Одна секция радиатора на сколько кв м: Как рассчитать радиаторы отопления

Расчет количества секций радиаторов отопления на 1 кв.м

 При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов  равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около

двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К— мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С— площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

 Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

 К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

 

на сколько квадратов одна секция, сколько ватт на кв метр, как рассчитать количество, сколько обогревает, отапливает

Содержание:

Несмотря на появляющиеся время от времени инновационные разработки обогревателей для жилья, самой надежной и эффективной продолжает оставаться система отопления с радиаторами. Перед ее установкой необходимо точно рассчитать количество радиаторных секций, чтобы избежать недостатка или переизбытка выделяемого тепла.


Основные критерии при расчете отопления

Наряду с общими показателями, при расчете радиаторов отопления на квадратный метр, необходимо взять во внимание ряд факторов, непосредственно влияющих на количество теплопотерь:

  • Число наружных стен. Комната с двумя наружными стенами и одним окном потребует увеличения мощности обогревающих приборов на 20%. В помещениях с двумя окнами количество теплопотерь увеличивается до 30%. Наиболее холодными считаются угловые помещения, где необходимо значительное увеличение энергоресурсов на отопление.
  • Ориентация по сторонам света. Помещения с северным или северо-восточном направлением окон по ходу расчета количества батарей на кв метр требуют добавления к полученной цифре еще 10%. Как показывает практика, потери тепла при таком расположении наиболее значительны.
  • Положение радиаторов. При самостоятельной организации отопительного контура необходимо вооружиться некоторыми принципами. Частично закрытые подоконниками батареи уменьшают свою эффективность на 3-4%. Если для установки обогревателей используются ниши, это влечет за собой увеличение потерь примерно до 7%.
  • Использование экрана. Закрывать батареи экранами – не лучшая идея: подобные действия не одобряются производителями сантехнического оборудования. Если же другого выхода нет, и экран все-таки применяется, следует учесть, что частично закрытые конструкции снижают производительность радиаторов на 7%. Полностью закрытый экран уменьшает эффективность батареи почти на 25%.

Кроме того, в учет необходимо взять число отделанных утеплителем стен, качество стеклопакетов, надежность простенков и т.п. Для того, чтобы из-за недочета количества секций радиатора на квадратный метр в итоге не получить малоэффективную систему, к итоговому результату всегда рекомендуется добавлять 15-20% мощности.

Влияние на результат материала изготовления радиатора

В настоящее время наибольшей популярностью пользуются следующие разновидности радиаторов:

  • Чугунные. Чаще всего используется чугунная батарея марки МС-140 с уровнем теплоотдачи 180 Вт. Этот показатель справедлив лишь при использовании теплоносителя с максимальной температурой. На практике такое бывает редко, поэтому фактическая мощность прибора – 60-120 Вт. Именно эти цифры рекомендуется использовать при проведении расчете ватт на квадратный метр отопления.
  • Стальные. Имеют почти такую же площадь, что и чугунные. Это же касается и параметров, точные значение которых указываются в сопроводительной документации. При этом масса стальных изделий меньше, что делает их транспортировку и монтаж более простым.
  • Алюминиевые. Дать общий ответ, сколько отапливает одна секция алюминиевого радиатора проблематично, так как подобные изделия представлены в продаже в большом количестве модификаций. Поэтому в каждом конкретном случае расчета количества секций алюминиевых радиаторов необходимо руководствоваться паспортными данными модели. В общем считается, что средним показателем, сколько обогревает одна секция алюминиевого радиатора, является 100 Вт/м
    2
    . Если заявленная мощность прибора меньше, то, скорее всего, речь идет о подделке. Также следует сказать, что уровень теплоотдачи алюминия более высокий, чем у чугуна и стали. Это также следует взять во внимание перед тем, как рассчитать количество секций алюминиевых радиаторов отопления.
  • Биметаллические. Эти изделия, совмещающие в себе высокую теплоотдачу алюминия и прочностные качества стали, в настоящее время пользуются наибольшей популярностью у покупателей (уровень мощности одной секции биметаллического радиатора идентичен тому, на сколько квадратов одна секция алюминиевой батареи). Благодаря хорошей теплоотдаче, разрешается несколько сокращать количество секций при установке. Правильный расчет биметаллических радиаторов позволяет сэкономить финансы даже несмотря на то, что биметаллические радиаторы считаются наиболее дорогими.

Максимальные значения теплоотдачи приборов не рекомендуется использовать при расчете секций алюминиевых радиаторов на квадратный метр – теплоноситель в системе обычно никогда не достигает крайних значений. Более надежный путь – использовать минимальные значения, что позволит гарантированно избежать ошибок. Обустроенная на основе расчета секций алюминиевых радиаторов отопительная система будет обеспечивать комфорт в жилище даже при сильных морозах.

Способы расчета количества секций радиатора на квадратный метр

Для подсчета числа секций батареи на 1 м2 жилища обычно применяется один из нижеперечисленных методов:

  • Чтобы узнать, сколько секций батарей нужно на квадратный метр, необходимо выполнить некоторые расчеты. Как гласят строительные нормы, 100 Вт мощности нагревательного прибора должно приходиться на 1 м
    2
    хорошо утепленного дома. На основе этого и проводятся соответствующие вычисления. К примеру, комната на 15 м2 нуждается в 1500 Вт тепловой мощности радиатора. Для чугунных радиаторов за основу берется параметр в 100 Вт: как уже указывалось, получение максимального значения в 180 Вт на практике добиться практически нереально. В итоге получается оптимальное количество ребер – 15 шт.
  • Помещения нестандартной высоты адекватней рассчитывать по объему. В качестве примера можно взять уже знакомую комнату площадью в 15 м2 и высотой 3 метра: ее объем составит 45 м3. Для одного квадратного метра, в зависимости от особенностей помещения, необходимо 30 — 40 Вт. В панельном доме этот показатель берется, как 40: дальнейший простой расчет показывает, что для эффективного обогрева комнаты необходимо 1800 Вт тепловой мощности.
  • Помещения сложной конфигурации рассчитываются формулами с большим числом коэффициентов. Чтобы избежать этой довольно громоздкой процедуры, рекомендуется воспользоваться услугами онлайн-калькулятора. Введя в специальные графы нужные данные, можно за считанные секунды получить необходимый результат. Кроме удобства, такой способ убережет от ошибок в подсчетах, почти неизбежных при самостоятельной реализации.

После того, как наиболее удобный способ расчета выбран, и нужное значение получено, учета потребуют и все остальные факторы, упомянутые выше. Если они имеются, необходимо увеличить итоговое число на указанный процент теплопотерь. В итоге они полностью компенсируются увеличением мощности отопительной системы.


Расчет секций радиаторов: по площади, объему

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов. 

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Содержание статьи

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м2, в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м* 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт  = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

 Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 ми высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем.  16 м2 * 3 м = 48 м
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Подробнее о расчетах площади комнаты и объема читаем тут.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт  (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может  быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м2:

  • биметаллическая секция обогреет 1,8 м2;
  • алюминиевая — 1,9-2,0 м2;
  • чугунная — 1,4-1,5 м2;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м2,  для ее отопления примерно понадобится:

  • биметаллических 16 м2 / 1,8 м2 = 8,88 шт, округляем  — 9 шт.
  • алюминиевых 16 м2 / 2 м2 = 8 шт.
  • чугунных 16 м2 / 1,4 м2 = 11,4 шт, округляем  — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C,  на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Как рассчитать количество секций радиаторов отопления для квартиры?

Как рассчитать количество секций радиаторов отопления для квартиры?

Если Вы решили поменять отопление в квартире то, несомненно, у Вас возникнет вопрос: «Сколько секций радиатора необходимо для обогрева помещения?». Узнать ответ на этот вопрос важно, так как этот параметр обеспечивает комфортную температуру помещения.

 Для того, чтобы рассчитать количеств секций, нам необходимы формулы. Чаще всего основой для вычислений является – площадь, либо объем. Конечно, профессиональные расчеты не так просты, а для точного значения необходимо большое количество критериев, но для стандартной квартиры можно использовать более простой метод, который мы с Вами рассмотрим ниже.

  Считается, что для создания нормальных условий в среднестатистическом жилом помещение достаточно 100 Вт на квадратный метр площади. Если у Вас квартира с высотой потолка до 2,7 м, то, следует всего, лишь вычислить площадь комнаты и умножить ее на 100. То есть, формула примет вид:

Q = S × 100

Q — требуемая теплоотдача от радиаторов отопления,

S — площадь обогреваемого помещения.

  Например, площадь комнаты, в которой Вы хотите установить радиатор отопления составляет 23 кв.м, умножаем 23 на 100, получаем 230. Итак, требуемая теплоотдача радиатора отопления равна 230 Вт/м*К.

  Если Вы планируете установить неразборный радиатор, то это значение и будет ориентиром для подбора необходимой модели. Если же, возможны изменение количества секций, то необходимо  провести следующий расчет:

К = S*100/P

К — число необходимых секций,

S — площадь отапливаемого помещения,

Р — мощность одной секции.

  Например, если брать среднюю мощность секции 150 Ватт и площадь комнаты 25 кв.м., то расчет будет выглядеть так 25х100/150=16,6666.

  Получается, что для эффективного отопления комнаты в 25 кв.м., нужно 16 секций. По такой формуле можно рассчитать объем необходимого количества секций для помещения любой площади.

  Для еще большего упрощения ниже мы привели приблизительные расчеты. Итак, усредненное значение тепловой мощности каждого вида радиатора:

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт  (0,120 кВт). (Разница мощности может быть большой, так как есть батареи с тонкими или толстыми стенками).

  При помощи выше приведенных формул и примеров, Вы с легкостью сможете рассчитать необходимую теплоотдачу радиаторов отопления, именно для Вашего помещения, а также нужное количество секций для помещения. Но помните, что данные расчеты предназначены именно для стандартных жилых квартир.

Как рассчитать количество секций на комнату, расчет батареи

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м2, в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м2 * 3 м = 48 м3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м2:

  • биметаллическая секция обогреет 1,8 м2;
  • алюминиевая — 1,9-2,0 м2;
  • чугунная — 1,4-1,5 м2;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м2, для ее отопления примерно понадобится:

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Расчет батарей отопления на площадь

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.

Кратко о существующих типах радиаторов отопления

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10
Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q– требуемая теплоотдача от радиаторов отопления.

S– площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:

N = Q/ Qус

N– рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 (34)

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В:

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 °С и ниже – D= 1,5
  • — 25 ÷ — 35 °С – D= 1,3
  • до – 20 °С – D= 1,1
  • не ниже – 15 °С – D= 0,9
  • не ниже – 10 °С – D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:

  • До 2,7 м – Е = 1,0
  • 2,8 – 3,0 м – Е = 1,05
  • 3,1 – 3,5 м – Е = 1,1
  • 3,6 – 4,0 м – Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент площади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:

  • Отношение менее 0,1 – Н = 0,8
  • 0,11 ÷ 0,2 – Н = 0,9
  • 0,21 ÷ 0,3 – Н = 1,0
  • 0,31÷ 0,4 – Н = 1,1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом – J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.

Возможно, вас заинтересует информация о том, как выбрать электрокотел.

калькулятор расчета: количество секций радиатора для обогрева помещения

При расчете необходимого количества тепла учитываются площадь отапливаемого помещения из расчета из расчета требуемого потребления 100 ватт на квадратный метр. Кроме того учитывается ряд факторов, влияющих на суммарные теплопотери помещения, каждый из этих факторов вносит свой коэффициент в общий результат расчета.

Такая методика расчета включает практически все нюансы и базируется на формуле довольно точного определения потребности помещения в тепловой энергии. Остается полученный результат разделить на значение теплоотдачи одной секции алюминиевого, стального или биметаллического радиатора и полученный результат округлить в большую сторону.

параметры отаплваемого помещения
Площадь комнаты м2
Высота потолка
Количество наружных
стен комнаты
Коэффициент
теплоизоляции стен
Учет типа помещения,
расположенного этажом выше
Количество окон
Коэффициент, учитывающий остекление оконных проемов
Средняя температура
на улице зимой
результат расчета

необходимое количества тепла: Вт количество секций радиатора, выбранного типа:
тип радиатора

теплоотдача 1 секции рабочее давление давление опресовки вместительность 1 секции масса 1 секции
алюминевые, с межосевым расстоянием 500 мм 183 Вт 20 Бар 30 Бар 0,27 л 1,45 кг
алюминевые, с межосевым расстоянием 350 мм 139 Вт 20 Бар 30 Бар 0,19 л 1,2 кг
биметалические, с межосевым расстоянием 500 мм 204 Вт 20 Бар 30 Бар 0,2 л 1,92 кг
биметалические, с межосевым расстоянием 350 мм 136 Вт 20 Бар 30 Бар 0,18 л 1,36 кг
чугунные, с межосевым расстоянием 500 мм 160 Вт 9 Бар 15 Бар 1,45 л 7,12 кг
чугунные, с межосевым расстоянием 300 мм 140 Вт 9 Бар 15 Бар 1,1 л 5,4 кг

Расчет радиаторов отопления

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления может осуществляться тремя способами:

Стандартный расчет радиаторов отопления

Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

С*100/Р=К, где

К- мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;

С- площадь помещения. Она равна произведению длины комнаты на ее ширину.

К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.

Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:

14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.

Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

Расчёт количества секций радиатора отопления: рекомендации по подготовке данных для расчета, формулы и калькулятор

На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.

Расчёт количества секций радиатора отопления

Порядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому расчету для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.

Расчёт количества секций радиатора отопления

Рекомендации по расчету до начала работы

Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:

Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.

Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.

Расчет радиаторов отопления

Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.

Стандартный расчет радиаторов отопления

В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:

K=S/U*100

В этой формуле:

Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.

Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.

Расчет алюминиевых радиаторов отопления

Приблизительный расчет для стандартных помещений

Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.

Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.

Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.

Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.

Подбор радиаторов отопления по тепловой мощности

Расчет для нестандартных комнат

Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:

A=Bx41,

где:

  • А – нужное число секций отопительной батареи;
  • B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.

Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.

Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.

Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.

Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.

Расчет необходимого количества радиаторов для отопления

Расчет секций радиаторов отопления

Расчет секций радиаторов отопления по мощности

Мы предлагаем простой способ расчета, не требующий специального оборудования и потому доступный каждому. Главным показателем в нем является мощность, необходимая на 1 кв. м площади. Стандартный показатель мощности зависит от климатических условий региона. Москва находится в средней полосе России, для которой характерен умеренный климат. Исходя из этого, показатель необходимой мощности для Москвы равняется примерно 100 Вт на 1 кв. м. В районах, лежащих ближе к Северу, этот показатель доходит до 150-200 Вт на 1 кв. м. Этот показатель стоит учитывать при покупке отопительного котла.

Итак, чтобы произвести расчет секций радиаторов отопления, нужно выяснить мощность, которая потребуется от отопительной системы. Одна секция стандартного чугунного радиатора имеет теплоотдачу, приблизительно равную 120-150 Вт. Это значит, что для отопления помещения площадью 20 кв. м хватит двух чугунных радиаторов, каждый из которых будет состоять из восьми секций. Расчет для биметаллических и аллюминевых радиаторов производится точно так же. Их мощность немного больше мощности чугунного радиатора, и равна приблизительно 100-200 Вт. Точные показатели теплоотдачи указываются в технической характеристике каждого конкретного типа радиаторов. Помимо теплоотдачи самого радиатора, важна температура теплоносителя. Совокупность этих двух показателей влияет на итоговую температуру батарей отопления.

Минусы этого метода расчета секций радиаторов отопления

В числе минусов подобного способа расчета можно назвать невозможность учесть дополнительные факторы. Например, помещения с большим количеством окон, а также угловые помещения всегда холоднее остальных комнат. Качество самих окон также сильно влияет на температуру в помещении. Лучше всего тепло удерживается двухкамерными пластиковыми окнами с 5-7-камерными профилями и инфракрасным напылением. В любом случае, наличие двух и более окон означает, что помещение будет терять тепло быстрее.

Выше уже упоминалось о таком показателе, как температура теплоносителя. Возможно, фактическая температура теплоносителя в радиаторах будет значительно ниже той, которая предполагалась. Чтобы этого не произошло, производя расчет секций радиаторов отопления следует дополнительно прибавлять к показателям по 10-30 % на тепловые потери. Вы точно не ошибетесь в расчетах, если не будете гнаться за точностью, а сделаете расчет, исходя из здравого смысла, с хорошим запасом мощности.

Хорошо отапливаемая в зимнее время квартира или собственный дом – необходимое условие для комфортной жизни. Много раз подумайте, прежде чем решите сэкономить, иначе рискуете проводить все зимы, не снимая шерстяных носков и свитера. Лучше не рисковать собственным здоровьем и установить больше радиаторов отопления (батарей). Жар костей не ломит, как гласит народная мудрость, но если зимой в помещении будет все-таки слишком жарко, то можно закрывать батареи защитными экранами, и тогда они будут давать меньше тепла. Конечно, идеальным решением будет полностью автономная отопительная система с возможностью регулирования температуры.

©Obotoplenii.ru

Другие статьи раздела: Радиаторы

  • Панельные радиаторы отопления: описание, расчет, установка
  • Устройство радиаторов встраиваемых в пол
  • Биметаллические радиаторы отопления
  • Чугунный радиатор отопления: характеристики, достоинства и недостатки
  • Пластинчатые радиаторы: варианты радиаторов «гармошка»
  • Можно спрятать радиаторы в пол
  • Типы радиаторов отопления: какие типы радиаторов отопления существуют

Как рассчитать радиаторы отопления на площадь квартиры

Как рассчитать радиаторы отопления так, чтобы температура в квартире была предельно комфортной — вопрос, который возникает у каждого, кто решился на ремонт. Слишком малое количество секций не будет полностью прогревать помещение, а излишек только повлечёт за собой слишком большие траты на коммунальные услуги. Итак, что необходимо учитывать, чтобы правильно подсчитать размеры батарей?

Как рассчитать радиаторы отопления на площадь квартиры

Предварительная подготовка

Что необходимо учитывать для рассчета мощности радиатора отопления на комнату:

  • определить температурный режим и потенциальные термопотери;
  • разработать оптимальные технические решения;
  • определить тип теплового оборудования;
  • установить финансовые и тепловые критерии;
  • учесть надёжность и технические параметры обогревательных приборов;
  • составить схемы теплопровода и расположение батарей для каждого помещения;

Без помощи специалистов и дополнительных программ рассчитать количество секций радиаторов отопления достаточно сложно. Чтобы расчёт был наиболее точен, не обойтись без тепловизора или специально установленных для этого программ.

Необходимая мощность радиаторов отопления

Что будет, если провести вычисления неправильно? Основное последствие — более низкая температура в помещениях, а следовательно, и эксплуатационные условия не будут соответствовать желаемому. Слишком мощные отопительные приборы приведут к избыточным тратам как на сами приборы и их монтаж, так и на коммунальные услуги.

Самостоятельные подсчёты

Можно приблизительно подсчитать, какой должна быть мощность батарей, использовав только рулетку для измерения длины и ширины стен и калькулятор. Но точность таких вычислений крайне мала. Погрешность будет составлять 15-20%, но такое вполне допустимо.

Формула для расчета

Вычисления в зависимости от типа отопительных приборов

При выборе модели учитывайте, что тепловая мощность зависит от материала, из которого они сделана. Методы вычисления размеров секционных батарей не отличаются, а вот итоги выйдут разными. Есть среднестатистические значения. На них и стоит ориентироваться, выбирая оптимальное число отопительных приборов. Мощности отопительных приборов с секциями в 50 см:

  • батареи из алюминия — 190 Вт;
  • биметаллические — 185 Вт;
  • чугунные приборы обогрева — 145 Вт;

Таблица для расчета количества секций батареи

Чтобы правильно рассчитать радиаторы отопления по площади комнаты, важно знать не только мощность, но и сколько квадратов обогревает одна секция, значение этого параметра зависит от металла:

  • алюминий — 1,9-2 м кв.;
  • алюминий и сталь — 1,8 м кв.;
  • чугун — 1,4-1,5 м кв;

Вот пример вычисления количества секций алюминиевых радиаторов отопления. Допустим, что размеры комнаты 16 м. кв. Выходит, что на помещение такого размера нужно 16м2/2м2 = 8 шт. По такому же принципу считайте для чугунных или биметаллических приборов. Важно только точно знать норму — приведённые выше параметры верны для моделей высотой в 0,5 метра.

Виды радиаторов отопления

На данный момент выпускаются модели от 20 до 60 см. Соответственно площадь, которую способна обогреть секция, будет отличаться. Самые маломощные модели — бордюрные, высотой в 20 см. Если вы решили приобрести тепловой агрегат нестандартных размеров, то в вычислительную формулу придётся вносить корректировку. Ищите необходимые данные в техпаспорте.

При внесении корректировок стоит учитывать, что размер батарей напрямую влияет на теплоотдачу. Следовательно, чем меньше высота при той же ширине, тем меньше площадь, а вместе с ними и мощность. Для верных подсчётов найдите соотношение высот выбранной модели и стандартной, а уже с помощью полученных данных подкорректируйте результат.

Расчитываем, насколько сильно должна греть батарея

Допустим, вы выбрали модели высотой 40 см. В этом случае расчёт количества секций алюминиевых радиаторов отопления на площадь комнаты будет выглядеть следующим образом:

  • воспользуемся предыдущими подсчётами: 16м2/2м2 = 8штук;
  • посчитайте коэффициент 50см/40см = 1,25;
  • подкорректируйте вычисления по основной формуле — 8шт*1,25 = 10 шт.

Расчёт количества радиаторов отопления по объёму начинается в первую очередь со сбора необходимой информации. Какие параметры нужно учесть:

  • Площадь жилья.
  • Высота потолков.
  • Число и площадь дверных и оконных проёмов.
  • Температурные условия за окном в период отопительного сезона.

Теплопотери

Нормы и правила, установленные для мощности отопительных проборов, регламентируют минимально допустимый показатель на кв. метр квартиры — 100 Вт. Расчёт радиаторов отопления по объему помещения будет более точен, чем тот, в котором за основу берётся только длина и ширина. Итоговые результаты корректируются в зависимости от индивидуальных характеристик конкретного помещения. Делается это посредством умножения на коэффициент корректировки.

При вычислении мощности отопительных приборов берётся среднестатистическая высота потолков — 3 м. Для квартир с потолком 2,5 метра этот коэффициент составит 2,5м/3м = 0,83, для квартир с высокими потолками 3,85 метров — 3,85м/3м = 1,28. Угловые комнаты потребуют внесения дополнительных корректировок. Итоговые данные умножаются на 1,8.

Расчёт количества секций радиатора отопления по объему помещения должен проводиться с корректировкой, если в комнате одно окно большого размера или сразу несколько окон (коэффициент 1,8).

Радиаторы отопления с нижним подключением

Нижнее подключение также потребует внести свои корректировки.  Для такого случая коэффициент составит 1,1.

В районах с экстремальными погодными условиями, где зимние температуры достигают рекордно низких показателей, мощность должна быть увеличена в 2 раза.

Пластиковые стеклопакеты, наоборот, потребуют корректировку в сторону уменьшения, за основу берётся коэффициент 0,8.

В выше приведённых данных приведены усреднённые значения, поскольку не были дополнительно учтены:

  • толщина и материал стен и перекрытий;
  • площадь остекления;
  • материал напольного покрытия;
  • наличие или отсутствие утеплителя на полу;
  • занавески и гардины в оконных проёмах.

Дополнительные параметры для более точных вычислений

Работа с тепловизором

Точный расчёт количества радиаторов отопления на площадь не обойдётся без данных из технических документов. Это важно, чтобы точнее определить значение теплопотерь. Лучше всего определить уровень потери тепла с помощью тепловизора. Прибор быстро определит самые холодные области в помещении.

Всё было бы в разы легче, если каждая квартира была построена по стандартной планировке, но это далеко не так. В каждом доме или городской квартире свои особенности. С учётом множества характеристик (числа оконных и дверных проёмов, высоты стен, площади жилья и пр.) резонно возникает вопрос: как же рассчитать количество радиаторов отопления?

Расчет радиаторов отопления по площади

Особенности точной методики в том, что для вычислений необходимо больше коэффициентов. Одно из важных значений, которое нужно вычислить — это количество тепла. Формула отлична от предыдущих и выглядит следующим образом: КТ = 100 Вт/м2*П*К1*К2*К3*К4*К5*К6*К7.

Подробнее о каждом значении:

  • КТ — количество тепла, которое нужно для обогрева.
  • П — размеры комнаты м2.
  • К1 — значение этого коэффициента учитывает качество остекления окон: двойное — 1,27; пластиковые окна с двойным стеклопакетом — 1,0; с тройным — 0,85.
  • К2 — коэффициент, учитывающий уровень теплоизоляционных характеристик стен: низкая — 1,27; хорошая (например двухслойная кирпичная кладка) — 1,0; высокая — 0,85.
  • К3 — это значение учитывает соотношение площадей оконных проёмов и полов: 50% — 1,2; 40% — 1,1; 30% — 1,0; 20% — 0,9; 10% — 0,8.
  • К4 — коэффициент, зависящий от среднестатистических температурных показателей воздуха в зимнее время года: — 35 °С — 1,5; — 25 °С — 1,3; — 20 °С — 1,1; — 15 °С — 0,9; -10 °С — 0,7.
  • К5 зависит от числа внешних стен здания, данные этого коэффициента таковы: одна — 1,1; две — 1,2; три — 1,3; четыре — 1,4.
  • К6 рассчитывается, исходя из типа помещения, находящегося этажом выше: чердак — 1,0; чердачное отапливаемое помещение — 0,9; отапливаемая квартира — 0,8.
  • К7 — последний из корректировочных значений и зависит от высоты потолка: 2,5 м — 1,0; 3,0 м — 1,05; 3,5 м — 1,1; 4,0 м — 1,15; 4,5 м — 1,2.

Описанный расчёт секций батарей отопления по площади — наиболее точный, поскольку учитывает значительно больше нюансов. Полученное в ходе этих подсчётов число делится на значение теплоотдачи. Итоговый результат округляется до целого числа.

Корректировка с учётом температурного режима

В техпаспорте отопительного прибора указана максимальная мощность. Например, при температуре воды в теплопроводе 90°С во время подачи и 70°С в обратном режиме в квартире будет +20°С. Такие параметры обычно обозначают так: 90/70/20, но самые распространённые мощности в современных квартирах — 75/65/20 и 55/45/20.

Параметры теплоносителя системы отопления.

Для правильного расчёта необходимо для начала высчитать температурный напор — это разница между температурой самой батареи и воздуха в квартире. Учтите, что для вычислений берётся усреднённое значение между температурами подачи и обратки.

Как рассчитать количество секций алюминиевых радиаторов с учётом выше перечисленных параметров? Для лучшего понимания вопроса будут произведены вычисления для батарей из алюминия в двух режимах: высокотемпературном и низкотемпературном (расчёт для стандартных моделей высотой 50 см). Размеры комнаты те же — 16 м кв.

Одна секция алюминиевого радиатора в режиме 90/70/20 обогревает 2 кв метра., следовательно, для полноценного обогрева помещения понадобится 16м2/2м2 = 8 шт. При вычислении размера батарей для режима 55/45/20 нужно для начала подсчитать температурный напор. Итак, формулы для обеих систем:

  • 90/70/20 — (90+70)/2-20 = 60°С;
  • 55/45/20 — (55+45)/2-20 = 30°С.

Расчитываем количество секций в радиаторе отопления

Следовательно, при низкотемпературном режиме нужно увеличить размеры отопительных приборов в 2 раза. С учётом данного примера на помещении 16 кв. метров нужно 16 алюминиевых секций. Учтите, что для чугунных приборов понадобится 22 секции при той же площади помещения и при таких же температурных системах. Подобная батарея получится слишком большой и массивной, поэтому чугун меньше всего подходит для низкотемпературных контструкций.

С помощью этой формулы можно легко вычислить, сколько необходимо секций радиаторов на комнату с учётом желаемого температурного режима. Чтобы зимой в квартире было +25°С, просто поменяйте температурные данные в формуле теплового напора, а полученный коэффициент подставьте в формулу вычисления размера батарей. Допустим, при параметрах 90/70/25 коэффициент будет таким: (90+70)/2 — 25 = 55°С.

Далее нужно подсчитать соотношение 60°С/55°С = 1,1. В итоге, чтобы добиться температуры в +25 °С для помещения с высокотемпературным режимом понадобится 8шт*1,1 = 8,8. С округлением получится 9 штук.

Если не хочется тратить время на расчёт радиаторов отопления, можно воспользоваться онлайн-калькуляторами или специальными программами, установленными на компьютер.

Как пользоваться онлайн-калькулятором

Он-лайн калькулятор для расчета мощности радиаторов

Посчитать, сколько секций радиаторов отопления на кв. метр понадобится, можно с помощью специальных калькуляторов, которые всё посчитают в мгновение ока. Такие программы можно найти на официальных сайтах некоторых производителей. Воспользоваться этими калькуляторами легко. Просто введите в поля все соответствующие данные и вам моментально будет выведен точный результат. Чтобы вычислить, сколько секций радиаторов отопления нужно на квадратный метр, надо вводить данные (мощность, температурный режим и т.д.) для каждой комнаты отдельно. Если же помещения не разделены дверями, сложите их общие размеры, а тепло будет распространяться по обоим помещениям.

Интерфейс калькулятора отопления.

Во избежание неточностей при вычислениях, внимательно вводите все параметры и проверьте, насколько точные данные вы указали в соответствующих полях. Лучше несколько раз перепроверить, чем потом испытывать на себе последствия своих ошибок в виде слишком низкой или высокой температуры в доме.

Подведение итогов

Итак, из выше приведённых формул понятно, как правильно сделать расчёт алюминиевых (чугунных, биметаллических и др.) радиаторов для квартиры. Как видите, дело это не такое уж и сложное. Главное, внимательность и точность. Чтобы получить максимально правильные данные, используйте специальное оборудование.

схема определения и важные параметры комнат

При длительном проживании в доме многие люди сталкиваются с необходимостью замены системы отопления. Некоторые владельцы квартир в определённый момент решают выполнить замену изношенного радиатора отопления. Чтобы после выполнения необходимых мероприятий в доме была обеспечена теплая атмосфера, необходимо правильно подойти к задаче расчета отопления для дома по площади помещения. От этого во многом зависит эффективность работы системы отопления. Чтобы обеспечить это, нужно правильно произвести расчет количества секций устанавливаемых радиаторов. В этом случае теплоотдача от них будет оптимальной.

Если количество секций будет недостаточным, то необходимый прогрев комнаты никогда не произойдет. А по причине недостаточного количества секций в радиаторе возникнет большой расход тепла, что негативным образом отразится на бюджете владельца квартиры. Определить потребность конкретного помещения в отоплении можно, если произвести простые расчеты. А для того чтобы они казались точными, при их выполнении необходимо принимать во внимание целый ряд дополнительных параметров.

Простые вычисления по площади

Для того чтобы правильно рассчитать радиаторы отопления для определенного помещения, необходимо, прежде всего, принимать во внимание площадь комнаты. Самый простой способ — ориентироваться на сантехнические нормы, согласно которым для отопления 1 кв. м. требуется 100 Ватт мощности радиатора отопления. Следует не забывать и о том, что этот метод может использоваться для помещений, у которых высота потолков стандартная, то есть, варьируется от 2,5 до 2,7 метра. Выполнение расчетов с использованием этого метода позволяет получить несколько завышенные результаты. Помимо этого при его использовании во внимание не принимаются следующие особенности:

  • число окон и тип пакетов, установленных в помещении;
  • количество наружных стен, расположенных в помещении;
  • материалы изготовления стен и их толщина;
  • тип и толщина используемого утеплителя.

Тепло, которое для создания комфортной атмосферы в помещении должны давать радиаторы: для получения оптимальных расчетов необходимо взять площадь помещения и умножить ее на тепловую мощность радиатора.

Пример расчета радиатора

Скажем, если комната имеет площадь 18 кв. м., то для неё потребуется батарея мощностью 1800 ватт.

18 кв. м. х 100 Вт = 1800 Вт.

Полученный результат необходимо разделить на количество тепла, которое в течение часа выделяет одна секция радиатора отопления. Если в паспорте изделия указывают, что этот показатель равен 170 Вт, то далее расчеты будут такими:

1800 Вт / 170 Вт = 10,59.

Полученный результат необходимо округлить до целого. В результате получаем 11. Это означает, что в помещение с такой площадью оптимальным решением будет установка радиатора отопления с одиннадцатью секциями.

Следует сказать, что подобный метод отлично подходит только помещений, которые получают тепло от централизованной магистрали, где циркулирует теплоноситель с температурой 70 градусов Цельсия.

Существует еще один способ, который по своей простоте превосходит предыдущие. Применять его можно для расчета количества отопления в квартирах панельных домов. При его использовании учитывается то, что одна секция в состоянии обогреть площадь 1,8 кв. м., то есть, при выполнении расчетов площадь помещения следует разделить на 1,8. Если комната имеет площадь 25 кв. м., то для обеспечения оптимального отопления потребуется 14 секций в радиаторе.

25 кв. м. / 1,8 кв. м. = 13,89.

Однако у такого метода расчета имеется один нюанс. Его нельзя использовать для приборов пониженной и повышенной мощности. То есть, для тех радиаторов, у которых отдача одной секции варьируется в диапазоне от 120 до 200 Вт.

Метод расчета отопления для комнат с высокими потолками

Если в помещении потолки имеют высоту более 3 метров, то применение перечисленных выше способов не дает возможности правильно рассчитать потребность в отоплении. В таких случаях необходимо использовать формулу, которая учитывает объем помещения. В соответствии с нормативами СНиП, для обогрева одного кубического метра объема помещения требуется 41 Ватт тепла.

Пример расчета радиатора

Отталкиваясь от этого, для обогрева помещения, площадь которого составляет 24 кв. м., а высота потолков не менее 3 метров, расчеты будут следующие:

24 кв. м. х 3 м = 72 куб. м. В результате получаем общий объем помещения.

72 куб. м. х 41 Вт = 2952 Вт. Полученный результат — суммарная мощность радиатора, который обеспечит оптимальный обогрев комнаты.

Теперь необходимо рассчитать количество секций в батарее для комнаты такой площади. В том случае если в паспорте к изделию указано, что теплоотдача одной секции составляет 180 Вт, при расчетах необходимо общую мощность батареи разделить на это число.

В итоге получаем 16,4. Потом результат нужно округлить. В результате имеем 17 секций. Батареи с таким количеством секций вполне хватит для создания теплой атмосферы в комнате площадью 72 м3. Выполнив несложные вычисления, получаем нужные нам данные.

Дополнительные параметры

Выполнив расчет, следует провести корректировку полученного результата, принимая во внимание особенности комнаты. Они должны учитываться следующим образом:

  • для комнаты, являющейся угловой, с одним окном при расчетах к полученной мощности батареи необходимо добавить 20% дополнительно;
  • если в помещении имеется два окна, то должна быть выполнена корректировка в сторону увеличения на 30%;
  • в случаях, когда монтаж радиатора выполняется в нише под окном, его теплоотдача несколько снижается. Поэтому необходимо добавить к его мощности 5%;
  • в комнате, в которой окна выходят на северную сторону, к мощности батареи необходимо дополнительно добавить 10%;
  • украшая батарею в своей комнате специальным экраном, следует знать, что он крадет у радиатора некоторое количество тепловой энергии. Поэтому дополнительно необходимо прибавить к радиатору 15%.

Специфика и другие особенности

В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:

  • температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
  • в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
  • в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.

Климатические зоны

Каждый знает, что каждая климатическая зона имеет свои потребности в обогреве. Поэтому при разработке проекта необходимо принимать во внимание эти показатели.

У каждой климатической зоны имеются свои коэффициенты, которые необходимо использовать при расчетах.

Для средней полосы России этот коэффициент равен 1. Поэтому он не используется при расчетах.

В северных и восточных регионах страны коэффициент равен 1,6.

В южной части страны этот показатель варьируется от 0,7 до 0,9.

При выполнении расчетов необходимо на этот коэффициент умножить тепловую мощность. А потом на теплоотдачу одной секции разделить полученный результат.

Заключение

Расчет отопления в помещении очень важен для обеспечения теплой атмосферы в жилище в зимнее время. Больших сложностей с выполнением расчетов обычно не возникает. Поэтому каждый владелец может осуществить их самостоятельно, не прибегая к услугам специалистов. Достаточно найти формулы, которые используются для расчетов.

В этом случае можно сэкономить на приобретении радиатора, так как вы будете избавлены от необходимости платить за ненужные секции. Установив их на кухне или в гостиной, в вашем жилище будет царить комфортная атмосфера. Если вы неуверены в точности своих расчетов, из-за которых вы не подберете оптимальный вариант, то следует обратиться к профессионалам. Они правильно произведут расчеты, а после качественно выполнят установку новых радиаторов отопления или грамотно проведут монтаж системы отопления.

Оцените статью: Поделитесь с друзьями!

Как подобрать радиаторы для помещений | Руководства по дому

Радиаторы — это один из способов обогрева комнаты, в которой нет камина, центрального отопления или обогревателя плинтуса. Но они должны иметь правильный размер для наиболее эффективного использования энергии. Если радиатор слишком мал, он не сможет согреть людей в комнате. Если он слишком большой, он будет чаще включаться и выключаться, потребляя больше энергии.

Измерьте длину, ширину и высоту комнаты в футах. Умножьте все три значения, чтобы определить кубический размер пространства.Например, если у вас есть комната размером 12 футов в длину, 10 футов в ширину и 7 футов в высоту, умножение 12 на 10 на 7 дает 840 кубических футов.

Умножьте результат на 5 для радиаторов в гостиной и столовой, на 4 для спален или на 3 для кухонь и других помещений дома. Например, если умножить 840 кубических футов от спальни на 3, получится 2520.

Добавьте 15 процентов к результату, если комната выходит на север. Если в нем французские двери, добавьте 20 процентов, а если окна со стеклопакетами, вычтите 10 процентов.Например, поскольку спальня для радиатора выходит на север, вы добавляете 15 процентов к 2520, чтобы получить 2898, что является количеством БТЕ или британских тепловых единиц, которое ваш радиатор должен производить в час для адекватного обогрева комнаты.

Преобразуйте расчет BTU в ватты, потому что в спецификациях большинства радиаторов их тепловая мощность указывается в ваттах. Преобразование неточно, потому что БТЕ — это единицы тепла, а ватты — это единицы мощности.

Разделите количество БТЕ на 3,41. Например, если вы разделите 2898 БТЕ на 3.41, результат составляет около 850 Вт. Радиатор на 850 Вт необходим для выработки 2898 БТЕ в час, необходимых для помещения размером 12 на 10 на 7 футов, использованного в примере.

Ссылки

Писатель Биография

Аурелио Локсин профессионально пишет с 1982 года. Он опубликовал свою первую книгу в 1996 году и является частым автором многих онлайн-изданий, специализирующихся на потребительских, деловых и технических темах. Локсин имеет степень бакалавра искусств в области научных и технических коммуникаций Вашингтонского университета.

Радиатор какого размера мне выбрать?

28 февраля 2019 г. Paul

Выбор радиатора подходящего размера может сильно повлиять на комфорт вашего дома.

Слишком часто домовладельцы переплачивали по счетам за электроэнергию или были недовольны своими решениями в области отопления. Рассмотрение базовой информации о вашей ситуации и ее требованиях может сэкономить много хлопот.

Наш гид поможет вам выбрать радиатор идеального размера. Самый рентабельный и энергоэффективный вариант — это простой расчет.

Размер

Размер вашей комнаты существенно влияет на размер необходимого радиатора. Маленькому радиатору будет сложно эффективно обогреть большую комнату из-за количества воздуха, против которого он способен воздействовать. Это может привести к несбалансированной температуре в помещении и длительным потерям энергии. Большие радиаторы могут быстро изменять температуру в небольшой комнате, однако их эксплуатация может быть более дорогой.

Получение точного размера очень важно. Чтобы рассчитать площадь пола в вашей комнате, вам нужно измерить и умножить длину пола на его ширину.Например, комната длиной 4 метра и шириной 3,5 метра имеет площадь 14 квадратных метров. Для эффективного обогрева этой комнаты вам потребуется модель радиатора подходящего размера с минимальной мощностью 1430 Вт.

Калькулятор помещения Heater Shop подберет наиболее подходящую мощность радиатора для вашей комнаты; он прогнозирует способность модели получать и поддерживать температуру окружающей среды на уровне 21 ° C. Есть и другие факторы, которые также следует учитывать при определении размера радиатора, подходящего для обогрева вашей комнаты.

Изоляция

Учет теплоизоляции вашего здания очень важен для выбора радиатора правильного размера. В помещениях с плохим удержанием тепла может потребоваться радиатор большего размера для эффективного регулирования температуры окружающей среды. Помните, что качество изоляции может варьироваться по всему зданию; влияющие факторы включают количество окон в комнате или чердак.

Если это новое здание, оно обычно имеет очень хорошую изоляцию, но старые постройки могут пропускать много тепла.Строения из кирпича, бетона и дерева имеют разные изоляционные свойства, поэтому тщательно подумайте о своих вариантах или проконсультируйтесь со специалистом. Если вы не уверены, Heater Shop имеет техническую команду, доступную по телефону 01473 276686.

Где вы находитесь в стране

От холмистых Гебридских островов до белых скал Дувра, где вы находитесь в стране, в значительной степени влияет на рекомендуемые размер радиатора, который вам нужен. Протяженность Великобритании составляет 601 милю, и в ней наблюдаются удручающе странные погодные условия; средняя наружная температура влияет на правильный размер радиатора.Городское или сельское местоположение также влияет на предлагаемое решение по отоплению, поскольку городские города производят и сохраняют немного больше тепла, чем сельские районы.

Наш калькулятор размера комнаты дает приблизительную рекомендацию в зависимости от вашего местоположения: в некоторых частях страны требуется более мощный радиатор, чем в других.

Вид вашей комнаты

В зависимости от того, какую комнату вы хотите обогреть, она может получать больше солнечного света, чем другие.Ориентация вашей комнаты может повлиять на требуемую мощность вашего радиатора и, следовательно, на его необходимый размер. Это часто упускаемый из виду фактор, который может сэкономить оператору много денег в течение календарного года.

Мансардные окна, эркеры и французские окна — все это способствует успешному поддержанию хорошего обогрева вашей комнаты. Следует учитывать качество стекла и конструкцию окна, а также высоту и структуру помещения. Размещение радиатора в комнате повлияет на его практическое применение, а также на эстетику; помните о предназначении комнаты и о том, как ваш радиатор может быть наиболее полезным.

Если вам нужны дополнительные разъяснения или заверения, не стесняйтесь обращаться к нам по телефону 01473 276686.

Калькулятор радиатора

Этот калькулятор радиаторов (также известный как калькулятор теплопотерь) предоставит руководство по выходной мощности, необходимой как в БТЕ, так и в ваттах для определенного помещения.

Калькулятор требует, чтобы размеры вводились в метрах, поэтому при необходимости мы включили удобный конвертер из имперской системы в метрическую — просто введите свои размеры в футах и ​​дюймах (или просто дюймах) и нажмите кнопку РАСЧЕТ.

Калькулятор основного радиатора прост в использовании — просто заполните форму, включая размеры комнаты, площадь окна (умножьте высоту на ширину оконной рамы) и выберите детали пола, потолка и стен, которые лучше всего подходят для вашего дома. Результаты приведены внизу страницы и для вашего удобства включают в себя британские тепловые единицы (BTU) и ватты.

футы и дюймы »Конвертер метров

БТЕ / Вт Калькулятор
Посмотрите наш полный ассортимент радиаторов, выбрав тип ниже.

Радиатор какого размера мне нужен?

Калькулятор рассчитывает требуемую тепловую мощность, и теперь мы добавили динамические ссылки, которые появятся, когда вы укажете размер комнаты и т. Д. Эти ссылки приведут вас к выбору радиаторов на основе результатов вашей тепловой мощности, что позволит вам купить сразу если хочешь! Есть стандартные радиаторы, дизайнерские радиаторы, колонные радиаторы в традиционном стиле, а также поручни для полотенец с подогревом как в классическом, так и в современном дизайне.

Обратите внимание, что в этом калькуляторе для радиаторов используются стандартные формулы, однако результаты являются ориентировочными, и мы не даем никаких гарантий относительно точности индивидуальных результатов. Вы можете обнаружить, что некоторые онлайн-калькуляторы для радиаторов дают разные результаты — мы советуем руководствоваться интуитивным чутьем и руководствоваться здравым смыслом. Более высокий результат означает, что вы будете искать радиатор большего размера, который будет стоить дороже …

Мы надеемся, что предоставленная информация окажется интересной и поможет вам сделать осознанный выбор радиатора.Мы будем рады любым комментариям, которые у вас могут быть — отправляйте письма по адресу или звоните по телефону 01752 705522.

Анализ и исследования энергосберегающей реконструкции системы отопления здания

Система отопления здания потребляла много энергии и не отвечала требованиям защиты окружающей среды, поэтому ее необходимо было реформировать. После перерасчета тепловой нагрузки было обнаружено, что размер источника тепла, спецификации трубопроводной сети и площади радиаторов исходной системы отопления был завышен.По сравнению с газовым котлом, источник тепла был преобразован в систему водяного теплового насоса. Температура подачи воды теплового насоса источника воды была ниже, чем у котла. В общем, возникла необходимость увеличить площадь радиатора. Однако после расчета и проверки, когда температура подаваемой и обратной воды составляла 65/58 ° C, система работала непрерывно, а исходная трубопроводная сеть и радиатор все еще могли обеспечивать температуру в помещении на уровне 16 ° C. Общая стоимость трансформации составила 11.5 миллионов китайских юаней. После анализа рабочих данных новой системы, система водяного теплового насоса смогла сэкономить 82,6% энергии по сравнению с исходной системой и 29,6% затрат по сравнению с системой центрального отопления. Преобразование прошло успешно, и этот опыт стоит популяризировать.

1. Введение

В последние годы в связи с более строгой экологической политикой использование угольных котлов для отопления запрещено. Многие страны активно продвигают «уголь в электричество» или «уголь в газ» [1, 2].Для зданий, не относящихся к центральному отоплению, при выборе типа источника тепла необходимо учитывать технологические факторы, защиту окружающей среды, энергосбережение и экономию. Это требует от инженеров определения формы источника тепла в соответствии с местными условиями, а не механически.

Преобразование отопления изучали многие профессионалы. Чжан [3] обобщил соответствующие технологии и характеристики применения энергосберегающего ремонта общественных зданий в зонах жаркого лета и холодной зимы.Wang et al. [4] взяли в качестве примера университет, расположенный в провинции Цзинань Шаньдун, для исследования эффективности энергосберегающей системы преобразования. He et al. [5] проанализировали проблемы с различных аспектов в Карамайской экспериментальной средней школе, такие как источник тепла, первичный контур, вторичный контур, внутренняя система отопления и конструкция ограждающей конструкции здания, и предложили соответствующие решения. После принятия мер система достигла нормы отопления. После исследования системы источников холода и тепла в средней школе в холодной зоне, Zhi-yong et al.[6] выполнили энергосберегающее преобразование исходной системы источника холода и тепла, исходя из трех аспектов: прогнозирования нагрузки, проектирования схемы преобразования и анализа преимуществ преобразования. Ли [7] использовал водяной тепловой насос для нагрева вала, что снизило эксплуатационные расходы на 1,1086 млн китайских юаней в год.

Применение теплового насоса в различных случаях также изучалось многими учеными. Wu et al. [8] изучали рабочие характеристики теплового насоса поверхностного речного источника с замкнутым контуром.Ли и др. [9] изучали применение теплового насоса с морской водой в аквакультуре. Сан и Ли [10, 11] использовали технологию теплового насоса источника шахтной воды для обеспечения отопления и охлаждения промышленной зоны, что принесло значительные экономические выгоды. Лю и др. [12–14] изучали применение теплового насоса для очистки сточных вод в отоплении.

В этой статье на примере реконструкции системы отопления гидротехнического сооружения анализируется процесс и подход к определению источника тепла в соответствии с реальной ситуацией в проекте, а также всесторонне рассматриваются различные факторы и анализируется эффект трансформации.

2. Обзор проекта

Гидравлическая станция, расположенная в городе Линьфэнь, провинция Шаньси, Китай, была построена в 1980-х годах с пропускной способностью водоснабжения 2500 м 3 3 / час. Вся вода идет из-под земли. Есть 2530 квадратных метров жилых зданий, таких как офисное здание (три этажа), 6544 квадратных метра производственных зданий, таких как различные водоочистные цеха (один этаж), 3926 квадратных метров различных бассейнов с водой, с общей площадью застройки 13000 квадратных метров. метров, в том числе 9970 квадратных метров строительной площади отопления.Рядом с территорией завода отсутствует сеть центрального отопления. Источником тепла был угольный водогрейный котел с номинальной тепловой мощностью 1400 кВт, и была принята внутренняя система радиаторного отопления. Когда температура наружного воздуха была ниже 0 ° C, котельная система запускалась и работала в режиме прерывистого нагрева, и нагрев продолжался 5 месяцев каждый год. Во время работы средняя температура в помещении поддерживалась на уровне 16 ° C. Среднегодовое потребление угля составляло около 700 тонн, а среднегодовые затраты на отопление — 55.1 китайский юань за квадратный метр. Стандартная стоимость местного центрального отопления составляет всего 23,2 китайских юаня за квадратный метр. Таким образом, стоимость эксплуатации системы была очень высокой, а потери энергии — серьезными. В то же время местная политика по охране окружающей среды также начала ограничивать использование угольных котлов, поэтому было рассмотрено энергосберегающее преобразование источника тепла.

3. Определение типа источника тепла

Нагревательная нагрузка была пересчитана в соответствии с конструкцией шкафа, как показано в таблице 1.По расчету тепловая нагрузка составляет 648,55 кВт, что меньше половины исходной тепловой мощности котла (1400 кВт).


7
7 Офисное здание 9013 9013 9013 9013 901 трубопроводная сеть вокруг территории завода, но была сеть трубопроводов природного газа. В то же время станция была богата водными ресурсами, поэтому в качестве источников тепла в основном рассматривались газовые котлы или водяные тепловые насосы.По данным расследования, местная цена на природный газ составляла 3,2 китайских юаня за кубический метр. Стоимость газа была рассчитана, как показано в таблице 2. Стоимость газа составляет 60,28 китайских юаней за квадратный метр, что даже выше первоначальной стоимости угля (55,1 китайских юаней за квадратный метр).


Здание Площадь (м 2 ) Тепловая нагрузка (кВт) Индекс нагрева (Вт / м 2 )
2700 183,6 68
Цех глубокой очистки воды 2300 138 60
Помещение для подачи химикатов 1300 88.4 68
Прочие мастерские 3670 238,55 65
Итого 9970 648,55 65,1

Название параметра Значение параметра Ед.55 кВт
Расчетная температура внутреннего воздуха для обогрева 18 [15] ° C
Средняя температура наружного воздуха в период отопления 1,1 [15] ° C
Наружный температура воздуха для расчета отопления -6,6 [15] ° C
Годовое потребление тепла 6525,99 [16] ГДж
Теплотворная способность природного газа 38.6 [17] МДж / м³
Тепловой КПД котла 0,9
Расход природного газа 187790.09 м 3
2
Плата за газ 60,28 китайских юаней / м 2

Источником воды для гидроузла ( ) ° C, что подходит для работы водяных тепловых насосов зимой.Кроме того, гидротехнические сооружения очищают 60000 кубических метров воды каждый день и работают круглосуточно, что может удовлетворить потребности тепловых насосов с водным источником. Основываясь на приведенном выше анализе, в основном рассматривалась возможность использования водяного теплового насоса.

4. Определение схемы нагрева водяного теплового насоса
4.1. Проблемы и анализ несоответствия температуры подаваемой и оборотной воды между системой теплового насоса источника воды и системой котла

В соответствии с реальной ситуацией, температура подачи воды исходной системы котла составляет 80 ° C, а разница температур между подающей и обратной вода была 25 ° C.Однако для водяного теплового насоса самая высокая температура отопительной воды составляет 65 ° C, а разница температур между подающей и обратной водой обычно составляет от 5 ° C до 15 ° C (получено путем исследования производителей тепловых насосов). Следовательно, если тепловой насос источника воды используется вместо бойлера, температура подаваемой воды будет снижена, а разница температур воды между подачей и обраткой будет меньше. Понижение температуры воды приведет к уменьшению теплоотдачи радиатора; Для сохранения постоянного тепловыделения необходимо увеличить площадь радиатора.В то же время меньшая разница температур означает больший расход.

4.1.1. Определение разницы температур между подающей и оборотной водой системы теплового насоса

Чем больше разница температур системы теплового насоса, тем меньше потеря сопротивления системы, тем выше вероятность использования старой трубопроводной сети. Согласно результатам исследования раскопок, основная труба сети наружного отопления на заводе изготовлена ​​из стальной сварной трубы DN 125. Удельное трение рассчитывается путем взятия разницы температур между подающей и возвратной водой при 5 ° C, 7 ° C и 10 ° C, а результаты расчета показаны в таблице 3.Когда разница температур составляет 7 ° C и 10 ° C, поток удовлетворяет требованиям экономического диапазона удельного сопротивления трения (30–100 Па / м [19]).


Тепловая нагрузка (кВт) Температура подаваемой воды (° C) Температура обратной воды (° C) Разница температур между подающей и обратной водой (° C) Расход (м³ / ч) Диаметр трубы (мм) Удельное сопротивление трения (Па / м)

648.55 65 60 5 111,5 150 218,81 [18]
58 7 79,5 110,3 [18] 55128 55,08 [18]

4.1.2. Влияние понижения температуры воды на количество радиаторов

В большинстве зданий данного проекта использовалась двухтрубная система отопления.Для удобства анализа температуры воды на входе и выходе из радиатора равны температуре подачи и возврата источника тепла в следующем анализе.

Согласно формулам (1) — (3) [18], снижение температуры воды на входе в радиатор приведет к уменьшению тепловыделения одиночного радиатора. Чтобы обеспечить постоянство теплоснабжения помещения, необходимо увеличить количество радиаторов отопления. С этой точки зрения, необходимо реформировать систему отопления помещений после использования теплового насоса: где n — количество радиаторов на группу, секцию / группу; Q — тепловыделение радиатора, Вт / группа; q — тепловыделение каждого радиатора, Вт / шт; t pj — средняя температура воды в радиаторе, ° С; t n — расчетная температура в помещении для отопления, ° C; t sg — температура воды на входе в радиатор, ° С; и t sh — температура воды на выходе из радиатора, ° C.

Однако, исследуя количество радиаторов и рассчитав их теплопроизводительность, как показано в таблице 4, можно обнаружить, что количество радиаторов превышает фактическую потребность в исходных условиях отопления ( Q S > D HL ). При этом рассчитывается тепловая мощность в условиях теплового насоса. Как показано в Таблице 4, когда температура подаваемой и возвратной воды составляет 65/58 ° C, температура в помещении составляет 16 ° C, что может соответствовать стандарту исходной системы.

6512 6812

Здание Количество радиаторов на квадратный метр, n (кусочек / м 2 ) Тепловыделение каждого радиатора при температуре подаваемой и обратной воды 65 / 58 ° C, а температура в помещении составляет 16 ° C, q 2 (Вт / шт) Подвод тепла на квадратный метр при температурах подаваемой и обратной воды 65/58 ° C и температуре в помещении 16 ° C ( Q s2 = q 2 ) n , (Вт / м 2 )

Офисное здание 0.69 63,48 66,7
Цех глубокой очистки воды 0,63 57,96 60,9
Помещение химического корма 0,71 0,6 57,96 60,9

Для системы теплового насоса, с одной стороны, для того, чтобы использовать оригинальный радиатор, температура подаваемой и обратной воды должна быть увеличена; с другой стороны, чтобы использовать оригинальную сеть трубопроводов, необходимо увеличить разницу температур подаваемой и обратной воды.Если температура подачи воды теплового насоса выше 65 ° C, его эффективность работы значительно снизится. Когда температура подаваемой воды постоянна и разница температур воды между подающей и обратной магистралями увеличивается, потери сопротивления потоку в трубопроводной сети будут уменьшены, но теплоотдача исходного радиатора также будет уменьшена. Когда температура подаваемой и возвратной воды составляет 65/58 ° C, можно использовать исходную трубопроводную сеть и радиатор для удовлетворения требований, а потребление энергии при эксплуатации может быть уменьшено в наибольшей степени.

4.2. Меры по предотвращению загрязнения воды в системе теплового насоса

При использовании теплового насоса с водяным источником вода из скважины должна быть напрямую подключена к испарителю в установке. В испарителе хладагент и вода обмениваются теплом через медную трубку, которая не загрязняет воду при нормальных условиях. Однако, если произойдет разрыв медной трубки, что приведет к утечке хладагента, это приведет к загрязнению. Чтобы предотвратить эту ситуацию, можно добавить водо-водяной теплообменник, чтобы полностью изолировать систему источника воды и систему хладагента.Чтобы предотвратить загрязнение, вызванное системой трубопроводов, в качестве материала трубы выбран полиэтилен высокой плотности, а для клапана выбран материал из меди или нержавеющей стали.

4.3. Схема реконструкции источника тепла гидротехнических сооружений

Существуют не только статические источники воды, такие как бассейны, но и проточные источники воды, такие как различные трубопроводы. Первоначальные капиталовложения и эксплуатационные расходы на всасывающий насос можно сэкономить, используя воду в трубопроводе. Использование проточного источника воды позволяет сэкономить на расходах за счет отказа от всасывающего насоса.Посредством полевых исследований и анализа установлено, что часть воды из подземной насосной станции в цех предварительной очистки воды выводится из водопровода в качестве источника воды для теплового насоса. На основе приведенного выше анализа был определен технологический поток системы водяного теплового насоса, как показано на Рисунке 1, а основные параметры оборудования показаны в Таблице 5. Система может автоматически регулировать температуру подаваемой воды в соответствии с наружным воздухом. температура, которая может не только экономить энергию, но и экономить затраты на оплату труда.



Номер оборудования Название оборудования Параметры оборудования

1 Тепловая мощность Насосы для нагрева воды 702 кВт
2 Пластинчатый теплообменник Теплопроводность при расчетных условиях 550 кВт
3 Циркуляционный водяной насос Расход 120 м 3 / ч, подъемник составляет 8 м H 2 O
4 Циркуляционный водяной насос Расход 73 м 3 / ч, высота подъема 32 м H 2 O
5 Вода умягчитель Мощность очистки воды 1.0 м 3 / ч
6 Бак умягченной воды Объем 1,0 м 3
7 Насос подпиточной воды Расход 1,0 м 3 / ч, высота подъема 22 м H 2 O
8 Напорный бак Регулируемый объем 0,2 м 3

5. Экономический анализ Система водяного теплового насоса
5.1. Первоначальные инвестиции и стоимость эксплуатации системы водяного теплового насоса

Стоимость реконструкции системы включала оборудование, трубопровод и электрическую систему помещения тепловых насосов, а также водозаборный трубопровод общей стоимостью 1,15. миллионов китайских юаней.

Система водяного теплового насоса была завершена в октябре 2014 года и введена в эксплуатацию в ноябре того же года. Он работает круглосуточно и длится 5 месяцев в каждом отопительном сезоне (время центрального отопления составляет 4 месяца).Пока система водяного теплового насоса работает хорошо. Температура в помещении поддерживается в пределах 16–18 ° C. После преобразования энергопотребление системы показано в Таблице 6.


Месяц Потребляемая мощность (кВт · ч)
Первый год Второй год Третий год Итого Среднее значение

ноябрь 54560 39980 56340 150880 5033
декабрь 93860 83520 89540 266920 88973,33
январь
январь 93480 107160 1331003 86800 80200 233460 77820.00
март 34700 56480 46200 137380 45793.33
Всего 343060 373940 405380 1122380 374126,67

3
Анализ энергосбережения по сравнению с исходной системой

До реконструкции годовое энергопотребление системы отопления составляло 2154000 кВт · ч (как показано в таблице 7), в настоящее время годовое энергопотребление системы отопления с тепловым насосом составляет 374126,7 кВт · ч ( как показано в таблице 6).Энергопотребление системы теплового насоса составляет всего 17,4% от энергопотребления исходной котельной системы, а уровень энергосбережения достигает 82,6%.


Наименование Количество / мощность Скорость подачи угля / время работы циркуляционного насоса Эквив. 700 т 333 г / кВт ∙ ч [20] 2100000 кВт ∙ ч
Циркуляционный насос 20 кВт 2700 часов 54000 кВт ∙ ч
Эквивалентная потребляемая мощность исходной системы 2154000 кВт ∙ ч

5.3. Экономический анализ по сравнению с центральным отоплением

Система теплового насоса работает пять месяцев в году, а местная система центрального отопления работает четыре месяца в году. Чтобы сравнить эксплуатационные расходы в двух режимах отопления, половина энергии в первый месяц и последний месяц периода работы системы теплового насоса преобразуется, как показано в Таблице 8. Очевидно, преобразованная стоимость эксплуатации системы составляет всего лишь 16,35 китайских юаней / ( м 2 ∙ год), но стоимость центрального отопления в этом городе составляет 23.2 китайских юаня / ( м 2 ∙ год), а эксплуатационные расходы системы теплового насоса составляют всего 70,4% от стоимости центрального отопления. В целом преобразование источника тепла проходит очень успешно, экономя энергию и деньги.

9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013 9013

Месяц Фактическое энергопотребление за три года (кВт · ч) Преобразованное энергопотребление за три года (кВт · ч) Цена за единицу электроэнергии (в китайских юанях / кВт) · Ч) Средний годовой преобразованный заряд электроэнергии (в китайских юанях) Жилая площадь (м 2 ) Средняя годовая плата за электроэнергию на единицу площади (китайских юаней / (м 2 ∙ год))

ноябрь 150880 75440 0.5 37720 9970 1,26
декабрь 266920 266920 133460 4,46
январь 233460 233460 116730 3,90
март 137380 68690 34345 1.15
Итого 1122380 978250 489125 16,35

works 6. Заключение
(1) для проектов с водой в изобилии Относительно экономичная схема использования водяного теплового насоса зимой. Стоимость эксплуатации системы водяного теплового насоса составляет всего 70,4% от стоимости центрального отопления в местных городах. (2) В некоторых проектах преобразования отопления с заменой бойлера тепловым насосом, хотя температура подаваемой и обратной воды снижается, это не так. необходимо увеличить количество радиаторов, которое необходимо рассчитать и проверить в соответствии с реальной ситуацией.Это вызвано чрезмерным количеством радиаторов в исходной системе. (3) Для гидротехнических сооружений, когда в качестве источника тепла используется водяной тепловой насос, необходимо принять меры для предотвращения загрязнения воды, например установить теплообменник.
Доступность данных

В статью включены данные, использованные для подтверждения результатов этого исследования.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Что такое радиатор в автомобиле?

Хотя большинство людей слышали о радиаторах, они могут не осознавать его назначение или важность. Проще говоря, радиатор — это центральный компонент системы охлаждения автомобиля. Его основная функция — контролировать и регулировать температуру двигателя автомобиля и предотвращать его перегрев.

Как работает радиатор ?

Двигатель транспортного средства дает ему необходимую мощность за счет сжигания топлива и создания энергии из множества его движущихся частей.Эта мощность и движение могут генерировать огромное количество тепла по всему двигателю. Очень важно отводить это тепло от двигателя во время работы, чтобы избежать перегрева, который может привести к серьезным повреждениям.

Радиатор помогает отводить излишки тепла от двигателя. Он является частью системы охлаждения двигателя, которая также включает в себя охлаждающую жидкость, шланги для циркуляции охлаждающей жидкости, вентилятор и термостат, который контролирует температуру охлаждающей жидкости. Охлаждающая жидкость проходит по шлангам от радиатора, через двигатель, чтобы поглотить избыточное тепло двигателя, и обратно к радиатору.

Когда он возвращается к радиатору, тонкие металлические ребра отдают тепло от охлаждающей жидкости наружному воздуху, когда горячая жидкость проходит через него. Холодный воздух поступает в радиатор через решетку автомобиля, чтобы помочь в этом процессе, и когда автомобиль не движется, например, когда вы находитесь на холостом ходу в пробке, вентилятор системы подает воздух, чтобы помочь снизить температуру нагретой охлаждающей жидкости и дуть. горячий воздух выходит из машины.

После прохождения охлаждающей жидкости через радиатор она рециркулирует через двигатель.Этот цикл теплообмена является непрерывным для поддержания оптимальной рабочей температуры и предотвращения перегрева двигателя.

Компоненты радиатора

Радиатор состоит из трех основных частей: сердечника, герметичной крышки, а также выпускного и впускного баков.

Фото: Christian Wardlaw

Ядро — это основная часть, определяемая большим металлическим блоком с рядами узких металлических ребер. Здесь горячая охлаждающая жидкость, прошедшая через двигатель, выделяет свое тепло, а радиатор охлаждает его для следующего обхода контура теплообмена.

Герметичная крышка закрывает систему охлаждения и обеспечивает поддержание давления в ней. Это давление необходимо для эффективной работы радиатора, так как оно предотвращает закипание и переливание охлаждающей жидкости. /P>

Выпускной и впускной бачки направляют охлаждающую жидкость в радиатор после того, как она циркулирует через двигатель. Эти резервуары управляют жидкостью, когда она очень горячая.

Другой основной компонент радиатора — это охлаждающая жидкость. Несмотря на то, что это не механизированная часть, это критический компонент, который отводит тепло от двигателя и позволяет радиатору выполнять свою работу.

Неисправность радиатора

Двигатель может перегреться при работе в жаркую погоду. Но риск перегрева значительно возрастает, если в радиаторе мало охлаждающей жидкости или есть утечка в одном из его шлангов. Другие возможные отказы радиатора включают неисправный термостат, механическую проблему с вентилятором или неисправную герметичную крышку, которая не может создать давление в системе, что приводит к переполнению охлаждающей жидкости. В любом из этих случаев двигатель может перегреться, что приведет к серьезным повреждениям.

Во избежание дорогостоящего ремонта автовладельцам следует помнить о признаках выхода из строя радиатора. Симптомы включают:

  • Необычный подъем и падение показаний датчика температуры комбинации приборов
  • Вид или запах дыма, исходящий из-под капота автомобиля
  • Любое количество зеленой жидкости (охлаждающей жидкости или антифриза), скапливающейся под автомобилем
  • Визуальные признаки ржавчины на компонентах системы охлаждения

Профессиональный механик должен осмотреть систему охлаждения и радиатор, если какой-либо из этих симптомов станет очевидным.

Профилактическое обслуживание

Как и любой другой компонент автомобиля, радиатор требует специального обслуживания, чтобы гарантировать его долговечность и правильную работу:

1. Заменяйте шланги радиатора каждые три года или 36 000 миль. Поскольку шланги прорезинены и со временем могут высохнуть и сломаться, они никогда не должны превышать 50 000 миль.

2. Регулярно проверяйте уровни охлаждающей жидкости. Если уровень жидкости между проверками заметно падает, возможно, в системе охлаждения есть утечка.Важно уделять пристальное внимание, поскольку медленные утечки трудно обнаружить.

3. Промывайте охлаждающую жидкость каждые 25 000 миль, чтобы удалить любые загрязнения из радиатора и его шлангов. Эта услуга также кондиционирует систему охлаждения, чтобы предотвратить ржавчину компонентов и позволяет радиатору работать с максимальной производительностью в течение всего срока службы.

Краткое описание

Нахождение на обочине дороги с перегретым двигателем — обстоятельство, которого каждый водитель хочет избежать.К счастью, радиаторы предотвращают это, избавляя двигатель от избыточного тепла во время работы. Понимание важности этого механизма охлаждения, признаков возможной поломки и необходимых методов обслуживания поможет сохранить безупречную работу радиатора и двигателя на долгие годы.

Расчет необходимой мощности для комнаты

Энергия 29 июн 2020

Было бы полезно знать волшебную формулу, которая даст нам количество тепла, необходимое для обогрева отдельной комнаты или всего дома.К счастью, есть несколько формул, позволяющих приблизиться к фактическому результату, но они допускают погрешность. Почему предел погрешности? Это связано с тем, что не все дома одинаковы.

Чтобы рассчитать необходимое отопление, мы должны учитывать размер и объем дома, ориентацию, размер и количество окон, тип изоляции стен и крыши и т. Д.

ДВЕ ПОЛЕЗНЫЕ ФОРМУЛЫ

Обычно мощность, необходимая для электрического обогрева, рассчитывается в ваттах.

Мощность: умножьте площадь в футах на 10. Для комнаты 20 футов на 20 футов мы получим 400 квадратных футов, умноженных на 10, чтобы получить 4000 ватт. Количество ватт = площадь x 10.

Этот результат действителен для домов, в которых есть комнаты с высотой потолков 8 футов. В случае современных домов с потолками выше 8 футов, практическое правило расчета составляет 1,25 Вт на кубический фут. Принимая во внимание предыдущий пример, высота потолка 9 футов составит 400 кв.футов x 9 x 1,25 = 4500 Вт. Количество ватт = площадь x высота x 1,25.

Если вы подозреваете, что стены или потолок имеют дефекты теплоизоляции, вы можете добавить несколько процентных пунктов к расчету. То же самое можно сказать и о стенах с большими окнами. После выполнения расчетов для существующего дома нам может потребоваться добавить дополнительные обогреватели, такие как конвекторы или приточно-вытяжные устройства.

И наоборот, если комната имеет окна и хорошо ориентирована на солнце, мы можем придерживаться обычного расчета.

Наилучшая оценка потребностей дома в отоплении будет сделана путем сложения результатов для каждой комнаты.

В Северной Америке до сих пор можно встретить использование БТЕ / час в качестве меры мощности при обогреве. Формула для преобразования БТЕ в кВт следующая: P (кВт) = P (БТЕ / ч) / 3412,14.

Если в качестве источника тепла мы полагаемся исключительно на электрические плинтусы, их обычно устанавливают у основания окон, чтобы обеспечить наилучшее распределение тепла. В этом случае не стесняйтесь разделить общую требуемую мощность на количество окон в каждой комнате.

Для получения дополнительной информации о типе отопительного оборудования для конкретной комнаты или всего дома посетите следующую страницу.

Часто задаваемые вопросы о домашних радиаторах

Где лучше всего поставить радиатор?

Испытания доказывают, что радиаторы лучше всего работают в самой холодной части комнаты. Часто это возле окон. Однако, учитывая все доступные размеры и формы, у вас есть свобода дизайна, чтобы скоординировать лучшие варианты, подходящие для вашего дома.

Как выбрать радиатор подходящего размера для комнаты?

  • Вычислите объем комнаты, умножив высоту, ширину и длину, чтобы получить объем в кубических метрах.
  • Для спален, прихожих и кухонь разрешите 40 Вт на кубический метр и умножьте полученную мощность на 40, для ванных комнат, гостиных и столовых умножьте всего на 50. Это даст требуемую мощность в ваттах.
  • Если в комнате большие окна или открытые стены, увеличьте общее количество на 10%.
  • Чтобы преобразовать ватты в британские тепловые единицы, умножьте на 3,412.

Почему в моих радиаторах холода?

Это может быть вызвано любой из следующих причин:

  • система неправильно сбалансирована.
  • : высота подачи циркуляционного насоса слишком мала, или насос работает на слишком низкой установленной мощности, что приводит к увеличению расхода в определенных контурах. быть слишком маленьким.
  • : в системе слишком много воздуха.
  • регулятор термостата прикрыт предметом мебели или шторами. Это приводит к тому, что температура на термостате значительно выше, чем в само помещение, что, в свою очередь, приводит к полному или частичному закрытию клапана и снижению расхода.
  • термостат используется неправильно.
  • главный термостат подвергается воздействию больших внешних источников тепла, таких как солнечные лучи. Поскольку главный термостат достиг желаемого температуры, радиаторы в других помещениях не нагреваются.
  • слишком низкая температура воды.
  • радиатор слишком длинный: если впускной и выпускной патрубки находятся на одном конце, вода может протекать не через весь радиатор.Для длинных радиаторов соединения должны быть в противоположных углах.
  • примесей в клапанном блоке. Когда система заполнена водой, взвешенные частицы могут собираться на клапане и значительно уменьшать поток.
  • радиатор нагревается лишь частично: явление, которое иногда легко объяснить. Когда желаемая температура в помещении будет достигнута, клапан закроется, даже если радиатор еще не полностью залит.

Почему я слышу звуки в своих радиаторах?

  • звук «клац-клац-клац» указывает на неправильное соединение с обменом притока и оттока.
  • шипящий звук указывает на то, что расход через клапан слишком велик из-за слишком высокого давления.
  • звук «тик-тик-тик» указывает на наличие напряжения в системе труб, радиатора и стеновых блоков.

Это обычное явление зимой, когда температура на улице опускается до нуля. Не защищенный от мороза внутри радиатор может замерзнуть. Это не только случаются в домах, которые еще строятся, это также может происходить в домах, которые уже заселены.

Как и почему замерзают радиаторы?

Бытовые помещения, которые зимой никогда не отапливаются или отапливаются редко, называются «зонами риска».Примеры включают: веранды; гаражи; запасной спальни; чердаки; подвалы; холлы; места для хранения вещей; мытье помещений и даже жилых комнат, которые зимой не отапливаются по бюджетным причинам. (PURMO’s Сервисная служба никогда не сталкивалась с замерзшим радиатором на кухне или в ванной.)

Если эти помещения не отапливаются, температура упадет ниже точки замерзания, и вода внутри радиатора превратится в лед, что приведет к растрескиванию радиатора, или даже взорваться из-за огромного давления замерзшей и расширенной воды (льда).Это может привести к выходу из строя радиатора и необходимости его замены. Если произойдет оттаивание, вода выльется из радиатора, что приведет к серьезным повреждениям.

Как избежать замерзания радиаторов?

  1. Всегда устанавливайте радиаторы с термостатическими клапанами. Это гарантирует, что теплая вода для центрального отопления останется доступной. Однако вы должны всегда следите за тем, чтобы вы не закрывали полностью клапан термостата, а поворачивали его в звездочку.
  2. Не устанавливайте слишком низкую ночную температуру. У большинства людей в гостиной есть комнатный термостат. Если он установлен на 15 ° C в ночное время и эта температура поддерживается в комнате, термостат отправит на котел сообщение о прекращении нагрева на некоторое время. Это опасно для радиаторов в другие комнаты. Температура в гостиной может оставаться на уровне +/- 15 ° C в течение длительного времени, в то время как температура на веранде опускается ниже нуля.Потому что котел перестал нагреваться, замерзнет радиатор на веранде.
  3. Находясь вне дома (на относительно короткое время или на несколько дней), не меняйте настройки радиаторов, бойлера или термостаты.
  4. Не думайте, что тепло, выделяемое в соседних помещениях, автоматически гарантирует, что помещения, которые вы не отапливаете, останутся незамерзающими. Другими словами, убедитесь, что каждое помещение всегда (в любое время дня и года) отапливается необходимым минимумом.

Как я могу доказать, что радиатор замерз?

Практически все люди, у которых замерз радиатор, не согласны с диагнозом. Часто заказчик ошибочно полагает, что температура в помещении не упал ниже точки замерзания, потому что а) он доверяет своему комнатному термостату или б) утверждает, что из-за того, что другие комнаты отапливаются, это невозможно где-нибудь еще в его доме, чтобы заморозить.

Конечно, есть способы доказать, что радиатор действительно замерз:

  1. верхний водный канал будет деформирован в процессе расширения при переходе от воды к льду. Водный канал будет волнистым и криво, обычно по всей длине радиатора.
  2. сталь между точками сварки будет вздуться в результате расширения льда.Вздутие стали между точками сварки будет хуже вверху и менее серьезно внизу.
  3. сталь будет треснуть, обычно в верхних точках сварки или в соединительной коробке.

Нет сомнений в том, что радиатор с такой степенью деформации замерз. Давление, оказываемое на радиатор при замерзании, составляет +/- 20 бар. PURMO проводит регулярные испытания радиаторов для проверки их устойчивости к давлению.При +/- 20 бар (нормальное испытательное давление для всех радиаторов составляет до 8 бар, а гарантированное рабочее давление — 6 бар) радиатор начнет показывать точно такие же характеристики, как замерзший радиатор. Этот давление не может быть вызвано самой водой центрального отопления, низким качеством стали или другой производственной неисправностью.

Замерзший радиатор — всегда незначительное бедствие для клиента, поскольку он несет ответственность за ущерб, нанесенный водой, и должен сам оплачивать расходы.это поэтому понятно, что они будут возражать против вывода, что замерз радиатор. К сожалению, это вызывает атмосферу неудовлетворенности и плохая реклама радиатора. Поэтому, чтобы предотвратить такие негативные события, необходимо принять все необходимые меры до и во время установки, Заказчик также должен быть проинформирован о последствиях того, что помещения едва отапливаются или совсем не отапливаются.

Когда мне нужно использовать радиаторы с низкой температурой поверхности?

Радиаторы

LST — идеальный выбор там, где требуется высокоэффективное отопление, но при этом безопасность требует низкой температуры поверхности, т.е.где люди могут травмироваться, если оставить контакт со стандартным радиатором. Защитный радиатор PURMO никогда не работает при температуре выше 43 ° C и идеально подходит для больниц и детских садов. и жилые дома, а также детские спальни.

В чем разница между прямой и косвенной системой?

Прямая система — это система, в которой водопроводная вода фактически смешивается с водой в радиаторах. Непрямая система отделяет водопроводную воду от радиатора вода, а также может называться «закрытой» системой.Радиаторы PURMO можно устанавливать только в непрямую систему.

Почему мне нужно удалить воздух из радиаторов, как это сделать и когда лучше всего это делать? (Применимый к только вентилируемые системы)

Вам необходимо удалить воздух из радиаторов, чтобы они оставались работоспособными. Когда погода теплее, это идеальное время подумать об этом очень необходимом, если это обычная задача, чтобы следующей зимой не остаться на морозе.Со временем воздух накапливается внутри системы отопления и образует пузырь внутри труб, блокировка потока горячей воды, которая сохраняет тепло радиаторов. Этот захваченный воздух делает радиаторы неэффективными, поэтому, если вы не хотите привнести нотку зимы в помещении стоит периодически «прокачивать» радиаторы и полотенцесушители.

Если вы новичок в этом деле, вот руководство из пяти шагов:

  1. Включите термостат и коснитесь всех радиаторов и полотенцесушителей в вашем доме, чтобы найти те, которые не работают должным образом.
  2. Выключите котел. Найдите впускной клапан и откройте его. Если проблема была в клапане, радиатор теперь начнет нормально нагреваться.
  3. Если это не помогает, найдите спускной клапан на другом конце радиатора и откройте его с помощью стандартного воздушного ключа или отвертки, поворачивая против часовой стрелки.
  4. Как только весь воздух будет выпущен, кипящая вода выльется наружу, поэтому будьте готовы и имейте под рукой небольшое ведро или кастрюлю, чтобы поймать ее.
  5. Как только вы увидите воду, плотно закройте клапан, но старайтесь не затягивать его слишком сильно. Работа сделана хорошо!

Можно ли изогнуть или изогнуть радиаторы, чтобы они поместились в эркер?

Радиаторы PURMO-колонны могут быть изогнутыми, чтобы соответствовать большинству применений, или, в качестве альтернативы, можно использовать радиаторы меньшего размера, чтобы заполнить всю длину отсека. Мы не Рекомендуем изгибать или наклонять стандартные компактные радиаторы.

Каковы преимущества «системы чистого воздуха»?

Душные помещения без надлежащей вентиляции могут быть рассадником токсичной плесени, которая может привести к ряду аллергических реакций, включая астму. Как мы проводить большую часть времени в помещении, жизненно важно усовершенствовать методы обогрева, чтобы обеспечить более здоровую среду обитания. Если открыть окно впускать свежий воздух — это не вариант, тогда установка системы вентиляции чистого воздуха — альтернативный способ улучшить качество воздуха, при этом обогревая дом на в то же время.

Эти устройства выглядят как обычные панельные радиаторы, но также доставляют отфильтрованный и нагретый свежий воздух прямо с улицы. « Использованный » воздух выводится через вытяжное отверстие и вентилятор, создавая всасывание, необходимое для циркуляции чистого воздуха по комнате.

Такая система подачи воздуха может также положительно повлиять на проблемы с влажностью в домах. Избыточная влажность во внутреннем воздушном пространстве может привести к потолку и стене. сырость и неуклонная деградация самого здания.С помощью системы вентиляции воздуха влажность, вызванная конденсацией, либо удаляется, либо уменьшается, и воздух стал суше и чище. Ущерб от влаги в наших домах может быть дорогостоящим, но система вентиляции воздуха, которая предотвращает или уменьшает последствия сырости. разумное вложение в будущее. Эти системы очистки воздуха также подходят для коммерческих помещений, потому что из-за того, что вентиляция регулируется по потребности, они чрезвычайно энергоэффективны.

Радиатор PURMO Air — это проверенное экономически эффективное решение в Финляндии, где проблемы роста плесени и переносимых по воздуху бактерий теперь решены по всей стране.

Подходят ли старые двухпозиционные радиаторные клапаны к новым радиаторам?

Эти старые клапаны идентифицируются по тому, что оба трубных соединения в одном клапане радиатора расположены на одной стороне радиатора. Они не подходят для современных радиаторы. Если устанавливаются новые радиаторы, рекомендуется также заменить радиаторные клапаны.

В чем преимущество установки на радиатор термостатического клапана радиатора?

Установка термостатического клапана радиатора (TRV) на радиатор обеспечивает контроль температуры в помещении и может помочь избежать перегрева радиатора. слишком велик для комнаты. Это оборудование обеспечивает дополнительную точную настройку центрального отопления, позволяя поддерживать температуру в отдельных комнатах. поддерживается путем измерения температуры в помещении и автоматической регулировки потока горячей воды в радиатор.Во многом дизайнерский элемент как функциональный элемент управления; в правильный клапан станет идеальным завершающим штрихом для современной или традиционной схемы. Остерегайтесь экранировать TRV драпировкой или мебелью, так как клапан не иметь возможности эффективно измерять температуру в помещении. Попадание в теплое место может привести к слишком быстрому отключению радиатора, что приведет к комнатная температура ниже желаемого уровня. Аналогичным образом, если TRV находится в постоянном холодном месте, возможно, на него влияет сквозняк из дверей, окон, кирпичей. и т. д., комната может временами перегреваться.Конечно, в квартире или квартире практически невозможно учесть перегрев или недогрев соседей по соседству, выше или ниже. Это может иметь большое значение.

Мне надоело засовывать шторы за радиатор — какое решение?

Стильные шторы в пол — это стремление многих домовладельцев к своей гостиной, но радиатор, расположенный под окном, может помешать это простое, но очень приятное прикосновение.Скольким из нас приходится вешать короткие шторы или, что еще хуже, заправлять шторы за радиатор? так тепло идет в комнату, а не в окно? Это может выглядеть неуклюже и испортить внешний вид комнаты. Однако радиаторы PURMO можно отремонтировать. к полу с помощью кронштейна, а не к стене, что позволяет аккуратно свешивать шторы сзади. Эта простая альтернатива может иметь большое значение для жизни комната или зимний сад.

Можно ли пользоваться полотенцесушителем летом?

Да, если вы покупаете двухтопливный агрегат. Он поставляется с комплектом электрического нагревателя, так что летом, когда ваше отопление выключено, электрический элемент может можно использовать для обогрева устройства, а это значит, что вы по-прежнему можете наслаждаться комфортом и удобством теплых сухих полотенец.

Как мне разместить радиаторы?

Лучшее место для любого радиатора — самая холодная часть комнаты, которая обычно находится под окном.Также, используя несколько маленьких радиаторов в большом помещении, вместо одного громоздкого радиатора обеспечит лучшее распределение тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *