерения атм•10-1.

определение и испытание бетона, марки по прочности

Прочность бетона – одна из важнейших характеристик этого строительного материала. Бетон лучше всего сопротивляется усилиям на сжатие. Поэтому проектирование осуществляется таким образом, чтобы на конструкцию действовали в основном силы сжатия. Если конструкция будет испытывать усилия на растяжение и изгиб, то при расчете проекта учитывают прочность на растягивающие усилия и растяжение при изгибе.

Характеристики прочности бетона

Порочность бетона на сжатие характеризуют марка или класс прочности, которые определяются в стандартном варианте в возрасте 28 суток. В зависимости от эксплуатационных особенностей строительной конструкции, момент определения прочности материала на сжатие может устанавливаться индивидуально. Это могут быть 3,7, 60, 90, 180 суток.

 

Определение! Класс прочности характеризует гарантированную прочность строительного материала, выраженную в МПа, с обеспеченностью 95%. Маркой называют нормируемое значение средней прочности бетона. Единица измерения – кгс/см2.

В проекте на строительную конструкцию пользуются понятием класса прочности и только в особых случаях – марки.

Таблица зависимости между классами и марками бетонов

Класс

Марка

Класс

Марка

В3,5

М50

В25-В27,5

М350

В5

М75

В30

М400

В7,5

М100

В35

М450

В10-В12,5

М150

В40

М500

В15

М200

В45

М600

В20

М250

В50-В55

М700

В22,5

М300

В60

М800

Технологические факторы, влияющие на прочность бетона

Прочность бетона зависит от ряда факторов, среди которых:

  • Активность цемента. Между прочностными характеристиками бетонного продукта и активностью вяжущего существует линейная зависимость. Чем выше активность, тем лучше прочностные показатели.
  • Количество вяжущего. Повышение содержания вяжущего положительно влияет на прочностные характеристики только до определенного процентного содержания. Выше – прочностные показатели растут незначительно, а другие технические параметры ухудшаются – растут усадка и ползучесть.
  • Водоцементное соотношение. Оптимальная величина определяется необходимой маркой удобоукладываемости. Обычно в смеси содержится 40-70% воды. Превышение оптимального количества жидкости инициирует образование пор, снижающих прочность конечного продукта.
  • Гранулометрический и минералогический состав заполнителей. На прочность бетонного продукта отрицательно влияют: неоптимальный состав мелкого и крупного заполнителей, наличие в них пылевидных и глинистых частиц.
  • Качество воды. Вода, используемая для затворения смеси, берется из водопровода питьевого назначения или проверяется в лаборатории на присутствие в ней примесей, отрицательно влияющих на качество конечного продукта.
  • Вибрирование бетонной смеси при укладке. При вибрировании из смеси выходит лишний воздух, снижающий прочностные характеристики. Однако излишнее вибрирование приводит к расслаиванию смеси.
  • Соблюдение оптимальных условий твердения.

Способы определения прочности

ГОСТ 10180-2012 регламентирует правила подготовки образцов и проведения испытаний прочности на сжатие в лабораторных условиях В соответствии со стандартом образцами могут быть:

  • куб с длиной ребра 100, 150, 200, 250, 300 мм;
  • цилиндр с диаметром основания 100, 150, 200, 250, 300 мм, высотой не менее диаметра основания.

Образцы изготавливают с соблюдением условий, соответствующих реальным условиям твердения смеси. Твердение продукта может происходить в нормальных условиях или с использованием тепловой обработки. Испытания проводят на испытательной машине-прессе. Образец нагружают со стабильной скоростью нарастания усилия до его разрушения.

Существуют неразрушающие способы контроля прочности бетона, позволяющие контролировать этот параметр в уже готовой конструкции:

  • Механические. Эти испытательные технологии основаны на показаниях приборов. Основные методы – упругий отскок, ударный импульс, отрыв, скалывание, отрыв со скалыванием.
  • Ультразвуковой. Основой этого способа является зависимость скорости прохождения ультразвуковых волн через материал от его прочностных характеристик. Технология востребована для определения прочностных характеристик длинномерных строительных конструкций – ригелей, колонн, балок.

Области применения бетона различных классов прочности

  • В7,5. Такие бетоны содержат малое количество вяжущего и относятся к категории «тощих». Применяются в основном при проведении подготовительных строительных работ. С их помощью изготавливают подбетонки, на которых устраивается железобетонный фундамент. Такой подготовительный бетонный слой не допускает протекания цементного молочка из фундаментной бетонной смеси в грунт.
  • В10-В12,5. Такие материалы также обладают невысокой прочностью. Применяются для устройства подбетонного слоя, тонкослойных стяжек, фундаментов легких строительных конструкций.
  • В15-В20. Бетонные смеси этих классов прочности востребованы в малоэтажном индивидуальном строительстве при возведении небольших строений, для устройства внутренних перегородок, лестничных маршей.
  • В22,5. Широко востребованы в малоэтажном жилом и промышленном строительстве, при производстве ЖБИ.
  • В25-В22,7. Применяются при сооружении высоконагружаемых строительных конструкций – несущих балок, плит, колонн в многоэтажных зданиях.
  • В30 и выше. Такие бетоны, обладающие высокой прочностью, применяют в промышленном строительстве и для сооружения объектов высокой опасности и ответственности. Из-за высокой схватываемости применяются с добавками, регулирующими скорость твердения смеси.

От чего зависит прочность бетона

Ни одна стройка не обходится без использования бетона. Это самый востребованный строительный материал на любом этапе возведения здания. Материал классифицируется, и основной характеристикой его качества является марка. Обозначается буквой М с количественным показателем от 50 до 1000 (чем он меньше, тем меньшие требования предъявляются к материалу).

Прочность бетона, от чего она зависит

Самой главной характеристикой бетона является прочность. На нее оказывают влияние множество факторов:

  • количество связующего в смеси;
  • качество и активность цемента;
  • количество воды относительно связующего вещества;
  • вид заполнителя, его свойства;
  • погодные условия, время года.

Каждый из них играет немаловажную роль в том, насколько долговечным будет бетонный камень после застывания.

Количество цемента

Количественное содержание цемента является определяющей для показателя. Чем больше процент цемента, тем большей прочностью будет обладать монолит. Но стоит помнить о том, что повышается она до определенного момента. Затем начинают увеличиваться негативные свойства: ползучесть и степень усадки. Потому рекомендуется приобретать бетон у профессионалов, знакомых с такими особенностями производства материала.

Заказать бетон в (город) по доступной цене можно в компании ООО Велес.

Качество и степень активности цемента

Не менее важным фактором является активность связующего вещества. Прочность напрямую зависит от этого свойства цемента. Использование более активного материала влечет за собой повышение прочности и наоборот.

Соотношение воды и цемента

Количество воды относительно связующего вещества в растворе влияет на показатель следующим образом: чем больше воды, тем прочность материала меньше. Это обусловлено физическими особенностями застывающего бетона, который способен связать до 25% содержащейся в нем воды. Излишек жидкости влечет образование пор, существенно снижающих эксплуатационные свойства и срок службы конструкции.

Вид заполнителя, его свойства

В качестве наполнителя используют различные материалы. Существует такая зависимость: использование заполнителя мелкой фракции снижает прочностные характеристики, применение крупнофракционных – повышает. Это обусловлено лучшим сцеплением с цементом крупных элементов.

Внешние условия

Температура окружающей среды – один из главных природных факторов, существенно влияющих на долговечность монолита. Лучшей температурой для использования материала является + 15 +20 С при относительной влажности 90 – 100%. В таких условиях прочностные характеристики увеличиваются вместе со временем отвердевания. Самой высокой степени показатель достигает на 28 день после закладки.

Качество смешивания ингредиентов и степень уплотнения также оказывают влияние на прочность монолита. Чем плотнее связаны между собой частицы раствора, тем более долговечным будет сооружение. Для этого используют специальные машины – глубинные вибраторы.

Купить бетон любой марки в Москве можно в компании ООО Велес. Собственное производство позволяет компании устанавливать привлекательные цены для заказчика. Есть услуга доставки на строительную площадку.

От чего зависит прочность бетона, увеличение прочности бетона

Прочность бетона

Как известно, бетон состоит из заполнителя, воды и цемента. Состав бетонной смеси должен обеспечить заданные свойства стройматериала: морозостойкость, прочность и т.д. Казалось бы, использование природных материалов не требует особых технологических ухищрений. Однако каждый из элементов будущей бетонной конструкции требует к себе пристального внимания – иначе получить качественные, прочные и надежные бетоны невозможно. Малейшая ошибка или недосмотр может привести к снижению качества материала и последующему разрушению конструкции.

Выбор заполнителей для производства бетона

Чтобы сделать бетон высокой прочности, важно верно подобрать состав заполнителя. Это значит: смесь должна быть составлена таким образом, чтобы пустот между зернами, заполняемых цементным тестом, было по возможности меньше.

Песок единой фракции содержит в общем объеме порядка 40% пустот, а составленный из зерен различных фракций песок значительно плотнее. Чтобы добиться максимальной плотности, песок рассеивают на мелкий и крупный по размерам, затем по определенной технологии составляют зерновую смесь, в которой частицы прилегают друг к другу очень плотно, и цементному тесту потребуется заполнять лишь незначительные промежутки. Изготовленный на такой сухой смеси бетон будет иметь большую прочность и плотность и потребует небольшого расхода вяжущего средства.

Если же бетон изготавливается на заполнителях произвольного состава, которые берутся из карьеров или получаются методом дробления камней, большой плотности получить невозможно. В этом варианте потребуется очень высокий расход цемента, а бетон высокой прочности из такого состава не получится.

Вода в бетоне

Необходимая для получения высокопрочного бетона вода должна быть чистой. Негативное воздействие способны оказать любые примеси: сульфаты, органические кислоты или жиры. Они негативно повлияют на процесс твердения бетона, поэтому производители предпочитают использовать очищенную питьевую воду для изготовления качественного бетона.

Если приходится использовать торфяную, речную, грунтовую воду, насыщенную органическими примесями, требуется вначале проверить их состав в химической лаборатории. Еще в большей степени это относится к промышленным водам, в которых могут содержаться примеси гипса или серной кислоты. Такие составы способны спровоцировать разрушение бетона, а приготовленные на морской воде состав впоследствии покроется солевыми налетами, которые испортят его вид и самым негативным образом скажутся на прочности изделия.

Цемент для бетона

Очень большое влияние на конечное качество и марочную прочность бетона влияет цемент, который используется при создании смеси. Чем мельче помол клинкера, тем выше его клеящая способность, и соответственно, тем прочнее будет бетон и наоборот. Поэтому предпочтительно использовать цемент сверхтонкого помола. ОТ мелкости помола зависит и такой важный показатель вяжущего, как — активность. Активность напрямую связана с марочной прочностью цементного вяжущего

Для приготовления различных видов бетона используют и разные типы цемента. Его выбор зависит от вида сооружения, для которого готовятся те или иные виды цементного бетона. Конструкции работающие в условиях агрессивных сред требуют спеицальных видов цементного вяжущего. В частности, наибольшей популярностью пользуются различные виды сульфатостойкого цемента. Благодаря своей устойчивости к солям, сульфатостойкое вяжущее позволяет производить бетон, не подвергающийся разрушению при воздействии на него агрессивных сред (например — морской воды).

Как правило такие виды бетонных смесей производят на заводах ориентированных на выпуск мостовых конструкции, железобетонных элементов гидросооружений и т.д. В большинстве же случаев применяются обычные виды бетона товарного, имеющего довольно неплохие характеристики по морозостойкости и водонепроницаемости.

4.2.5.2 Прочность бетона

Важнейшим свойством бетона является прочность. Лучше всего он сопротивляется сжатию. Поэтому конструкции проектируются таким образом, чтобы бетон воспринимал сжимающие нагрузки. В отдельных конструкциях учитывается прочность на растяжение или на растяжение при изгибе.

Прочность бетона характеризуется классом или маркой. Класс представляет собой нормируемое значение гарантированной прочности бетона, МПа, с доверительной вероятностью 0,95 с учетом однородности бетона. Маркой называется нормируемое значение средней прочности бетона, кгс/см2 (10-1МПа), без учета однородности бетона.

Прочность бетона назначается чаще всего в возрасте 28 суток. В зависимости от времени нагружения конструкций может назначаться и в другом возрасте. Например, 4; 7; 60; 90; 180 суток. Так, для бетона гидротехнических речных сооружений прочность назначается в возрасте 180 суток.

В целях экономии цемента полученные значения прочности бетона не должны превышать предел прочности, соответствующий классу или марке более чем на 15 %.

Прочность бетона определяется по результатам испытания контрольных образцов, форма и размеры которых приведены в таблице 4.20.

а)

б)

в)

г)

Рисунок 4.9 – Схемы испытания образцов при определении прочности бетона: а – на сжатии; б – на осевое растяжение; в – на раскалывание; 1 – образцы-цилиндры;

2 – образцы-кубы; 3 – образцы призмы из тяжелого бетона; г – на растяжение при изгибе

Метод

Форма образца

Формулы для определения предела прочности

Размеры образца, мм

Определение прочности на сжатие и на растяжение при раскалывании

Куб

Цилиндр

где R – предел прочности бетона на сжатие, МПа;

Р – разрушающее усилие, Н;

F – площадь рабочего сечения образца, мм2;

a – масштабный коэффициент

Длина ребра: 70; 100; 150; 200; 300;

Диаметр d: 70; 100; 150; 200; 300;

Определение прочности на осевое растяжение

Призма квадратного сечения

Цилиндр

Восьмерка

где Rt– предел прочности бетона на растяжение, МПа;

P – разрушающее усилие, Н;

F – площадь рабочего сечения образца, мм2;

b – масштабный коэффициент

70х70х280;

100х100х400;

150х150х600;

200х200х800;

Диаметр d: 70; 100; 150; 200; 300;

Высота h = 2d

Поперечное сечение восьмерок: 70х70; 100х100; 150х150; 200х200

Определение прочности на растяжение при изгибе и при раскалывании

Призма квадратного сечения

Растяжение при изгибе

Растяжение при раскалывании

где Rtbи Rtt– пределы прочности на растяжение при изгибе и растяжении при раскалывании, МПа;

P – разрушающее усилие, Н;

F – площадь рабочего сечения образца, мм2;

a, b,– ширина, высота и расстояние между опорами, мм;

d и g – масштабные коэффициенты

70х70х280;

100х100х400;

150х150х600;

200х200х800;

Таблица 4.20 – Форма и размеры контрольных образцов. Формулы для определения прочности бетона

Наименьший размер образца примерно в три раза должен превышать наибольшую крупность заполнителя.

Образцы изготавливаются и испытываются сериями. Количество образцов в серии зависит от внутрисерийного коэффициента вариации Vs и принимается 2 при Vs 5 % и менее, 3 или 4 при Vs более 5 до 8 % и 6 при Vs более 8 %. Если коэффициент вариации не определялся, его принимают 13,5 %, и прочность бетона устанавливается испытанием 6 образцов.

За базовый образец при всех видах испытаний принимается образец с размером рабочего сечения 150х150 мм. При испытании образцов с другим рабочим сечением в формулы для определения прочности бетона, приведенные в таблице 4.20, вводятся масштабные коэффициенты по таблице 4.21.

Таблица 4.21Масштабные коэффициенты

Форма и размеры образцов, мм

Значение масштабного коэффициента при испытани

на сжатие, для всех видов бетона, кроме ячеистого α

на растяжении при раскалывании g

на растя-

жение при

изгибе

тяжелого

бетона d

на осевое растяжение b

для тяжелого бетона

для мелко-

зернистого бетона

Куб (ребро) или квадратная призма (сторона):

70

100

150

200

300

Цилиндр (диаметр х высота):

100х200

150х300

200х400

300х600

0,85

0,95

1,00

1,05

1,10

1,16

1,20

1,24

1,28

0,78

0,88

1,00

1,10

0,98

1,13

0,87

0,92

1,00

1,05

0,99

1,08

0,86

0,92

1,00

1,15

-1,34

0,85

0,92

1,00

1,08

Прочность на сжатие. По прочности на сжатие тяжелые бетоны подразделяются на классы: B3,5; B5; B7,5; B10; B12,5; B15; B20; B20,5; B25; B27,5; B30; B35; B40; B50; B55; B60; B70; B75; B80; B85; B90; B95; B100; B105; и марки: M50; M75; M100; M150; M200; M250; M300; M350; M400; M450; M500; M600; M700; M800; M900; M1000.

Между классом бетона и его средней прочностью при коэффициенте вариации прочности бетона n = 13,5 % (0,135) и коэффициенте доверительной вероятности t = 0,95 существуют зависимости

B = R × 0,778 или R = B/0,778.

Например, для бетона класса В20 среднее значение предела прочности контрольных образцов R = 20/0,778 = 25,71 МПа.

При проектировании конструкций чаще всего назначается класс бетона, в отдельных случаях – марка. Соотношение классов и марок для тяжелого бетона по прочности на сжатие приведены в таблице 4.22.

Таблица 4.22 – Соотношение классов и марок при сжатии для тяжелого бетона

Класс

R

МПа

Марка

Класс

R

МПа

Марка

Класс

R

МПа

Марка

B3,5

B5

B7,5

B10

B12,5

4,6

6,5

9,8

13,0

16,5

M50

M75

M100

M150

M150

B15

B20

B25

B30

B35

19,6

26,2

32,7

39,2

45,7

M200

M250

M300

M400

M450

B40

B45

B50

B55

B60

52,4

58,9

65,4

72,0

78,6

M500

M600

M700

M700

M800

Согласно СНБ 5.03.01-02 «Бетонные и железобетонные конструкции» тяжелые бетоны подразделяются на классы, значения которых приведены в таблице 4.23.

Прочность на растяжение. С прочностью бетона на растяжение приходится иметь дело при проектировании конструкций и сооружений, в которых не допускается образование трещин. В качестве примера можно привести резервуары для воды, плотины гидротехнических сооружений. Бетон на растяжение подразделяется на классы: Bt0,4; Bt0,8; Bt1,2; Bt1,6; Bt2; Bt2,4; Bt2,8; Bt3,2; Bt3,6; Bt4,0; Bt4,4; Bt4,8.

Таблица 4.23 – Прочностные характеристики бетонов (СНБ 5.03.01-02)

Характеристика,

единица измерения

Класс бетона по прочности на сжатии

С8/10

С12/15

С16/20

С20/25

С25/30

С30/37

С 35/45

С40/50

С45/55

С50/60

С55/67

С60/75

С70/85

С80/95

С90/105

Нормативное сопротивление бетона осевому сжатию fск, МПа

8

12

16

20

25

30

35

40

45

50

55

60

70

80

90

Гарантированная прочность бетона fGc cube, МПа

10

15

20

25

30

37

45

50

55

60

67

75

85

95

105

Средняя прочность на осевое сжатие fcm, МПа

16

20

24

28

33

38

43

48

53

58

63

68

78

88

98

Средняя прочность бетона на осевое растяжение fctrn, МПа

1,2

1,6

1,9

2,2

2,6

2,9

3,2

3,5

3,8

4,1

4,2

4,4

4,6

4,8

5,0

Нормативное сопротивление бетона осевому растяжению, соответствующее 5 % квантилю статистического распределения прочности fctk, 0,05, МПа

0,85

1,1

1,3

1,5

1,8

2,0

2,2

2,5

2,7

2,9

3,0

3,1

3,2

3,4

3,5

95 % квантиль статистического распределения прочности бетона на осевое растяжение fctk, 0,95, МПа

1,55

2,0

2,5

2,9

3,3

3,8

4,2

4,6

4,9

5,3

5,5

5,7

6,0

6,3

6,8

Прочность на растяжение при изгибе. При устройстве бетонных покрытий дорог и аэродромов назначается прочность бетона на растяжение при изгибе. Бетон на растяжение при изгибе подразделяется на классы: Btb0,4; Btb0,8; Btb1,2; Btb1,6; Btb2,0; Btb2,4; Btb2,8; Btb3,2; Btb3,6; Btb4,0; Btb4,4; Btb4,8; Btb5,2; Btb5,6; Btb6,0; Btb6,4; Btb6,8; Btb7,2; Btb8.

Технологические факторы, влияющие на прочность бетона. На прочность бетона влияет ряд факторов: активность цемента, содержание цемента, отношение воды к цементу по массе (В/Ц), качество заполнителей, качество перемешивания и степень уплотнения, возраст и условия твердения бетона, повторное вибрирование, минеральные и химические добавки.

Активность цемента. Между прочностью бетона и активностью цемента существует линейная зависимость R =f (Rц). Более прочные бетоны получаются на цементах повышенной активности.

Содержание цемента. С повышением содержания цемента в бетоне его прочность растет до определенного предела. Затем она возрастает незначительно, другие же свойства бетона ухудшаются. Увеличивается усадка, ползучесть. Поэтому не рекомендуется вводить на 1 м3 бетона более 600 кг цемента.

Водоцементное отношение. Прочность бетона зависит от В/Ц. С уменьшением В/Ц она повышается, с увеличением – уменьшается. Это определяется физической сущностью формирования структуры бетона. При твердении бетона с цементом взаимодействует 15–25 % воды. Для получения же удобоукладываемой бетонной смеси вводится обычно 40–70 % воды (В/Ц = 0,4…0,7). Избыточная вода образует поры в бетоне, которые снижают его прочность.

Прочность бетона R, Мпа, при твердении в нормально-влажностных условиях выражается формулой

где Rц – активность цемента, МПа; К – коэффициент, принимаемый для бетона на щебне 3,5; на гравии – 4; В/Ц – водоцементное отношение: n – коэффициент, принимаемый для тяжелого бетона;

Зависимость между прочностью бетона при сжатии R и цементно-водным соотношением Ц/В = R (Ц/В) графически выражается S-образной кривой (рисунок 4.9).

Заменяя ее двумя прямыми, получим следующее уравнение:

R = ARц(Ц/В ± b),

где R – прочность бетона при сжатии, МПа; А – коэффициент, учитывающий качество материалов; Rц – активность цемента, МПа; Ц и В – расходы цемента и воды, кг; b – постоянный коэффициент, определяемый опытным путем.

Рисунок 4.9 – Фактическая зависимость прочности бетона от Ц/В

Эта формула выражает основной закон прочности бетона, в которой учитываются качества материалов (А), активность цемента (Rц) и пористость цементного камня (Ц/В).

При Ц/В от 1,43 до 2,5 (В/Ц = 0,4 …0,7) между прочностью бетона R, МПа, активностью цемента Rц, МПа, и Ц/В существует линейная зависимость, выражаемая формулой

R = ARц(Ц/В – 0,5).

При Ц/В > 2,5 линейная зависимость нарушается. Однако в практических расчетах пользуются другой линейной зависимостью:

R = A1Rц(Ц/В + 0,5).

Ошибка в расчетах в этом случае не превышает 2–4 %.

В вышеприведенных формулах: А и А1 – коэффициенты, учитывающие качество материалов. Для высококачественных материалов A = 0,65, А1 = 0,43; для рядовых A = 0,50, А1 = 0,40; для пониженного качества A = 0,55, А1 = 0,37.

Прочность бетона при изгибе Rtb, МПа, определяется по формуле

Rtb = A′Rц ′(Ц/В – 0,2),

где Rц – активность цемента при изгибе, МПа; A‘ – коэффициент, учитывающий качество материалов. Для высококачественных материалов A‘ = 0,42, для рядовых – A‘ = 0,4, материалов пониженного качества – A‘ = 0,37.

По вышеприведенным формулам при известной активности цемента и цементно-водного (водоцементного) отношения можно определить прочность бетона в 28-суточном возрасте. По ней же, если задана прочность бетона, можно вычислить активность цемента.

Качество заполнителей. Неоптимальность зернового состава заполнителей, применение мелких заполнителей, наличие глины и мелких пылевидных фракций, органических и других вредных примесей уменьшает прочность бетона. Прочность крупных заполнителей, сила их сцепления с цементным камнем влияет на прочность бетона.

Качество перемешивания и степень уплотнения бетонной смеси существенно влияют на прочность бетона (см. 4.2.3). Прочность бетона, приготовленного в бетоносмесителях принудительного смешивания, вибро- и турбосмесителях, выше прочности бетона, приготовленного в гравитационных смесителях, на 20–30 %. Качественное уплотнение бетонной смеси повышает прочность бетона, так как изменение средней плотности бетонной смеси на 1 % изменяет прочность на 3–5 %.

Влияние возраста и условий твердения. При благоприятных температурных условиях прочность бетона растет длительное время и изменяется по логарифмической зависимости

где Rn и R28 – предел прочности бетона через n и 28 суток, МПа; lgn и lg28 –

десятичные логарифмы возраста бетона.

Эта формула осредненная. Она дает удовлетворительные результаты для бетонов, твердеющих при температуре 15–20 °С на среднеалюминатных цементах в возрасте от 3 до 300 суток. Фактически же прочность на разных цементах нарастает по-разному.

Интенсивность твердения бетона зависит от В/Ц. Как видно из данных, приведенных в таблице 4.24, более быстро набирают прочность бетоны с меньшим В/Ц.

Таблица 4.24Влияние В/Ц и возраста на скорость твердения бетона на цементе

36 Прочность бетона

36 Прочность бетона.

Важнейшим свойством бетона является прочность. Лучше всего бетон сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в некоторых конструкциях учитывается прочность на растяжение или на растяжение при изгибе.

Прочность. Как и у всех каменных материалов, предел прочности бетона при сжатии значительно выше, чем при растяже­нии и изгибе. Поэтому в строительных конструкциях бетон, как правило, работает на сжатие. Когда говорят о прочности бетона,подразумевают его прочность на сжатие.

Прочность бетона принято оценивать по среднему арифметическо­му значению результатов испытания образцов данного бетона через 28 суток нормального твердения

Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой.

В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%.

Прочность при растяжении. С прочностью бетона на растяжение приходится иметь дело при проектировании конструкций и сооружений, в которых не допускается образование трещин.

Прочность на растяжение при изгибе. При устройстве бетонных покрытий дорог, аэродромов назначают классы или марки бетонов на растяжение при изгибе.

Технологические факторы, влияющие на прочность бетона. 

Активность цемента. Между прочностью бетона и активностью цемента существует линейная зависимость Rb = f(RЦ). Более прочные бетоны получаются на цементах повышенной активности.

Содержание цемента. С повышением содержания цемента в бетоне его прочность растет до определенного предела.

Водоцементное отношение. Прочность бетона зависит от В/Ц. С уменьшением В/Ц она повышается, с увеличением — уменьшается.

Качество заполнителей. Не оптимальность зернового состава заполнителей, применение мелких заполнителей, наличие глины и мелких пылевидных фракций, органических примесей уменьшает прочность бетона.

ЗАКОН ПРОЧНОСТИ

Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен запол­нителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих равных условиях прочнее бетона на гравии.

Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 суток твердения в стандартных условиях). Полученные эксперимен­тальные зависимости R= (Ц/В) представляют довольно сложную кри­вую, имеющую точку перегиба. С некоторым приближением эту кривую в реальном интервале Ц/В (от 1,4 до 3,3) можно аппрок­симировать двумя прямыми, описываемыми уравнением вида

Rб = АRц(Ц/В ± b)

Приведенная формула предложена И. Боломеем и уточнена Б.Г, Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам.

Для обычных бетонов (марок ниже М500) в интервале Ц/В = 1,4…2,5 формула Боломея — Скрамтаева имеет вид

Rб = АRц(Ц/В – 0,5) а для высокопрочных бетонов при Ц/В = 2,5…3,3

Rб = АRц(Ц/В + 0,5)

Эта зависимость справедлива лишь при условии обеспечения плот­ной укладки бетонной смеси.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *