Кладка кирпича с утеплителем внутри: Кирпичная кладка с утеплителем: преимущества, виды

Утепление многослойных стен дома: колодезная кладка

Колодезной называется кирпичная (каменная) кладка, которая ведется не сплошным слоем, а с полостями внутри стены, куда, как правило, закладывается теплоизоляционный материал. Основное преимущество такого способа укладки стены состоит именно в наличии теплоизоляции внутри конструкции. Такая стена очевидно теплее, чем стена, состоящая исключительно из основного строительного материала стены.

Кроме того, колодезная кладка дает существенную экономию стройматериалов. Так, например, теплоизоляция позволяет в несколько раз сократить толщину стены по сравнению со сплошной кирпичной стеной. Это объясняется гораздо более высокой теплозащитной способностью теплоизоляционного материала по сравнению с основным. Для примера сравним коэффициенты теплопроводности экструзионного пенополистирола, из которого изготовлены теплоизоляционные плиты ПЕНОПЛЭКС® и кирпичной кладки. У первого этот показатель будет равен 0,033 Вт/м∙К, у кладки из пустотного кирпича плотностью 1000 кг/м³ (брутто) на цементно-песчаном растворе — 0,52, у кладки из кирпича глиняного обыкновенного на цементно-песчаном растворе — 0,81, у кладки из силикатного на цементно-песчаном растворе — 0,87.

В реальных условиях с учетом различных факторов применение ПЕНОПЛЭКС® позволяют сократить толщину кирпичной стены в 3—4 раза для достижения заданных параметров термического сопротивления конструкций.

В частном домостроении колодезная кладка целесообразна при возведении зданий из кирпича и газобетона. Она состоит из нескольких слоев — см. на схемах.

Роль утеплителя в составе колодезной кладки не ограничивается сохранением тепла в доме. При наружном утеплении ПЕНОПЛЭКС® защищает стену дома от промерзания и тем самым продлевает срок службы кирпича и газобетона.

Особенности утепления стен дома с колодезной кладкой

Теплоизоляционные плиты ПЕНОПЛЭКС® крепятся на стену в два этапа. На первом приклеиваются с помощью эффективного клеевого состава. В качестве такового рекомендуется использовать ПЕНОПЛЭКС® FASTFIX® на полиуретановой основе — состав, специально разработанный для монтажа теплоизоляции ПЕНОПЛЭКС®.

После приклеивания теплоизоляционные плиты закрепляются с помощью дюбельных комплектов. В состав комплекта входит тарельчатый дюбель, изготовленный из синтетического материала с низкой теплопроводностью во избежание мостиков холода, а также базальтопластиковые грибки. Дюбельные комплекты обычно устанавливаются ближе к углам плит из расчета 6 штук на 1 м2.

Колодезная кладка. Стена из кирпича


  1. Кирпичная стена
  2. Клеевой состав
  3. Дюбельный комплект
  4. ПЕНОПЛЭКС®СТЕНА или ПЕНОПЛЭКС КОМФОРТ®
  5. Защитная декоративная кладка.

Колодезная кладка. Стена из газобетона


  1. Газобетон (пенобетон)
  2. Клеевой состав
  3. Дюбельный комплект
  4. ПЕНОПЛЭКС®СТЕНА или ПЕНОПЛЭКС КОМФОРТ®
  5. Защитная декоративная кладка.

Инструкция по утеплению многослойных стен дома

  • Шаг 1. Крепление теплоизоляционных плит к внутренней несущей стене осуществляется при помощи специального полиуретанового клея для ПЕНОПЛЭКС® — ПЕНОПЛЭКС® FASTFIX®. Также в качестве клея для ПЕНОПЛЭКС® можно использовать различные сухие смеси на цементной основе. Теплоизоляция кирпича плитами ПЕНОПЛЭКС® обеспечит защиту от промерзания, тем самым продлив срок службы стеновых конструкций и здания в целом. Наружная теплоизоляция всегда является более предпочтительной, чем внутренняя, поскольку при наружной теплоизоляции строительные конструкции не подвергаются промораживанию, что значительно продлевает их срок службы.
  • Шаг 2. Внутренняя и наружная части трехслойной кладки связываются меду собой специальными закладными деталями – вязальной проволокой с шагом 750мм или гибкими связями из стеклопластика.
  • Шаг 3. Рихтовочный зазор между внешней кладкой и утеплителем заполняется сухим песком.

Рекомендации начинающим строителям

На нашем заводе выпускается обширная номенклатура материалов для возведения наружных и внутренних стен зданий  —  силикатный кирпич,  блоки из ячеистого бетона (газобетон) и керамические поризованные блоки, а также разные виды железобетонных изделий, таких как железобетонные сваи, фундаментные блоки, пустотные плиты перекрытия различных геометрических размеров и форм, сопутствующие товары, например строительный песок с доставкой, каркасные изделия и т.д., т.е. материалы, необходимые практически для любого вида строительства.

Несмотря на такое  разнообразие  выпускаемой продукции, мы наибольшее предпочтение  отдаем домам, возведенным из полнотелого силикатного кирпича или блоков. Почему?

Потому, что построенные из них  здания являются наиболее прочными, долговечными и тёплыми, а проживание в них комфортным. Раньше, до введения СНиП 23-02-2003 «Тепловая защита зданий» наружные стены зданий делались, как правило, однородными (кирпич, керамзитобетон), сочетая в себе несущие и теплоизолирующие функции. В результате  повышения норм сопротивления теплопередаче появилась необходимость разделить несущие и теплоизолирующие функции элементов стены. Несущие  функции возлагаются теперь на традиционные, более прочные материалы (кирпич, бетон), в качестве теплоизолирующих материалов предлагается использовать такие высокоэффективные теплоизоляторы, как пенопласт, минераловатные и другие утеплители, легкие бетоны.

Теплота кирпича, притом любого, даже суперпоризованного меркнет по сравнению с теплотой современных утеплителей, поэтому наружные стены лучше выполнить  из полнотелого кирпича, но хорошо утеплить. Для  наглядности приводим «Заключение по результатам теплотехнических испытаний кирпичной кладки» выполненное «Центральной аналитической лабораторией  по энергосбережению в строительном комплексе». В выводах «Заключения по результатам теплотехнических испытаний кирпичной кладки» указано, что для получения сопротивления теплопередаче кладки Rо=3,34 м2С/Вт ( для климатического пояса с нормальным режимом эксплуатации, куда  относится  г. Казань и близлежащие районы Rо должно быть не менее 3,36 м2С/Вт), необходимо выполнить  стену толщиной  770 мм. из сверхпорирозованной керамики на теплом растворе. А что мы  сегодня нередко видим на строительных площадках:

Рис. кладки.

Вариант I. Если  стена выкладывается из сверхпоризованного материала пустотностью  от 45 до 55 %,  облицовка выполняется из кирпича толщиной 12 см. пустотностью до 30 % и вся кладка выполняется на обычном растворе, то, кладка выполненная таким образом будет держать тепло внутри здания в 2-2,5 раза хуже, чем положено по нормативам.

Вариант II.  Ещё хуже, по следующим причинам:

  1. В качестве несущей стены использованы поризованные  блоки толщиной всего 25  см. , при такой толщине, по-настоящему несущими могут быть только  стены из плотных материалов.
  2. Если в качестве утеплителя  использован пенопласт толщиной 5 см., то высока вероятность образования конденсата между несущей стеной и пенопластом, так как утеплитель толщиной 5 см. не обеспечивает необходимый уровень теплозащиты здания; кроме этого, такая стена не «дышит», и поэтому, при строительстве такого дома необходимо предусмотреть хорошую вентиляцию помещений. Если в качестве утеплителя использована минеральная вата, то тёплый и влажный воздух из помещения проходит через несущую стену и утеплитель и частично упирается в наружный слой облицовки с образованием конденсата на границе облицовки и утеплителя.
  3. Отсутствует вентиляционный зазор между облицовкой и утеплителем, в результате утеплитель увлажняется,  и теплотехнические характеристики ограждающей конструкции существенно ухудшаются.
    Если в первом варианте у Вас просто увеличиваются расходы на отопление, то второй вариант является абсолютно безграмотным, сделанным
    по незнанию или
    с целью получения дополнительной прибыли.

Сегодня на рынке появилось множество новых видов материалов, которые являются и несущими и теплоизоляционными. Отчасти, в первом приближении, это так, но не всегда. Здесь кроется определенная уловка, предлагая как бы «два в одном»,  потому что, для увеличения несущих способностей здания надо повышать плотность и прочность  стеновых материалов, что соответственно приводит к уменьшению теплоизоляционных качеств и наоборот, т.е. эти два понятия являются, как бы взаимоисключающими и  поэтому надо выбирать, что для Вас важнее: чтобы здание получилось крепким или теплым, или и то и другое. Приведём еще один довод  в пользу строительства   крепких стен. В последние годы  много зданий строятся из газобетона и поризованной керамики с последующим утеплением снаружи.

Это совершенно не правильный подход. Потому, что, каркас здания должен быть крепким, а утеплитель теплым. А накладывая одно теплое на другое мы теряем прочность и надежность здания. Если строить из вышеуказанных материалов, то надо просто выдержать необходимую толщину стены и не применять дополнительное утепление, так как  они  без того являются теплоизоляционными материалами. А  если утеплять наружные стены, то лучше всего  построить крепкое здание  толщиной 250-380 мм. из полнотелого силикатного кирпича, потому что, он прочный, прекрасно анкеруется, имеет   очень высокую морозостойкость (значит долговечен и не боится влаги), имеет высокую паропроницаемость (значит в этом здании будут комфортные условия проживания), не крошится,  и не «фонит»,
т.е. в радиационном отношении является наиболее чистым материалом — при допустимом значении содержания удельной эффективной активности естественных радионуклидов не более 370 Бк/кг.,  фактическое значение составляет всего 28,80 Бк/кг., в то же время у многих других мелкоштучных материалов данный показатель  приближается к предельным показателям.

Мы также облицовку зданий предлагаем выполнять из полнотелого цветного силикатного кирпича. Почему?  Потому, что в них нет пустот (если есть, то они несквозные и при кладке укладываются вверх дном), потому,  что  средняя прочность такого кирпича  составляет 200 кг/см2 и выше, а при такой прочности морозостойкость составляет более 100 циклов.   Потому, что  при  облицовке здания кирпичом высокой пустотности, в пустоты кирпича с наружной стороны попадает влага, в зимнее время  она замерзает и разрушает наружную стенку кирпича. На этот счёт   было ряд указаний Министерства строительства с запретом  на применение лицевого кирпича с пустотностью выше 11%, при  этом, технологические пустоты на постели кирпича должны были отступать от края кирпича не менее, чем на 30мм. Но, это  условие не всегда выполняется. Мало того,  что пустоты  отступают от края меньше чем на 30 мм., многие строители делают в таких кладках глубокую расшивку, создавая тем самым, дополнительные условия для последующего разрушения облицовки здания.  В некоторых выполненных таким образом зданиях уже через 5-8 лет эксплуатации наступает аварийное состояние наружной облицовки.

На сей счет, некоторые наши оппоненты могут возразить: облицовка из полнотелого силикатного  кирпича  то же разрушается. Да так, если неправильно сделаны  отливы и по стене течёт вода. В таком случае  разрушается кладка из любого кирпича или камня.

Какой же материал  выбрать в качестве утеплителя? Ассортимент современных теплоизоляционных материалов велик:

  • пенополистиролы (обычный и экструдированный).
  • пенополиуретан.
  • пеноизол.
  • минеральная вата.
  • один из новых видов утеплителя «Шелтер» и другие.

Независимо от названия, желательно, чтобы утеплитель частично или полностью соответствовал следующим требованиям: не впитывал влагу, не разламывался на мелкие кусочки и не осыпался, не горел, не слеживался, восстанавливался после проминания, быть долговечным и иметь хорошие теплоизоляционные свойства. 

В большинстве случаев теплоизоляционные плиты укладываются в два слоя; 1-й слой делается из плит меньшей плотности для  ровного заполнения неровностей кирпича, второй наружный слой выполняется из более жестких плит плотностью 75-150 кг/м3. Если укладывать в один слой, то необходимо применять утеплители большей плотности, т. е. 75-150 кг/м3, но, в любом случае, толщина слоя утеплителя должна быть не менее 10 см. Так как, подвальная, цокольная часть и нижние ряды кладки  здания в наибольшей степени подвержены воздействию влаги, для их утепления желательно применить экструдированный пенополистирол или другие утеплители, которые не боятся влаги. Важно знать, что материалы с более низким коэффициентом паропроницаемости целесообразно  располагать в конструкции со стороны помещения, а более высокой со стороны улицы, т.е. по мере движения влажного воздуха от внутренней поверхности стены к наружной, слои конструкции должны обладать возрастающей воздухопроницаемостью в противном случае,  на пути движения из помещения на улицу, на  границе с теплоизоляционным материалом может конденсироваться влага.
Для сравнения ниже приводим значения сопротивления воздухопроницанию слоёв конструкций согласно приложения С — СНиП 23-02-2003  «Тепловая защита зданий» таблица 1., а также  показатели паропроницаемости согласно приложения 3 СНиП II-3 -79 таблица 2:

 

Таблица 1.

Материалы и конструкции

Толщина слоя, мм.

Сопротивление воздухопроницанию  Rф, (м2*ч*Па)/кг.

1. Бетон сплошной (без швов)

100

20000

2.Газосиликат сплошной (без швов)

140

21

3.  Кирпичная  кладка из сплошного кирпича на цементно-песчанном растворе толщиной в один кирпич и более

250 и более

18

4. Картон строительный (без швов)

1,3

64

5. Обшивка из обрезных досок, соединенных в шпунт

20-25

1,5

6. Обои бумажные обычные

20

7. Пенобетон автоклавный (без швов)

100

2000

8. Пенополистирол

50-100

80

9. Плиты минераловатные жесткие

50

2

10. Штукатурка цементно-песчаным раствором по каменной или кирпичной кладке

15

373

 

Таблица 2.

Материалы и конструкции

Паропроницаемость мг/(м*ч*Па).

1. Железобетон

0,03

2. Газосиликат сплошной

0,2

3.  Кладка из силикатного полнотелого кирпича

0,11

4. Картон

0,06

5. Дерево – сосна, ель

0,06

6. Обои бумажные обычные

0,06

7. Газобетон автоклавный

0,2

8. Пенополистирол

0,05

9. Плиты минераловатные

0,3-0,6

10.   Цементно-песчаный раствор

0,09

Как видно из вышеуказанных таблиц, по мере движения влажного воздуха от внутренней  стены к наружной, т.е. от штукатурного слоя и кирпича к слою утеплителя, паропроницаемость слоёв увеличивается, а сопротивление воздухопроницанию уменьшается, тем самым обеспечивается хороший микроклимат в помещении.

Рассмотрим вкратце  наиболее распространенных  три варианта наружного утепления несущих стен:

1. Вариант —  трёхслойная стена с кирпичной облицовкой.

Технология кладки с утеплителем

  • Кладка облицовочного слоя до уровня связей.
  • Монтаж теплоизоляционного слоя, чтобы верх его был выше облицовочного слоя на 5-10 см.
  • Кладка несущего слоя до следующего уровня связей. Установка связей, протыкая их через утеплитель, если горизонтальные швы несущего и облицовочного слоев стены, в которых ставятся связи, не совпадают более, чем на 2 см в несущем слое кирпичной кладки, связи размещают в вертикальном шве
  • Кладка по одному ряду кирпича в несущей части стены и облицовочном слое.

Эта конструкция состоит из трёх слоёв: несущей стены, облицовки из кирпича и утеплителя, который расположен между ними. Несущая  и облицовочная стены  опираются на единый фундамент. Потому  фундамент  для такой трёхслойной стены необходимо выполнить с учётом толщины  утеплителя, вентзазора и облицовочного слоя.

Для вентиляции воздушного зазора вертикальные  швы в кладке нижнего ряда  облицовки не заполняют раствором из расчёта  75 см2 на каждые 20 м2  поверхности стены. Верхние продухи предусматривают в карнизной части стены.

При облицовке  стен кирпичом важно обеспечить  долговечность слоя утеплителя, применив самые качественные утеплители. При малоэтажном строительстве утепление наружной стены  и кладку кирпичной облицовки можно выполнить вторым этапом  после завершения  кладки основной стены. В этом случае будет гарантировано качество утепления, так как обеспечивается визуальный контроль за креплением утеплителя к несущей стене и за отсутствием щелей между плитами утеплителя. Если  кладка  несущей стены и облицовки ведутся одновременно,  то они между  собой связываются специальными стеклопластиковыми связями.  По вертикали связи располагают  с шагом  600 мм. (высота  плиты утеплителя),  по горизонтали  — 500 мм., при этом количество  связей на  1 м2  глухой стены – не менее 4 шт. На  углах здания, по периметру оконных и дверных проемов  6-8 шт. на м2. Кладку кирпичной  облицовки продольно армируют кладочной сеткой по вертикали не  более 1000-1200 мм. 

Преимущества

  • красивый и респектабельный внешний вид;
  • высокая долговечность при условии правильного проектирования и квалифицированного монтажа конструкции.

 

Недостатки

  • большая трудоемкость возведения;

2.  Вариант  с устройством навесного вентилируемого фасада.

Навесной вентилируемый фасад  представляет собой сборную конструкцию, состоящую непосредственно из облицовки –  фиброцементных плит, керамогранита, алюминиевых композитных панелей, натурального  камня, сайдинга, профлиста и др. ) и подоблицовочного каркаса (кронштейнов, направляющих). отличающихся по декоративным свойствам,  качеству и цене. Подоблицовочный каркас предназначен для надежного крепления к внешней стене   здания облицовочных плит  и термоизоляции таким образом, чтобы между  стеной и утеплителем  остался  вентилируемый воздушный зазор, предохраняющий несущие стены от образования конденсата.  Внешняя облицовка вентилируемых фасадов защищает от осадков,  механических воздействий и выполняет декоративную роль. Утеплитель перекрывает несущую стену строения и обеспечивает сохранение тепла по всей площади фасадов. Для достижения высокой долговечности навесного вентилируемого фасада подоблицовочный каркас  и кляммеры должны быть изготовлены из высококачественных  и имеющих достаточную толщину материалов.

Преимущества:

  • возможность использования различных облицовочных материалов, как по цене, так и по качеству.
  • широкая возможность цветовых комбинаций.
  • монтаж фасадной системы в любое время года.

 

Недостатки:

  • необходима высокая квалификация монтажников.
  • такие системы получили распространение относительно недавно, поэтому они ещё не прошли испытания временем.

3. Вариант – облицовка декоративной штукатуркой (мокрый фасад).

При отделке дома мокрым фасадом достигаются те же  результаты по теплозащите здания, что и при  первых двух вариантах. Особенность — его ценовая доступность,  так как стоимость работ за м2 формируется из стоимости утеплителя, клеевых составов и декоративной отделки, материалов весьма доступных, особенно с учетом возможности выбора самых разных по цене материалов.
Но данная технология имеет и некоторые недостатки, связанные, прежде всего с требованиями соблюдения определенных условий при выполнении работ. Это:

  • соблюдение температурного режима, так как работы можно проводить при температуре окружающей среды выше 5 °C и ниже 30 °C;
  • высокие риски. Есть немалая вероятность появления трещин, отслаивания и т.п.

И, наверное, не будет лишним добавить самое главное: независимо от того, какой материал  применяется для строительства, какой   способ  утепления , все работы необходимо выполнять грамотно и качественно с учётом существующих нормативно-технических документов; вести постоянный контроль за ходом выполнения строительно-монтажных работ, ибо на сегодняшний день, еще не придуманы такие системы строительства, которые бы работали в автоматическом режиме без участия руководителей и специалистов.

Приложение: Заключение теплотехнических испытаний кирпичной  кладки, выполненной центральной аналитической лабораторией  по энергосбережению в строительном комплексе  ЦАЛЭСК №12-06 от  8.02.2006г. Заказчик; ООО «Керамика – синтез» дочернее предприятие ООО «КЗССМ».


Технология кирпичной кладки стен с утеплителем : СНиП


                                           

Теплая кладка кирпичных стен


Одна из самых надежных и, пожалуй, одна из самых дорогих технологий возведения несущих стен – кирпичная кладка – имеет множество достоинств и не избавлена от некоторого количества недостатков. И к числу указанных недостатков, помимо высокой стоимости работ и материала, чаще всего, относят еще и низкую тепловую инерцию стен из кирпича.

Причем, в большинстве справочников указывается, что для успешного сопротивления низким температурам кирпичная кладка стен должна иметь практически метровую глубину.

Именно поэтому, практически во всех современных проектах используется особая кирпичная кладка с утеплителем. И этот технологический прием позволяет не только увеличить тепловую инерцию кладки, но и способствует существенному уменьшению сметы строительства. Ведь, в зависимости от этажности здания, для достижения несущей прочности достаточно обустроить кладку толщиной в 1,5 кирпича, а теплостойкость строения будет обеспечена слоем утеплителя.

В итоге, используя сочетания кирпича и утеплителя можно существенно снизить нагрузку на фундамент. Кроме того, такую стену можно сложить с незначительными трудозатратами. И, в конце концов, кладка с утеплителем дает возможность сэкономить и стройматериалы.

Да и главный строительный документ, которым регламентируется кирпичная кладка – СНиП «Несущие и ограждающие конструкции» – утверждает, что сплошная кладка с толщиной более 38 сантиметров (в 1,5 кирпича) попросту нецелесообразна с экономической точки зрения.

Современные строительные технологии позволяют реализовать утепление кирпичной кладки сразу несколькими способами. Но, по большому счету, подобное разнообразие очень легко разделить на два направления – внешнее и внутреннее утепление.

Кирпичная кладка стен с внутренним утеплением реализуется с помощью воздушных прослоек и колодцев. Именно так называются пустоты, создаваемые в стене во время кладки.

Воздушные прослойки можно обустроить и в сплошной несущей кладке, и в процессе отделке лицевым кирпичом. Пустоты толщиной в 5-7 сантиметров образуются перевязкой тычками, соединяющими параллельно выстроенные стены. Причем, прослойки имеют замкнутую структуру. Поэтому, для обеспечения хотя бы минимальной герметичности стену с воздушными прослойками необходимо обязательно оштукатурить.

Подобная технология позволяет сэкономить 15-20 процентов строительного материала. Тепловая инерция пустотелой стены превышает естественные показатели сплошной кладки, как минимум, на 30 процентов. Кроме того, существует и пустотелая кирпичная кладка с утеплителем, размещаемым прямо во внутренних полостях. И в роли такого утеплителя может выступать и минеральная вата и пенопласт. Причем, в последнем случае тепловая инерция кладки повышается на 100 процентов!

Впрочем, главный строительный документ, которым регламентируется кирпичная кладка – СНиП 3.03.01-87 – утверждает, что помимо технологии возведения стены с воздушными прослойками существует и «колодцевая кладка» — подобная кладка ЗАПРЕЩЕНА к использованию!!!

Согласно этой технологии несущая стена образовывается из наружной и внутренней стенки, соединенных с помощью сплошных мостиков (диафрагм). Причем, в отличие от замкнутых прослоек, колодцы имеют открытую структуру, что позволяет использовать в качестве утеплителя различные засыпки или легкие бетоны.

Разумеется, такая «всеядность» способствует еще большей экономичности процесса строительства, которой характеризуется именно колодцевая кирпичная кладка – СНиП позволяет использовать в роли утеплителя и опилки, и туф, и керамзит, и пенобетон, и целый ряд иных, недорогих материалов.

Однако при всех достоинствах варианта с внутренним утеплением такая технология обладает одним существенным недостатком – реализацию подобной схемы можно осуществить только в процессе строительства здания. Следовательно, если в расчеты архитектора вкралась ошибка, то владельцу уже построенного сооружения придется обратиться к иным решениям. И хорошим примером подобного решения является кирпичная кладка стен с наружным утеплением.

Эта схема предполагает обустройство дополнительного внешнего или внутреннего теплоизолирующего покрытия. В роли такого покрытия может выступать и сложная система «теплого фасада», и довольно доступная схема, предполагающая использование теплостойкой штукатурки. Конечное решение зависит от конкретных климатических условий.

Вдобавок, с технологической точки зрения кирпичная кладка с утеплителем, расположенным снаружи или внутри здания, не отличается от обычной сплошной кладки – в ней нет ни сложных перевязок, ни диафрагм, ни мостиков. А это значит, что с подобной кладкой справится даже неквалифицированный каменщик.

В итоге, мы может утверждать, что схема с наружным утеплением является не только самым экономичным, но и наименее трудоемким решением проблемы теплостойкости кирпичной кладки.

Кирпичная кладка с утеплителем внутри

Кладка стен из кирпича с утеплителем внутри

Возведение стеновых несущих перегородок полностью из этого материала в современном строительстве считается большой и не слишком разумной роскошью. Хотя большинство справочной литературы рекомендует делать несущие стеновые перегородки из кирпича более одного метра. Это поможет зданию иметь хорошее сопротивление холодам.

Утепление стен из кирпича с колодцевой кладкой

Возведение стен из одного лишь кирпича сегодня является непозволительной роскошью, ведь для соблюдения норм по энергосбережению они должны иметь толщину не менее 2 метров! А это дополнительная нагрузка на фундамент и колоссальные финансовые расходы на строительство. Хорошим решением является использование технологии колодцевой кладки. Но вот чем утеплить кирпичные стены в данном случае, чтобы и тепло в доме сохранить, и деньги сэкономить, об этом и поговорим…

Колодцевая кирпичная кладка

Для снижения коэффициента теплопроводности стен, возводимых с применением кирпича, часто используется так называемая колодезная (или колодцевая) кладка. Суть этого строительного приема заключается в том, что из кирпича выполняются только внутренняя и наружная часть стены на определенную толщину, а образовавшуюся между ними полость (колодец) заполняют теплоизоляционным материалом.

Теплоизоляция кирпичных стен. Технология и материалы для эффективного утепления

Наряду с бетоном, кирпич является самым распространенным строительным материалом для возведения разнообразных конструкций. Он широко применяется при создании жилых зданий (как многоэтажных квартирных, так и отдельных коттеджей) и промышленных сооружений.

Шесть способов построить дом из кирпича

22.04.2015 14092 Сегодня классический кирпич является одним из наиболее дорогих стеновых материалов. Тем не менее, он и его увеличенная разновидность – керамические блоки – востребованы не только в верхнем, но и в среднем сегменте частного строительства. Дома из кирпича считаются наиболее долговечными и комфортными с точки зрения экологии. К тому же существуют способы снижения затрат на постройку дома из этого материала.

Впрочем, немало частных застройщиков, работающих в «среднем сегменте», предпочитают возводить не кирпичные дома в эконом-варианте, а использовать более дешёвый газоблок. Тем более, что тезис о его меньшей долговечности и экологичности принимается не всеми.

Как правильно утеплить стены дома. Часть 3

В данной статье речь пойдет о давно известном, но редко используемом способе утепления кирпичных стен для не отапливаемой пристройки хозяйственного назначения. Это колодцевая кладка из силикатного кирпича с установкой утеплителя внутри стен, и применить мне данный метод довелось на практике, в своем собственном доме.

Как правильно утеплить силикатный кирпич? Тонкости кирпичной кладки с утеплителем Виды кладки стен с утеплением внутри

В некоторых новых построенных зданиях утеплитель размещается центрально (в середине) в ограждающей конструкции. При таком варианте утеплитель очень хорошо защищен от механического повреждения и имеется больше возможностей для оформления фасадов. Однако, риск возникновения ущерба вследствие влажности намного выше, чем при внешнем утеплении, поэтому структуру слоев следует тщательно спланировать и выполнять без дефектов.

Эта конструкция состоит из трех слоев: несущей стены, стены из облицовочного материала и утеплителя , который расположен между ними. Несущая и облицовочная стены опираются на один фундамент. Наружный слой чаще всего выполняют либо из облицовочного кирпича, либо из строительного с последующим оштукатуриванием, покрытием искусственным камнем, клинкерной плиткой и пр.

Преимущества

  • красивый и респектабельный внешний вид при использовании дорогостоящих облицовочных материалов;
  • высокая долговечность при условии правильного проектирования и квалифицированного монтажа конструкции.

Недостатки

  • большая трудоемкость возведения;
  • малая воздухопроницаемость;
  • возможность конденсации влаги между разнородными слоями такой стены.

Очень важно, чтобы все слои конструкции сочетались друг с другом по паропроницаемости. Сочетаемость определяется только расчетом системы в целом.

Недооценка этого обстоятельства может привести к накоплению влаги во внутренней части стен. Это создаст благоприятную среду для развития плесени и грибка. Утеплитель от возможного образования конденсата будет намокать, что сократит срок службы материала и существенно снизит его теплозащитные свойства. Ограждающая конструкция станет промерзать, что приведет к неэффективности утепления и может вызвать ее преждевременное разрушение.

Виды конструкций

Типовые решения устройства слоистых кладок можно разделить на два вида: с устройством воздушного зазора и без него .

Устройство воздушного зазора позволяет более эффективно удалять влагу из конструкции, так как избыточная влага из несущей стены и утеплителя будет сразу уходить в атмосферу. При этом воздушный зазор увеличивает общую толщину стен, а, следовательно, и фундамента.

Утеплитель внутри кладки стен

В той или иной степени проблема паропереноса актуальна для слоистой кладки с утеплителем любого типа.

Утепление конструкции минеральной ватой является наиболее предпочтительным . В таком случае появляется возможность устроить воздушный зазор между утеплителем и наружной стенкой для лучшего вывода влаги из несущей стены и утеплителя.

Для слоистых кладок следует применять полужесткий минераловатный плитный утеплитель . Это позволит, с одной стороны, хорошо заполнить все дефекты в кладке, создать сплошной слой теплоизоляции (плиты можно немного «поджать», избежав щелей). С другой стороны, такие плиты будут сохранять геометрическую целостность (не давать усадку) на протяжении всего срока службы.

Определенные сложности в применении пенополистирола в слоистых кладках вызваны низкой паропроницаемостью этого материала.

Трехслойная кирпичная кладка с утеплителем

  1. Внутренняя часть кирпичной стены
  2. Минеральная вата
  3. Наружная часть кирпичной стены
  4. Связи

Традиционным материалом для внутренней части стен является полнотелый красный керамический кирпич. Кладка обычно выполняется на цементно-песчаном растворе в 1,5-2 кирпича (380-510 мм). Наружная стенка обычно выполняется из лицевого кирпича толщиной 120 мм (в полкирпича).

Продухи

В случае устройства системы с воздушным зазором шириной 2-5 см для его вентиляции устраиваются продухи (отверстия) в нижней и верхней частях стены, через которые парообразная влага удаляется наружу. Размер таких отверстий принимается из расчета 75 см 2 на 20 м 2 поверхности стены.

Верхние вентиляционные продухи располагают у карнизов, нижние — у цоколей. При этом нижние отверстия предназначаются не только для вентиляции, но и для отвода воды.

  1. Воздушный зазор 2 см
  2. Нижняя часть здания
  3. Верхняя часть здания

Для осуществления вентиляции прослойки в нижней части стен устанавливают щелевой кирпич, положенный на ребро, или в нижней части стен укладывают кирпич не вплотную друг к другу, а не некотором расстоянии друг от друга, и образовавшийся зазор не заполняют кладочным раствором.

Установка связей

Внутренняя и наружная части трехслойной кирпичной стены связываются между собой специальными закладными деталями — связями. Они выполняются из стеклопластика, базальтопластика или стальной арматуры диаметром 4,5–6 мм. Предпочтительнее использовать связи из стеклопластика или базальтопластика из-за большей теплопроводности стальных связей.

Эти связи также выполняют функцию крепежа плит утеплителя (утеплитель просто
накалывают на них). Их устанавливают в процессе кладки в несущую стену на глубину
6-9 см с шагом 60 см по горизонтали и 50 см по вертикали из расчета в среднем 4 штыря на
1 м 2 .

Для обеспечения равномерного вентилируемого зазора по всей площади утеплителя на стержни крепят фиксирующие шайбы.

Часто вместо специальных связей используют загнутые арматурные стержни. Помимо связей наружную и внутреннюю стенки кладки можно связывать стальной арматурной сеткой, уложенной через 60 см по вертикали. При этом для устройства воздушного зазора применяется дополнительное механическое крепление плит.

Плиты утеплителя устанавливают с перевязкой швов вплотную друг к другу, чтобы между отдельными плитами не было щелей и зазоров. На углах здания создают зубчатое зацепление плит, чтобы избежать образования мостиков холода.

Технология кладки с утеплителем

  • Кладка облицовочного слоя до уровня связей
  • Монтаж теплоизоляционного слоя, чтобы верх его был выше облицовочного слоя на 5-10 см
  • Кладка несущего слоя до следующего уровня связей
  • Установка связей, протыкая их через утеплитель
  • если горизонтальные швы несущего и облицовочного слоев стены, в которых ставятся связи, не совпадают более, чем на 2 см в несущем слое кирпичной кладки, связи размещают в вертикальном шве

  • Кладка по одному ряду кирпича в несущей части стены и облицовочном слое

Последовательность монтажа


(альтернативный вариант)

Сокращению теплопотерь и созданию комфортных условий в кирпичном строении способствует надежная теплоизоляция. Утепление дома из силикатного кирпича необходимо и обусловлено это неустойчивостью материала к воздействию влаги. Дополнительная теплоизоляция исправляет этот недостаток. Утеплитель выбирают в зависимости от типа кирпича и вида кладки.

Чем утепляют?

Влагопоглощение и влагопроницаемость конструкций в строениях из силикатного кирпича устраняется путем их утепления. Кроме того, тепловая изоляция сохраняет тепло в доме зимой и прохладу летом. Утепление стен зависит от их . Выполняют утепление двумя видами:

  • изнутри;
  • снаружи.

Внутреннее утепление конструкций в домах из силикатного кирпича делают редко, поскольку точка росы сдвигается внутрь, что способствует образованию на стенах конденсата и требует установки эффективной системы вентиляции. К тому же утеплять потребуется откосы, пол и потолок. Утеплителем могут быть базальтовые плиты из волокна и пеностекло.

Для утепления стен изнутри используют только экологически безопасные материалы с низкой способностью к возгоранию, чтобы избежать выделения внутрь помещения вредных веществ.


Снарыужи дом можно утеплять пенопластом.

Снаружи силикатный кирпич утепляют используя такие материалы:

  • минеральная вата;
  • пенопласт;
  • полиуретан;
  • пенополистирол.

Расчет материала

Чтобы эффективно утеплить дом и избежать перемещения точки росы внутрь, нужен правильный расчет толщины утеплителя. Зависит толщина материала от его теплового сопротивления. Усредненный показатель этой величины для стен в частных и многоэтажных домах должен быть не менее 3,5. Слой материала для утепления будет тем толще, чем меньше теплосопротивление стены. Расчет выполняют по формуле: R=d/k, где d — толщина материала, k — коэффициент теплопроводности. Показатели k являются величиной постоянной и приведены в таблице.

Для пенополиуретана нужно просчитать толщину утеплителя.

Для примера рассчитывают толщину слоя пенополиуретана для утепления конструкции из силикатного кирпича толщиной 0,5 м. Сначала определяют тепловое сопротивление стены: R = 0,5/0,7 = 0,71. Вычисляют этот показатель для пенополиуретана: R (п) = 3,5-0,71 = 2,79. Слой утеплителя находят по формуле: d = R (п) x k = 2,79×0,02 = 0,0558 м. Таким образом, слой пенополиуретана должен быть минимум 55 мм.

Технология строительства стены

Схема кирпича.

  • 1. Кладка начинается с углов здания. При помощи строительного уровня необходимо удостовериться, что все кирпичи, которые лежат первыми в ряду каждой из стен, располагаются перпендикулярно друг другу.
  • 2. В швы между вторым и первым (по высоте) необходимо забить гвозди и прикрепить к ним шнур, который будет обозначать уровень первого ряда. Расстояние между кирпичом и шнуром при кладке должно составлять 2 мм.
  • 3. Беря за ориентир этот шнур, можно начинать укладку первого ряда. Нужно, чтобы с внешней стороны стены находилась тычковая плоскость всех кирпичей. С внутренней части кирпичной кладки первого ряда строительный материал нужно располагать так, чтобы ложковая часть была направлена внутрь помещения. В итоге это выглядит так: внутренняя часть стены выложена в полкирпича, а внешняя часть — в цельный.
  • 4. После укладки первого ряда второй ряд выкладывается с расположением в обратном порядке. Теперь внутрь смотрит тычковая часть, а наружу — ложковая часть. В итоге получаем зеркальное отражение выложенного первого ряда: внутренняя часть стены уложена в кирпич, а наружная — в полкирпича.
  • 5. Строительный материал кладется на выложенный раствор на небольшом друг от друга расстоянии. Когда укладывается очередной кирпич, раствор должен немного двигаться назад. Раствор должен равномерно и правильно распределяться. Для этого нужно немного подвигать материал вперед-назад по плоскости.
  • 6. После этого его необходимо двигать в направлении ранее уложенного материала. Тычковая плоскость строительного материала должна захватить часть раствора и сдвинуть его в шов между расположенными кирпичами. За счет этого действия можно получить качественный и красивый вертикальный шов.
  • 7. Затем материал необходимо прижать в вертикальном направлении — так производится выравнивание относительно других кирпичей. Для более качественного сцепления с раствором по верхней плоскости кирпича нужно ударить раствор тыльной стороной мастерка. После с поверхности кирпича убирается лишний раствор.
  • 8. Такая укладка получает необходимую прочность за счет несовпадения вертикальных швов, а так же за счет того, что они перекрываются сплошной поверхностью кирпичей. Во время кладки необходимо внимательно контролировать ширину шва. Если размер шва увеличивается, это может означать, что появилось отклонение от нужного направления кирпичной кладки или от вертикали кладки.

кладка угол кирпич смесь

Раствор можно применять тот же, что и при других способах укладки. Рецепт приготовления зависит от качества используемого строительного материала. Во время проведения работ необходимо предпринять защитные меры: надеть перчатки, защитить глаза и т.д. Возведение стен такого типа потребует большого количества времени и сил. Раствор лучше заготавливать небольшими порциями. Не стоит забывать смачивать строительный материал перед укладкой водой (иначе он будет тянуть ее из раствора). Для этого можно воспользоваться ведром с водой.

Стена, возведенная с использованием этой схемы, простоит очень долгое время. Есть смысл ее возводить, если вы не ограничены в количестве необходимого строительного материала или если вы строите дом в зонах, где прочность здания является необходимостью. Такая кладка существенно снижает опасность расслоения материала стены. Если же возведение «крепости» не входит в ваши планы, то можно воспользоваться другими эффективными методами кирпичной укладки. В любом случае, приступая к созданию проекта здания, лучше придерживаться той схемы укладки кирпича, которую советуют специалистов.

Кладка угла в 1,5 кирпича

При возведении кирпичных стен особое внимание следует уделить правильной кладке углов будущей постройки. Именно углы служат основой возведения кирпичных стен. И не важно, строите ли вы кирпичную баню, гараж или коттедж — ошибки, допущенные при выкладывании, углов могут привести к нарушению геометрии стен, их прочности и устойчивости.

В начале строительства в углах по отвесу устанавливают порядовки. Как правило, при строительстве кирпичных стен кладка углов опережает кладку стен на 3-4 ряда.

В статье Как сделать кирпичные стены для бани уже приводились некоторые полезные советы по выкладыванию углов, а в публикации Системы перевязки кирпичной кладки вы можете найти не только схемы перевязки швов в местах пересечения и примыкания, но и схемы правильной перевязки при возведении кладки углов стен в 1,5 и 2 кирпича.

Давайте рассмотрим еще несколько схем кладки углов кирпичных стен разной толщины.

Для выполнения перевязки швов кладки в углах используются не только полномерные кирпичи, но также половинки и четверти кирпича, а также трехчетверки размером в ѕ кирпича. Условное обозначение кирпичей различного размера показано на рисунке ниже:

Кладка угла в 1 кирпич Наиболее простой является кладка углов при возведении стен толщиной в 1 кирпич (250 мм). Схема кладки углов в 1 кирпич при однорядной перевязке показана ниже:


При многорядной перевязке кладка углов в 1 кирпич будет выглядеть так:


Как видите, схемы довольно просты и вы без труда сможете выложить тычковые и ложковые ряды самостоятельно своими руками без привлечения бригады квалифицированных каменщиков.

Кладка угла в 1,5 кирпича

При строительстве стен в 1,5 кирпича (380 мм) схема кладки углов будет несколько более сложная.

Как сделать углы в 1,5 кирпича при однорядной перевязке, показано на рисунке ниже:


Кладка углов в 1,5 кирпича при многорядной перевязке:

Кладка угла в 2 кирпича

При необходимости выполнения кладки в 2 кирпича (510 мм) углы выкладываются так, как показано на рисунках ниже.

Кладка углов в 2 кирпича при однорядной перевязке:


Кладка углов при многорядной перевязке:

Теперь вы знаете как делать перевязку кирпичной кладки в углах при возведении стен в 1, 1,5 и 2 кирпича.

На сегодняшний день во всем мире бурными темпами развивается такая отрасль народного хозяйства, как строительство. Ежегодно строятся сотни новых зданий и сооружений. Наиболее любимыми и распространенными строительными материалами являются следующие: бетон, железобетон, пластик, металлочерепица, металлопластик, кирпич. Кирпич, несомненно, самый практичный из них. В настоящее время кладка кирпича постоянно модернизируется, появляются все новые и новые ее способы. Для этих целей применяется кирпич разного типа: полнотелый, пустотелый, одинарный полуторный, двойной. Наиболее часто кирпич используется для строительства жилых и общественных зданий, где самое важное — это поддержание оптимального микроклимата внутри помещений.

Для утепления кирпичной кладки, можно воспользоваться несколькими вариантами — шлаком, минеральной ватой, стекловатой, бетоном. Кладка осуществляется несколькими способами — трехслойная с воздушным зазором и без него или колодцевая.

На сегодня очень актуальна стала с утеплителем. Возникла она еще в середине прошлого века. Тогда в качестве утеплителя применяли мох, опилки, торф. В современном мире они уже неэффективны и заменены на более современные материалы. Утеплителем можно пользоваться практически при любых видах строительства, где применяются в качестве ограждающих конструкций лесоматериалы, бетонные панели, кирпичные стены. Последний вариант наиболее актуален. Рассмотрим более подробно, как проводится кирпичная кладка с утеплителем, техника кладки, преимущества данного метода.

Виды утеплителей и требования

Кладка кирпича — довольно серьезное и сложное занятие.

Наиболее часто утепление внутри кирпичных конструкций осуществляется с применением минеральной ваты, пенополистирола, стекловаты.

Некоторые мастера заполняют пространство между стенами бетоном или засыпают шлаком. Данный вариант тоже имеет свои преимущества, главное из них в том, что при этом способе кладки увеличивается прочность и стойкость конструкции. Любой утеплитель должен соответствовать следующим специальным требованиям.

Во-первых, он должен быть устойчивым к деформации. Это свойство особенно важно. Так, при действии каких-либо природных факторов, а также под силой тяжести он может измениться в размерах и форме.

Во-вторых, это влагостойкость. Несмотря на то что утепление проводится внутри конструкции, вовнутрь может попадать влага, которая нередко приводит к деформации и разрушению материала. А последнее, в свою очередь, повлияет на теплоизоляционные свойства ограждающей конструкции. Утепление проводится только теми материалами, которые не пропускают и не впитывают в себя влагу. Кроме того, излишняя влага может вызвать образование конденсата. Стеклопластик наиболее оптимален для гибких связей между ограждениями, так как он обладает низкой теплопроводностью, высокой прочностью и не пропускает влагу. Есть еще один универсальный утеплитель — это воздух.

Колодцевая кладка

Утепление стен нередко применяется при облегченной кладке кирпича. При этом снижается основная нагрузка на здание. Кроме того, такой способ позволяет сэкономить материалы, повысить процент звукоизоляции и теплоизоляции. Утепление в этом случае бывает двух видов. В первом случае проводится возведение двух стен из кирпича, а пустоты между ними ровным слоем заполняются утеплителем. Во втором случае делают только одну стену, а затем к ней крепят утеплитель. В настоящее время наиболее часто используется колодцевая кладка. Она осуществляется следующим образом: сперва возводится внутренняя несущая стена обычным кирпичом, после этого строится наружная стена толщиной в полкирпича.

Следующий шаг — установка перевязок в несколько рядов. Для этого можно использовать металлические стержни. Можно применять и другой вид кладки, при котором пустоты заполняются шлаком или бетоном. Стены возводятся толщиной в половину кирпича. При этом шлак должен отлежаться какое-то время (полгода).

Трехслойная кладка с зазором и без него

При этом способе теплоизоляционные панели укладывают рядами между несущими конструкциями, фиксируются они с помощью анкеров, которые вмонтированы в стену. Для предотвращения образования конденсата в этом случае понадобится паробарьер. Лицевой слой выкладывается из обычного облицовочного кирпича или камня. Есть и другой способ, при котором делается воздушный зазор. Данный способ наиболее оптимален, так как в большей степени позволяет предотвратить образование конденсата. Вентиляционный зазор способствует высыханию утеплителя. При этом способе сперва возводится несущая внутренняя стена из обычного кирпича. Теплоизоляционные материалы насаживаются на анкеры, вмонтированные в стену.

В этом варианте применяются гибкие связи с фиксаторами, которые нужны, чтобы связать панели утеплителя со стеной и создать воздушный слой. В роли фиксаторов используют шайбы с нержавеющим покрытием. Недостатком этого способа является то, что он очень трудоемкий.

Оборудование и инструменты

Утепление кирпича потребует инструментов. Утеплить ее внутри можно, имея в наличии утеплитель (вату, шлак или бетон). Кроме того, понадобится парозащитный слой. Для самой кладки важно иметь в наличии раствор на основе песка и глины или цемента, кирпичи, емкость для смешивания, строительный уровень, мастерок, соколок, лопатки. Может понадобиться лестница или болгарка для . Утепление кирпича желательно проводить в сухое и теплое время года во избежание попадания влаги, которая может скопиться между стенами. Утеплить стену можно как самому, так и нанять для этого бригаду специалистов.

Как уже было сказано выше, внутри стены может скапливаться влага, поэтому важно использовать только влагонепроницаемые материалы. Наиболее дешевыми из них являются стекловата или шлак. Утеплитель следует класть ровно.

На основании всего вышесказанного можно сделать заключение о том, что при кладке кирпича оптимальнее всего применять утеплитель. Он должен соответствовать следующим требованиям: быть влагостойким и устойчивым к деформациям. Он должен быть внутри конструкции, между несущими стенами. Утеплить стены можно различными материалами: минеральной ватой, шлаком, бетоном, стекловатой. Есть и еще один очень хороший утеплитель — это воздух. Кладку следует осуществлять несколькими способами. Наиболее распространенные из них — это колодцевая, трехслойная с воздушным зазором и без него.

В любом случае между стенами делается перевязка, осуществляется она с помощью металлических штырей, которые крепятся на анкеры. Пространство между стенами ровным слоем заполняется материалом. Чтобы утеплить стену, понадобится оборудование и инструменты. Приобрести их можно в любом специализированном магазине. Поэтому и теплоизоляция — несложное, но требующее определенных знаний и умений занятие.

Теплая кладка кирпичных стен

Одна из самых надежных и, пожалуй, одна из самых дорогих технологий возведения несущих стен – кирпичная кладка – имеет множество достоинств и не избавлена от некоторого количества недостатков. И к числу указанных недостатков, помимо высокой стоимости работ и материала, чаще всего, относят еще и низкую тепловую инерцию стен из кирпича.

Причем, в большинстве справочников указывается, что для успешного сопротивления низким температурам кирпичная кладка стен должна иметь практически метровую глубину.

Именно поэтому, практически во всех современных проектах используется особая кирпичная кладка с утеплителем. И этот технологический прием позволяет не только увеличить тепловую инерцию кладки, но и способствует существенному уменьшению сметы строительства. Ведь, в зависимости от этажности здания, для достижения несущей прочности достаточно обустроить кладку толщиной в 1,5 кирпича, а теплостойкость строения будет обеспечена слоем утеплителя.


В итоге, используя сочетания кирпича и утеплителя можно существенно снизить нагрузку на фундамент. Кроме того, такую стену можно сложить с незначительными трудозатратами. И, в конце концов, кладка с утеплителем дает возможность сэкономить и стройматериалы.

Да и главный строительный документ, которым регламентируется кирпичная кладка – СНиП «Несущие и ограждающие конструкции» – утверждает, что сплошная кладка с толщиной более 38 сантиметров (в 1,5 кирпича) попросту нецелесообразна с экономической точки зрения.

Современные строительные технологии позволяют реализовать утепление кирпичной кладки сразу несколькими способами. Но, по большому счету, подобное разнообразие очень легко разделить на два направления – внешнее и внутреннее утепление.

Кирпичная кладка стен с внутренним утеплением реализуется с помощью воздушных прослоек и колодцев. Именно так называются пустоты, создаваемые в стене во время кладки.

Воздушные прослойки можно обустроить и в сплошной несущей кладке, и в процессе отделке лицевым кирпичом. Пустоты толщиной в 5-7 сантиметров образуются перевязкой тычками, соединяющими параллельно выстроенные стены. Причем, прослойки имеют замкнутую структуру. Поэтому, для обеспечения хотя бы минимальной герметичности стену с воздушными прослойками необходимо обязательно оштукатурить.

Подобная технология позволяет сэкономить 15-20 процентов строительного материала. Тепловая инерция пустотелой стены превышает естественные показатели сплошной кладки, как минимум, на 30 процентов. Кроме того, существует и пустотелая кирпичная кладка с утеплителем, размещаемым прямо во внутренних полостях. И в роли такого утеплителя может выступать и минеральная вата и пенопласт. Причем, в последнем случае тепловая инерция кладки повышается на 100 процентов!

Впрочем, главный строительный документ, которым регламентируется кирпичная кладка – СНиП 3.03.01-87 – утверждает, что помимо технологии возведения стены с воздушными прослойками существует и «колодцевая кладка» — подобная кладка ЗАПРЕЩЕНА к использованию!!!

Согласно этой технологии несущая стена образовывается из наружной и внутренней стенки, соединенных с помощью сплошных мостиков (диафрагм). Причем, в отличие от замкнутых прослоек, колодцы имеют открытую структуру, что позволяет использовать в качестве утеплителя различные засыпки или легкие бетоны.

Разумеется, такая «всеядность» способствует еще большей экономичности процесса строительства, которой характеризуется именно колодцевая кирпичная кладка – СНиП позволяет использовать в роли утеплителя и опилки, и туф, и керамзит, и пенобетон, и целый ряд иных, недорогих материалов.

Однако при всех достоинствах варианта с внутренним утеплением такая технология обладает одним существенным недостатком – реализацию подобной схемы можно осуществить только в процессе строительства здания. Следовательно, если в расчеты архитектора вкралась ошибка, то владельцу уже построенного сооружения придется обратиться к иным решениям. И хорошим примером подобного решения является кирпичная кладка стен с наружным утеплением.

Эта схема предполагает обустройство дополнительного внешнего или внутреннего теплоизолирующего покрытия. В роли такого покрытия может выступать и сложная система «теплого фасада», и довольно доступная схема, предполагающая использование теплостойкой штукатурки. Конечное решение зависит от конкретных климатических условий.

Вдобавок, с технологической точки зрения кирпичная кладка с утеплителем, расположенным снаружи или внутри здания, не отличается от обычной сплошной кладки – в ней нет ни сложных перевязок, ни диафрагм, ни мостиков. А это значит, что с подобной кладкой справится даже неквалифицированный каменщик.

В итоге, мы может утверждать, что схема с наружным утеплением является не только самым экономичным, но и наименее трудоемким решением проблемы теплостойкости кирпичной кладки.

2.3 Утепление слоистой кладкой

 

Теплоизоляция фасадов стен методом слоистой кладки.

 Метод слоистой кладки позволяет надёжно утеплить стены здания за сравнительно небольшие деньги. Система утепления фасадов слоистой кладкой  состоит из трёх основных слоёв: несущая кирпичная или железобетонная стена, слой теплоизоляции здания, внешний декоративный слой, состоящий из облицовочного кирпича. Утепление слоистой кладкой состоит из следующих позиций:

  • Основание: кирпич, железобетон, пенобетонные блоки и тому подобное;
  • Теплоизоляция стен здания;
  • Крепёж, предназначенный для фиксации утеплителя;
  • Облицовочная кладка из кирпича;
  • Гидроизоляция, монтируемая на верхней части цоколя.

Фасады зданий при использовании утепления слоистой кладкой могут быть выполнены из железобетона, дерева, кирпича или пенобетонных блоков. Толщина стен, выполненных из кирпича, напрямую зависит лишь только от выдерживаемой нагрузки. Для утепления стен внутри слоистой кирпичной кладки  чаще  всего используют базальтовый (минеральный) утеплитель. Утеплитель, применяемый для кирпичных, деревянных стен или стен из пенобетонного блока, должен иметь толщину, обеспечивающую надёжную теплозащиту здания. Толщина утеплителя рассчитывается при помощи теплотехнического расчёта. При проведении расчёта принимаются во внимание нахождение кирпичного здания в той или иной климатической зоне, функциональное предназначение здания, теплотехнические характеристики облицовки из кирпича, фасада здания, утеплитель и другие параметры. При этом кирпичный фасад здания, утеплённый  по методу слоистой кладки, будет значительно тоньше и дешевле по стоимости, чем старые железобетонные и кирпичные стены, не утеплённые внутри. Облицовка кирпичом фасада здания придаёт неповторимый внешний вид и защиту утеплителя стен от всевозможных внешних воздействий. Кирпичная облицовка не придаёт фасаду дополнительное утепление и поэтому не учитывается при расчете толщины теплоизоляции. Облицовка фасада здания может выполняться из бетонных, силикатных или керамических кирпичей.  Соединение  кирпичной облицовки в системе утепления слоистой кладке выполняется с помощью гибких связей. Гибкие связи служат и для фиксации утеплителя. Между теплоизоляцией стен и облицовкой из кирпича  фасада здания делают вентилируемый воздушный зазор. Он предназначен для защиты утеплителя от пара и влаги, а так же обеспечивает хорошее утепление фасада кирпичного здания.

  При утеплении стен методом слоистой кладки нужно не только  подобрать нужный утеплитель, но и правильно выполнить работы по монтажу утеплителя. По технологии для крепления утеплителя фасада применяют специальный пластиковый крепёж. Необходимо от четырёх до пяти крепёжных элемента на один квадратный метр стены.  Крепежи из пластика надёжнее прижимают утеплитель, уменьшая воздействие мостиков холода на теплоизоляцию стены. Плиты теплоизоляции должны плотнее прилегать друг к другу для предотвращения промерзания фасада здания. Минеральный утеплитель  — достаточно мягкий материал, поэтому при проведении монтажа их нужно сжимать, чтобы добиться плотности стыка двух плит.

  При проведении утепления фасадов важно не забыть сделать зазор между облицовкой стены и утеплителем. Зазор должен составлять от 20 до 50 мм. Он препятствует скоплению водяного пара на утеплителе фасада. Образование конденсата (если он выпадет) будет происходить на поверхности облицовки с внутренней стороны. После чего конденсат высохнет. Зазор при устройстве слоистой кладки может быть  вентилируемым  и невентилируемым.  Вентилируемый зазор отличается от невентилируемого присутствием отверстий, расположенных в нижней части кирпичной кладки и под свесом кровли. Отверстия предназначены для притока и вытяжки воздуха. Продухи, предусмотренные технологией утепления, делаются из поставленного на ребро щелевого кирпича или из специальной решётки. При устройстве вентилируемой полости утеплитель фасада проветривается лучше. Но в этом случае облицовочная стена исключается из теплотехнического расчёта. При устройстве замкнутого воздушного зазора облицовочная стена принимает участие в теплоизоляции здания.

 Мостики холода, образовывающиеся при утеплении стен фасадов слоистой кладкой

  Недостаток в системе утепления стен слоистой кладкой – это мостики холода, возникающие в конструкции теплоизоляции фасадов здания. Очень непросто утеплить железобетонную плиту перекрытия. Надо учитывать, что наружная и внутренняя часть конструкции слоистой кладки по-разному усаживаются. Чтобы избежать смещения двух плоскостей, происходящее относительно друг друга, межэтажное перекрытие из железобетонных плит выносят за внешний контур теплоизоляции здания, опирая на него две конструкции. В плите перекрытия устраиваются вставки из утеплителя. Если этого не сделать, то нужно будет увеличить толщину утеплителя стен.

  Вставку из теплоизоляции выполняют по следующей схеме:

  1. Устраивают разрыв в бетонном слое;
  2. Обшивают голую арматуру теплоизоляцией;
  3. Поверх теплоизоляции заливают бетон.

Это наиболее экономичная схема утепления, но она не исключает полностью возникновение мостиков холода, ведь стальная арматура плиты перекрытия будет отдавать тепло. Более дорогостоящая схема утепления – это разрыв бетонного слоя и арматуры, заполнение разрыва утеплителем. Надо заметить, что специальные закладные детали для утепления нужно укладывать по контуру балкона и окна. В этих зонах часто промерзает.

  Мостики холода в теплоизоляции нередко образовываются в других местах. Поэтому, проектируя дом с утеплением фасада здания слоистой кладкой, надо обратить внимание на замкнутость контура теплоизоляции. Основная задача утепления стен методом слоистой кладки – это обеспечение нужной теплозащиты зданию. Для этого необходимы: Теплотехнический расчёт; правильная конструкция слоистой кладки, которая исключит возникновение мостиков холода в контуре теплоизоляции; надёжный и эффективный утеплитель для теплоизоляции, который смонтирован с соблюдением технологии, без различных ошибок.

  Описания утеплителя, необходимого для применения в системе утепления слоистой кладкой, Вы можете найти на нашем сайте. Наши квалифицированные консультанты помогут сделать выбор необходимых  материалов для утепления фасадов здания, выполнить нужные теплотехнические расчёты.

  Выполнение утепления фасада дома способом слоистой кладки позволяет сэкономить теплоизоляционный материал, вести работы по утеплению круглый год, создать красивый внешний вид здания. С внешней стороны конструкция утепления методом слоистой кладки выглядит как и монолитная стена из кирпича, но значительно дешевле по цене. А конструкции из кирпича по традиции долговечны и надёжны. В настоящее время на строительном рынке представлен большой выбор облицовочного кирпича по фактуре и цвету. Так что при желании вы можете создать неповторимый фасад своего дома.

Поставка базальтового утеплителя в Петропавловск-Камчатский, базальтовые плиты Камчатка, утеплитель Петропавловск, базальтовые плиты купить  Петропавловск-Камчатский, цена утеплителя Петропавловск-Камчатский +7(4212) 940+490

Кирпичная кладка с утеплителем: виды и устройство

Кладка стен из кирпича с утеплителем внутри

Возведение стеновых несущих перегородок полностью из этого материала в современном строительстве считается большой и не слишком разумной роскошью. Хотя большинство справочной литературы рекомендует делать несущие стеновые перегородки из кирпича более одного метра. Это поможет зданию иметь хорошее сопротивление холодам.

Использование сочетания кирпичной кладки с утеплителем позволяет достичь: значительной экономии строительных материалов, снижения нагрузки на фундамент, снижения потерь тепла почти в два раза.

Именно по этой причине кирпичная кладка с утеплителем является наиболее используемым вариантом на сегодняшний день и принята как способ эффективного ведения строительства.

Виды кладки стен с утеплением внутри

Схема кирпичной кладки с утеплителем.

Существует два вида устройства стен из кирпича, внутри которых находится утеплитель. Первый способ — это так называемая облегченная колодцевая кладка, состоящая из двух самостоятельных кирпичных стен.

Для повышения прочности конструкции они соединяются между собой горизонтальными кирпичными мостиками. А образовавшиеся пустотелые колодцы внутри них заполняются теплоизоляционным материалом.

Второй способ предполагает устройство трехслойной стеновой конструкции. В этом случае кирпичная стена облицовывается плиточным теплоизоляционным материалом, поверх которого выкладывается третий слой — облицовочный кирпич. Однако в связи с тем, что участились случаи разрушения зданий, возведенных по этой технологии, с 2008 года ее использование на территории России запрещено.

Технологический прием с использованием облегченного колодцевого вида дает возможность не только повысить тепловую инерцию кирпичной стены, но и существенно уменьшить строительную смету.

При ведении малоэтажного строительства достаточно будет сделать стеновую перегородку в 1,5 кирпича, чтобы достичь необходимой несущей прочности. А теплостойкость строения обеспечивается за счет утепления стен.

Использование сочетания кирпичной кладки с утеплителем позволяет достичь:

  • значительной экономии строительных материалов;
  • снижения нагрузки на фундамент;
  • снижения затрат по сравнению с традиционной кирпичной кладкой;
  • снижения потерь тепла почти в два раза.

Технология строительства стен с утеплителем внутри

Схема строительства кирпичной кладки с утеплителем.

Колодцевая облегченная кладка из кирпича не является новым изобретением. Она скорее относится к незаслуженно забытым строительным технологиям. Благодаря своей экономичности и высокому энергосбережению она приобрела в последнее время достаточно большую популярность.

% PDF-1.7 % 3996 0 объект > эндобдж xref 3996 122 0000000016 00000 н. 0000007296 00000 н. 0000007622 00000 н. 0000007676 00000 н. 0000007809 00000 н. 0000008168 00000 п. 0000008207 00000 н. 0000008272 00000 н. 0000009167 00000 н. 0000009990 00000 н. 0000010607 00000 п. 0000010878 00000 п. 0000011587 00000 п. 0000011844 00000 п. 0000012463 00000 п. 0000012950 00000 п. 0000013201 00000 п. 0000013787 00000 п. 0000014176 00000 п. 0000065302 00000 п. 0000096289 00000 п. 0000131205 00000 н. 0000133856 00000 н. 0000149756 00000 н. 0000150014 00000 н. 0000150393 00000 п. 0000197241 00000 н. 0000332659 00000 н. 0000332734 00000 н. 0000332814 00000 н. 0000332946 00000 н. 0000333003 00000 п. 0000333143 00000 п. 0000333200 00000 н. 0000333340 00000 н. 0000333397 00000 н. 0000333511 00000 н. 0000333568 00000 н. 0000333682 00000 н. 0000333739 00000 н. 0000333950 00000 н. 0000334007 00000 н. 0000334131 00000 п. 0000334257 00000 н. 0000334407 00000 н. 0000334464 00000 н. 0000334695 00000 н. 0000334752 00000 н. 0000334848 00000 н. 0000334972 00000 н. 0000335185 00000 н. 0000335242 00000 н. 0000335406 00000 п. 0000335540 00000 н. 0000335723 00000 п. 0000335779 00000 н. 0000335901 00000 н. 0000336021 00000 н. 0000336208 00000 н. 0000336264 00000 н. 0000336398 00000 п. 0000336518 00000 н. 0000336667 00000 н. 0000336723 00000 н. 0000336819 00000 п. 0000336975 00000 п. 0000337091 00000 н. 0000337147 00000 н. 0000337269 00000 н. 0000337325 00000 н. 0000337435 00000 н. 0000337491 00000 п. 0000337591 00000 н. 0000337647 00000 н. 0000337749 00000 н. 0000337805 00000 н. 0000337862 00000 н. 0000337992 00000 н. 0000338049 00000 н. 0000338237 00000 п. 0000338294 00000 н. 0000338482 00000 н. 0000338539 00000 н. 0000338596 00000 н. 0000338653 00000 н. 0000338829 00000 н. 0000338886 00000 н. 0000339018 00000 н. 0000339075 00000 н. 0000339132 00000 н. 0000339189 00000 п. 0000339337 00000 н. 0000339394 00000 н. 0000339451 00000 п. 0000339509 00000 н. 0000339631 00000 н. 0000339689 00000 н. 0000339823 00000 н. 0000339881 00000 п. 0000340057 00000 н. 0000340115 00000 н. 0000340265 00000 н. 0000340323 00000 н. 0000340465 00000 н. 0000340523 00000 н. 0000340581 00000 н. 0000340639 00000 н. 0000340817 00000 н. 0000340875 00000 н. 0000340933 00000 н. 0000340991 00000 н. 0000341127 00000 н. 0000341185 00000 п. 0000341321 00000 п. 0000341379 00000 п. 0000341529 00000 н. 0000341587 00000 н. 0000341733 00000 н. 0000341791 00000 н. 0000341849 00000 н. 0000007062 00000 н. 0000002799 00000 н. трейлер ] / Назад 13020633 / XRefStm 7062 >> startxref 0 %% EOF 4117 0 объект > поток hX {\ LSs. gy> | N

ИЗОЛЯЦИОННЫЕ БЕТОННЫЕ СТЕНЫ — NCMA

ВВЕДЕНИЕ

Разнообразие конструкций стен из бетонной кладки предусматривает ряд изоляционных стратегий, в том числе: внутренняя изоляция, изолированные полости, изоляционные вставки, вспененная изоляция, гранулированная заливка в пустотах блоков и системы внешней изоляции. Каждая конструкция каменной стены имеет свои преимущества и ограничения в отношении каждой из этих стратегий изоляции.Выбор утеплителя будет зависеть от желаемых тепловых свойств, климатических условий, простоты строительства, стоимости и других критериев проектирования.

Обратите внимание, что расположение изоляции внутри стены может повлиять на расположение точки росы и, следовательно, повлиять на потенциал конденсации. См. TEK 6-17A, Контроль конденсации в бетонных стенах (ссылка 1) для получения более подробной информации. Точно так же некоторые утеплители могут действовать как воздушный барьер при непрерывной установке и с герметичными стыками. См. TEK 6-14A, Контроль утечки воздуха в бетонных стенах (см.2) для получения дополнительной информации.

КЛАДКА THERMAL PERFORMANCE

Тепловые характеристики кирпичной стены зависят от ее устойчивых тепловых характеристик (описываемых значением R или U-фактора), а также от характеристик теплоемкости (теплоемкости) стены. На установившееся состояние и массовые характеристики влияют размер и тип кладки, тип и расположение изоляции, отделочные материалы и плотность кладки.Конструкции из бетонных смесей с более низкой плотностью приводят к более высоким R-значениям (т. Е. Более низким U-факторам), чем бетоны с более высокой плотностью.

Термическая масса описывает способность материалов накапливать тепло. Из-за своей сравнительно высокой плотности и удельной теплоемкости кладка обеспечивает очень эффективное аккумулирование тепла. Стены из кирпичной кладки остаются теплыми или прохладными еще долгое время после отключения отопления или кондиционирования воздуха. Это, в свою очередь, эффективно снижает нагрузку на отопление и охлаждение, смягчает колебания температуры в помещении и переносит нагрузку на отопление и охлаждение на непиковые часы.Благодаря значительным преимуществам собственной тепловой массы бетонной кладки, здания с бетонной кладкой могут обеспечивать такие же характеристики, что и каркасные здания с более сильной изоляцией.

Преимущества тепловой массы включены в требования энергетического кодекса, а также в сложные компьютерные модели. Энергетические нормы и стандарты, такие как Международный кодекс энергосбережения (IECC) (ссылка 5) и Стандарт энергоэффективности для зданий, за исключением малоэтажных жилых домов, стандарт 90 ASHRAE / IESNA.1 (ссылка 6), позволяют бетонным стенам иметь меньшую изоляцию, чем системы каркасных стен, чтобы удовлетворить потребности в энергии.

Хотя термической массы и присущего R-value / U-фактора бетонной кладки может быть достаточно, чтобы соответствовать требованиям энергетического кодекса (особенно в более теплом климате), бетонные стены кладки часто требуют дополнительной изоляции. Когда они это сделают, существует множество вариантов изоляции бетонных каменных конструкций. При необходимости бетонная кладка может обеспечить стены с R-значениями, превышающими минимальные нормы (см.3, 4). Однако для общей экономии проекта отрасль предлагает параметрический анализ для определения разумных уровней изоляции для элементов ограждающих конструкций здания.

Эффективность тепловой массы зависит от таких факторов, как климат, конструкция здания и положение изоляции. Влияние положения изоляции обсуждается в следующих разделах. Однако обратите внимание, что в зависимости от выбранного метода соответствия нормам положение изоляции может не отражаться в конкретных нормах или стандартах.

Существует несколько методов соответствия требованиям IECC к энергии. Один из вариантов, предписываемые значения R IECC (таблица IECC 502.2 (1)), требует «непрерывной изоляции» бетонной кладки и других массивных стен. Имеется в виду изоляция, не прерываемая обшивкой или стенками бетонных блоков. Примеры включают жесткую изоляцию, приклеенную к внутренней части стены с использованием каркаса и гипсокартона, нанесенного на изоляцию, непрерывную изоляцию в каменной полой стене, а также системы внешней изоляции и отделки.Если бетонная стена из каменной кладки не будет включать непрерывную изоляцию, существует несколько других вариантов соответствия требованиям IECC — бетонные стены из каменной кладки не обязательно должны иметь непрерывную изоляцию, чтобы соответствовать требованиям IECC. См. TEK 6-12C, Международный кодекс по энергосбережению и бетонной кладке, и TEK 6-4A, Соответствие энергетическому кодексу с помощью COMcheck (ссылки 7, 8).

ВНУТРЕННЯЯ ИЗОЛЯЦИЯ

Внутренняя изоляция — это изоляция, нанесенная на внутреннюю сторону бетонной кладки, как показано на Рисунке 1.Изоляция может представлять собой жесткую плиту (экструдированный или пенополистирол или полиизоцианурат), пенополиуретан с закрытыми ячейками, пеностекло, волокнистый войлок или волокнистую выдувную изоляцию (однако следует учитывать, что волокнистая изоляция чувствительна к влаге). Внутренняя поверхность стен обычно отделывается гипсокартоном или вагонкой.

Внутренняя изоляция позволяет использовать открытую кладку снаружи, но изолирует кладку от внутренней части здания и, таким образом, может уменьшить воздействие тепловой массы.

В случае жесткой теплоизоляции из плит используется клей, чтобы временно удерживать изоляцию на месте, пока применяются механические крепления и защитная отделка. Можно использовать мехи и удерживать их от лицевой стороны кладки с помощью распорок. Пространство, создаваемое распорками, обеспечивает защиту от влаги, а также удобное и экономичное место для дополнительной изоляции, проводки или труб.

В качестве альтернативы можно установить деревянную или металлическую обшивку с изоляцией между обшивкой.Размер обшивки определяется типом изоляции и требуемым значением R. Поскольку обрешетка проникает в изоляцию, ее свойства необходимо учитывать при анализе тепловых характеристик стены. Проходы стали через изоляцию значительно влияют на тепловое сопротивление, проводя тепло от одной стороны изоляции к другой. Несмотря на то, что он не такой проводящий, как металл, термическое сопротивление древесины и площадь поперечного сечения проникновения деревянной опалубки следует принимать во внимание при определении общих значений R.Для получения дополнительной информации см. TEK 6-13A, Мосты холода в строительстве стен (ссылка 9).

Пенополиуретан с закрытыми порами, как правило, укладывается между внутренней обшивкой. Пена наносится в виде жидкости и расширяется на месте. Правильное обучение помогает обеспечить качественный монтаж. Пена устойчива к пропусканию воздуха и водяного пара.

При использовании внутренней изоляции, бетонная кладка может содержать как вертикальное, так и горизонтальное армирование с частичной или полной затиркой, не прерывая изоляционный слой.

Прочность, атмосферостойкость и ударопрочность внешней стены остаются неизменными с добавлением внутренней изоляции. Ударопрочность внутренней поверхности определяется внутренней отделкой.

Рисунок 1 — Примеры внутренней изоляции

ИНТЕГРАЛЬНАЯ ИЗОЛЯЦИЯ

На Рисунке 2 показаны некоторые типичные интегральные изоляционные материалы в одинарных кирпичных стенах. Интегральная изоляция — это изоляция, помещенная между двумя слоями термической массы. Примеры включают изоляцию, помещенную в бетонные сердечники кладки и непрерывную изоляцию в стене с полостью кладки (обратите внимание, что изолированная стена с полостью кладки также может рассматриваться как внешняя изоляция, если не принимать во внимание тепловое воздействие массы шпона).

Со встроенной изоляцией некоторая часть тепловой массы (кирпичной кладки) находится в непосредственном контакте с воздухом в помещении, что обеспечивает отличные преимущества тепловой массы, позволяя использовать открытую кладку как снаружи, так и внутри.

Многослойные полые стены содержат изоляцию между двумя слоями кладки. Сплошная изоляция полости сводит к минимуму тепловые мосты. Ширину полости можно изменять для достижения широкого диапазона значений R. Изоляция полости может быть жесткой плитой, пенополиуретаном с закрытыми порами или насыпным заполнителем. Для дальнейшего повышения тепловых характеристик жилы резервного провода можно изолировать.

Когда в полости используется изоляция из жестких плит, обычно в первую очередь завершается внутренняя кладка.Утеплитель предварительно надрезан или надрезан производителем, чтобы облегчить установку между стяжками. Изоляция плит может быть прикреплена с помощью клея или механических креплений. Плотные стыки между изоляционными плитами максимизируют тепловые характеристики и уменьшают утечку воздуха. В некоторых случаях стыки между досками заделываются в расширяемый валик герметика, либо заделываются, либо заклеиваются лентой, чтобы действовать как воздушный барьер.

Интегральная изоляция, помещаемая в сердечники кладки, обычно представляет собой вставки из формованного полистирола, пенопласт или вспененный перлит или гранулированный вермикулит.Что касается опалубки, используемой для внутренней изоляции, при определении тепловых характеристик стены следует учитывать тепловое сопротивление бетонных стенок кладки и любых заполненных цементным раствором заполнителей (см. ТЭК 6-2C, ссылка 3, табличные значения R для стены с утеплителем). При использовании изоляции жилы изоляция должна занимать все незакрепленные пространства жилы (хотя некоторые жесткие вставки сконфигурированы для размещения арматурной стали и цементного раствора в одной ячейке).

Пенопластовая изоляция устанавливается в сердечники кладки после завершения стены.Установщик либо заполняет стержни сверху стены, либо закачивает пену через небольшие отверстия, просверленные в кладке. Пена может быть чувствительной к температуре, условиям смешивания или другим факторам. Поэтому следует тщательно соблюдать инструкции производителя, чтобы избежать чрезмерной усадки из-за неправильного смешивания или размещения пены.

Вставки из полистирола могут быть помещены в сердцевину обычных каменных блоков или использованы в специально разработанных элементах. Вставки доступны во многих формах и размерах, чтобы обеспечить диапазон значений R и приспособиться к различным условиям конструкции. В предутепленную кладку вставки устанавливаются производителем. Также доступны вставки, которые устанавливаются на стройплощадке.

Специально разработанные бетонные блоки для каменной кладки могут включать перегородки уменьшенной высоты для размещения вставок в сердцевинах. Такие полотна также уменьшают образование тепловых мостиков через кладку, поскольку уменьшенная площадь полотна обеспечивает меньшую площадь поперечного сечения для теплового потока через стену. Чтобы еще больше уменьшить тепловые мосты, некоторые производители разработали бетонные блоки с двумя поперечными перемычками, а не с тремя.

Вертикальная и горизонтальная арматура, залитая в сердцевины бетонной кладки, может потребоваться для структурных характеристик. Заливаемые ядра изолируются от изолируемых ядер путем нанесения раствора на перемычки, чтобы ограничить затирку. Гранулированная или поролоновая изоляция помещается в незацементированные стержни внутри стены. Затем определяется тепловое сопротивление на основе среднего значения R площади стены (объяснение и пример расчета см. В TEK 6-2C, ссылка 3). Некоторые жесткие вставки сконфигурированы для размещения арматурной стали и цементного раствора, чтобы обеспечить как тепловую защиту, так и структурные характеристики.При использовании вставок в залитой заделкой конструкции должны быть соблюдены требуемые нормами минимальные размеры пространства для затирки (см. TEK 3-2A, ссылка 10).

Зернистые засыпки закладываются в ядра кладки по мере укладки стены. Обычно заливки заливаются прямо из пакетов в стержни. Обычно происходит небольшое оседание, но оно относительно мало влияет на общую производительность. Гранулированный наполнитель имеет тенденцию вытекать из любых отверстий в стеновой системе. Поэтому дренажные отверстия должны иметь изнутри некоррозионные экраны или фитили, чтобы удерживать наполнитель и обеспечивать дренаж воды.Пчелиные ямы или другие зазоры в швах раствора следует заполнить. Кроме того, просверленные анкеры, устанавливаемые после изоляции, требуют специальных процедур установки, чтобы предотвратить потерю гранулированного наполнителя.

Рисунок 2 — Примеры интегральной изоляции

НАРУЖНАЯ ИЗОЛЯЦИЯ

Наружные утепленные каменные стены — это стены, которые имеют теплоизоляцию с внешней стороны от тепловой массы.В этих стенах сплошная внешняя изоляция окружает кладку, сводя к минимуму влияние тепловых мостов. Это помещает тепловую массу внутрь изоляционного слоя. Наружная изоляция удерживает кирпичную кладку в непосредственном контакте с кондиционированным воздухом внутри, обеспечивая наибольшее преимущество теплоемкости из трех стратегий изоляции.

Наружная изоляция также снижает потери тепла и движение влаги из-за утечки воздуха при герметизации стыков между изоляционными плитами. Наружная изоляция сводит на нет эстетическое преимущество открытой кладки.Кроме того, изоляция требует защитного покрытия для сохранения прочности, целостности и эффективности изоляции.

При наружной штукатурке применяется армирующая сетка для усиления финишного покрытия, повышения трещиностойкости и ударопрочности. Для этого используется стекловолоконная сетка, нержавеющая тканая проволочная сетка или металлическая обрешетка. После того, как сетка установлена, через изоляцию вводятся механические крепления, которые надежно закрепляются в бетонной кладке.Механические застежки могут быть металлическими или нейлоновыми, хотя нейлон ограничивает теплопотери через застежки.

После механического крепления утеплителя и армирующей сетки к кладке на поверхность притирается финишное покрытие. Эта поверхность придает стене окончательный цвет и текстуру, а также обеспечивает устойчивость к погодным условиям и ударам.

Рисунок 3 — Пример внешней изоляции

ПРИЛОЖЕНИЯ НИЖЕГО СОРТА

Каменные стены ниже уровня земли обычно используют одинарную конструкцию стены, которая может обеспечивать внутреннюю, интегральную или внешнюю изоляцию.

Наружная или встроенная изоляция эффективна для снижения внутренней температуры и для смещения пиковых энергетических нагрузок. Типичная обшивка, используемая для внутренней изоляции, обеспечивает место для прокладки электрических и водопроводных линий, а также удобна для установки гипсокартона или другой внутренней отделки.

При использовании стратегии внешней или интегральной изоляции архитектурные бетонные блоки из каменной кладки обеспечивают законченную поверхность внутри. Использование гладких формованных элементов у основания стены облегчает выполнение стяжки плиты.После заливки плиты формовочная полоса, также служащая дорожкой качения, может быть размещена напротив гладкого первого слоя. Остальная часть стены может быть построена из гладких, разрезных, ребристых, шлифованных, рифленых или других архитектурных бетонных блоков.

Изоляция на внешней стороне нижних частей стены временно удерживается на месте с помощью клея до тех пор, пока не будет засыпана засыпка. Та часть жесткой доски, которая выступает над уровнем земли, должна быть механически прикреплена и защищена.

Список литературы

  1. Контроль конденсации в бетонных стенах, TEK 6-17A. Национальная ассоциация бетонщиков, 2000.
  2. Контроль утечки воздуха в бетонных стенах, TEK 6-14A. Национальная ассоциация бетонных каменщиков, 2011.
  3. R-значения и коэффициент теплопередачи для одинарных бетонных стен из кирпича, TEK 6-2C. Национальная ассоциация бетонщиков, 2013.
  4. Значения R для бетонных стен с несколькими витками, TEK 6-1C.Национальная ассоциация бетонщиков, 2013.
  5. Международный кодекс энергосбережения. Совет Международного кодекса, 2003, 2006 и 2009 годы.
  6. Стандарт энергоэффективности для зданий, кроме малоэтажных жилых домов, стандарт ASHRAE / IESNA 90.1. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха и Общество инженеров по освещению, 2001, 2004 и 2007 годы.
  7. Международный кодекс энергосбережения и бетонная кладка, TEK 6-12C. Национальная ассоциация бетонщиков, 2007.
  8. Соответствие энергетическому кодексу
  9. с использованием COMcheck TEK 6-4A. Национальная ассоциация бетонщиков, 2007.
  10. Тепловые мосты в стеновых конструкциях, ТЭК 6-13А. Национальная ассоциация бетонных каменщиков, 1996.
  11. Заливка бетонных стен, ТЭК 3-2А. Национальная ассоциация бетонщиков, 2005.

NCMA TEK 6-11A, доработка 2010 г.

NCMA и компании, распространяющие эту техническую информацию, не несут никакой ответственности за точность и применение информации, содержащейся в этой публикации.

Влагостойкость сегментов внутренней изолированной кирпичной стены, подвергшихся смачиванию и сушке — лабораторное исследование

https://doi.org/10.1016/j.buildenv.2020.107488Получить права и содержание

Основные моменты

Внутренняя изоляционная кладка подвергается смачиванию и сушке в крупномасштабном климатическом симуляторе ограждающих конструкций здания.

Видно, что различия в поведении кладки влияют на характеристики внутренней изолированной стены.

Умеренная по сравнению с высокой начальной скоростью поглощения (IRA) кирпичная кладка показывает более быстрое высыхание заделанных концов балок.

Повышенный потенциал сушки проявляется благодаря применению интеллектуальной пароизоляции по сравнению с полиэтиленовой пароизоляцией.

Реферат

Гигротермические проблемы возникают при оснащении фасадов существующих каменных зданий внутренней изоляцией. Если не принять меры, возможно повреждение оболочки здания влагой.Было предложено и изучено множество мер по преодолению снижения способности к высыханию. Тем не менее, необходимо больше понимания в отношении воздействия мер.

В данной статье исследуется смачивание и высыхание сегментов кирпичной стены, установленных в крупномасштабном климатическом имитаторе ограждающих конструкций здания, при воздействии на них климатической последовательности, включая проливной дождь. Оборудованные внутренней изоляцией и заделанными деревянными концами балок, большинство стеновых сегментов имеют интеллектуальную пароизоляцию. Это должно обеспечить внутреннюю сушку при теплом внешнем климате и в холодном климате и предотвратить образование межклеточной конденсации.

Было обнаружено, что различия в характеристиках смачивания и высыхания кладки для сегментов одного и того же типа кирпича частично скрывают влияние других параметров, таких как толщина изоляции, тип кирпича и тип пароизоляции. По сравнению с сегментами кирпича с высоким IRA (начальная скорость поглощения), сегменты кирпича с умеренным IRA показывают более высокую скорость высыхания на концах балок и на границе между внутренней поверхностью кладки и изоляцией. Во время смачивания результаты оказались противоречивыми. Было обнаружено, что повышенное высыхание границы раздела между внутренней поверхностью кладки и изоляцией коррелирует с уменьшением толщины изоляции и применением интеллектуальной пароизоляции поверх традиционного полиэтиленового барьера.Аналогичная, но менее выраженная тенденция обнаруживается также на концах пучка. Умный пароизоляционный барьер, по-видимому, увеличивает сушильный потенциал, но, вероятно, он должен сопровождаться другими мерами.

Ключевые слова

Внутренняя изоляция

Кирпичная стена

Концы деревянных балок

Умная пароизоляция

Лабораторный климатический тренажер

Рекомендуемые статьиЦитирующие статьи (0)

© 2020 Авторы. Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирование статей

Безопасная изоляция исторических каменных зданий: как WUFI может помочь

С ростом популярности пассивного дома и ремонта EnerPHit при ремонте кирпичной и кирпичной кладки в США и Канаде снова и снова возникает вопрос: какие уровни изоляции необходимы для создания эффективной конструкции, и насколько далеко мы должны и можем ли мы продвинуться. Уровни внутренней изоляции без проблем? Один из инструментов, который мы можем использовать, — это программа для гидротермического моделирования WUFI.Компания 475 может предоставить анализ WUFI для ваших проектов с использованием полной системы герметичности Pro Clima.

Первоначальная герметичность *

Но перед WUFI первым элементом, который необходимо понять, является то, что правильная и надежная герметизация оболочки здания делает это здание намного более энергоэффективным (скорректируйте результаты теста дверцы воздуходувки в PHPP, чтобы увидеть, какой эффект это имеет . ..). Что еще более важно, внутренняя воздухонепроницаемость не позволяет влажному воздуху попадать в изоляцию и вызывать проблемы при контакте с холодными поверхностями (например, кирпичной стеной).Это причина того, что детали, разработанные и опубликованные 475 для внутренней изоляции исторической каменной конструкции, основаны на внутреннем воздушном барьере, изготовленном из интеллектуального пароизолятора INTELLO от ProClima, вместе с лентой TESCON VANA для удержания кондиционированного воздуха там, где он должен быть — на внутри, сохраняя изоляцию сухой и комфортной внутри. И использование служебной полости, чтобы гарантировать практическое достижение герметичных результатов.

* Конечно, проливаем воду за счет восстановления карнизов, водостоков, поводков и т. Д… не допустить насыщения кирпича — первоочередная задача, но воздухонепроницаемость важнее изоляции.

Переменные: климат, кирпич, изоляция

В WUFI существует множество переменных (что делает чрезвычайно важным надлежащее обучение пользователей WUFI). Но вот некоторые из основных переменных для следующих примеров. Местоположение — Олбани, штат Нью-Йорк, выбрано потому, что он находится в пятой климатической зоне. Мы используем стену наихудшего случая (выходящая на север, поэтому прямая солнечная радиация не доступна для сухой стены внутрь и наиболее подвержена атмосферным осадкам), умеренная влажность в помещении. зимой (30-40% по EN 15026) и небольшая утечка воздуха в салоне в каждой сборке.

Стена трехполюсная. Лицевой кирпич в большинстве случаев относительно неабсорбирующий и прочный, и был помещен туда добросовестными архитекторами / строителями, которые хотели, чтобы их постройки оставались долговечными. Это можно наблюдать в полевых условиях — неотапливаемые постройки без повреждений — хороший тому пример. Это также подтверждается публикациями, которые определили то же самое (Badami, 2011, Ananian, 2014). Это не означает, что нагрузка на стены внешней и / или внутренней влажностью не приведет к проблемам. Хороший дренаж, свесы, карнизы и т. Д. Обычно заботятся о внешних элементах исторических зданий, если они содержатся в хорошем рабочем состоянии. Наружная поверхность кирпича, вероятно, замерзает несколько раз в год, но, поскольку облицовочный кирпич обычно бывает хорошего качества, более частое охлаждение, скорее всего, не приведет к большему ущербу от замерзания-оттаивания. Большую озабоченность вызывает кирпич для внутреннего наполнения — этот кирпич обычно не такого высокого качества, он станет холоднее из-за внутренней изоляции и, если внутренняя влажность не контролируется, и может быть склонен к конденсации.Следовательно, любая дополнительная влажность может увеличить как вероятность роста плесени, так и замораживания-оттаивания.

Глубина и тип изоляции также могут играть важную роль, как мы рассмотрим ниже. Мы рекомендуем вам не использовать пену, потому что пена не работает, однако стекловолокно, минеральная вата и целлюлоза — все это приемлемые варианты.

WUFI и пороги безопасности

Существуют пороги безопасности, по которым существует общее мнение, и эти пороги не следует пересекать, чтобы быть уверенным, что сборка сохранит запасы сушки и большую упругость в случае дальнейшего непредвиденного смачивания.

Для предотвращения проблем с плесенью мы используем следующие пороговые значения:

  1. ProClima рекомендует постоянно поддерживать относительную влажность на поверхности конденсации ниже 92%.
  2. ASHRAE 160P устанавливает критерий, согласно которому для заданных 30-дневных средних значений относительная влажность не может быть выше 80% при температуре выше 41 градуса по Фаренгейту.

WUFI позволяет нам сравнительно понять, представляет ли какой-либо узел больший или меньший риск в отношении этих пороговых значений и устойчивости корпуса.Корреляция между каждым порогом безопасности показывает, что использование любого из них приводит к схожим выводам, и, придерживаясь обоих, нужно иметь уверенность в том, что сборка работает (при условии, что используются правильные исходные материалы, климат и ориентация).

Стекловолокно с «воздухонепроницаемым гипсокартоном»

Большое количество зданий по кодовым причинам имеет внутреннюю изоляцию, часто с использованием стекловолокна, и большинство из них не имеет проблем. Это неудивительно, поскольку в ограждении обычно пропускается столько воздуха, что утечки снижают ценность изоляции, и кирпич остается более теплым.Однако, если кто-то попытается использовать подход ADA / воздухонепроницаемого гипсокартона для герметизации изоляции (см. Этот пост в блоге, чтобы узнать, почему ADA неэффективен), мы увидим следующее моделирование WUFI:

На этом графике видно, что в первые холодные осенние дни влага начинает нагружать кирпич. Эта влажность достигает максимума, когда достигается точка насыщения кирпича свободной водой или примерно 95% относительной влажности, в отличие от более высокого уровня насыщения, достижимого в вакууме. Это означает, что возможна значительная влажность изнутри.(** См. Примечание к Scrit внизу сообщения.)

(Примечание: и эта стена, и стена ниже не соответствуют нормам / закону в климатической зоне 5, так как внутренний замедлитель парообразования (класс I или II) требуется в соответствии с IRC R702.7 для замедлителей парообразования).

Целлюлоза

Целлюлоза гигроскопична. Он может удерживать определенное количество влаги, которая в противном случае могла бы конденсироваться и накапливаться на первой холодной конденсирующейся поверхности. Тем не менее, это не волшебное панацея от ограждений. При использовании необходимо учитывать, что целлюлоза открыта для пара, и, хотя она может перераспределять нагрузку влаги намного лучше, чем другие волокнистые изоляционные материалы, остаются вопросы о том, насколько лучше и чего достаточно в климатических условиях с преобладанием нагрева при различных уровнях изоляции.WUFI показывает, что с 4-дюймовым слоем целлюлозы внутри («воздухонепроницаемого») гипсокартона уровни влажности превышают как 92% пороговое значение ProClima, так и 30-дневное текущее среднее максимальное значение ASHRAE, равное 80% относительной влажности и 41 ° F.

Этот график показывает, что стена получит дополнительную влажность (92% плюс шипы) изнутри, потому что в ней отсутствует требуемый код замедлителя парообразования, а также она подвержена воздействию таких уровней влажности, которые могут привести к врезанию деревянных элементов, таких как гвоздезабиватели, блокировка и т. Д. балка ухудшается (относительная влажность более 80%, когда 30-дневная температура превышает 41 ° F).

Целлюлоза с интеллектуальной воздухонепроницаемой системой INTELLO Plus — Pro Clima

Когда мы внедряем интеллектуальный замедлитель парообразования INTELLO компании ProClima на внутренней стороне изоляции, эти проблемы исчезают, поскольку влажность, образующаяся внутри зимой (при дыхании, приготовлении пищи, принятии душа и т. Д.), Сохраняется внутри. Это обеспечивает комфортную относительную влажность в помещении на уровне 35% + даже при работающем вентиляторе с рекуперацией тепла (HRV). Не менее важно, чтобы влажный воздух не попадал на холодные конденсирующие поверхности с другой стороны изоляции, так как INTELLO образует прочный воздушный барьер и пароизоляционный слой.

Насколько высоко мы можем безопасно подняться с INTELLO и целлюлозой?

Мы часто слышим вопрос: мы используем окна с коэффициентом теплопередачи 0,15 или выше (> R-7), поэтому не будет ли выгодно расположить стойки подальше от кирпича и повысить уровень изоляции? Итак, давайте посмотрим, что произойдет, если мы увеличим изоляцию до 6 дюймов из целлюлозы:

Это все еще можно считать нормальным — нет скачков выше 92% или длительных периодов более 80% относительной влажности, когда температура стены также не ниже 32F. Учтите, что это происходит только после того, как первоначальная влага в конструкции высохнет внутрь первой весной. Это сделано для того, чтобы показать наихудший сценарий, при котором мы начинаем расчеты WUFI в октябре со всеми материалами с относительной влажностью 80% — как раз тогда, когда начинается холодная погода.

Переход на целлюлозу 8 дюймов (R-30) приводит к следующему графику:

Сейчас мы действительно превышаем 80% в течение более длительных периодов времени, но только тогда, когда внутренняя поверхность кирпича ниже точки замерзания. Это не сразу тревожный сигнал, но мы начинаем исчерпывать резервы стен, и требуется тщательное рассмотрение и расследование, чтобы убедиться, что этот подход действительно безопасен и надежен.Сборка также очень кратковременно достигает пика выше 92%, хотя с годами этот пик заканчивается. Чтобы определить, можно ли рекомендовать такое количество изоляции, следует предпринять следующее: лабораторные испытания кирпича, дополнительное моделирование гигротермического поведения стены для каждой ориентации и дополнительные меры по сохранению стены сухой (например, повышенная герметичность, свесы, обработка кирпича).

Обратите внимание, что в рядных домах или компактных / прямоугольных отдельно стоящих зданиях гораздо меньше R-30 может быть достаточно для получения сертификата EnerPHit при наличии хороших окон, надлежащих деталей установки, высокой эффективности HRV и отсутствия больших тепловых мостов.Не стоит рисковать прочностью сборки / конструкции / здоровья людей, просто чтобы увеличить экономию энергии сверх безопасных уровней изоляции.

Несмотря на это, некоторые владельцы / архитекторы все еще стремятся к лучшей теплоизоляции. Мы сделали 12-дюймовую модель из целлюлозы, которая дает вам новую конструкцию, подходящую для пассивного дома с уровнем R-45. Однако, как показано на окончательном графике ниже, всплески влажности теперь достигают 92%. Кроме того, относительная влажность весной остается выше 80 %, в то время как стена в конце весны превышает 41F в течение нескольких недель, даже на пятый год.Запасы этой стены теперь явно исчерпаны, и любая дополнительная (непредвиденная) влажность или проникновение влаги изнутри или снаружи приведет к ситуациям, которые больше не могут быть смягчены ни за счет буферизации целлюлозы, ни за счет внутренней или наружной сушки. На наш взгляд, это слишком рискованно.

Заключение

Исторические здания не могут игнорировать меры по смягчению последствий изменения климата. Мы можем и должны безопасно сделать наши исторические каменные стены более энергоэффективными.WUFI — отличный инструмент для изоляции с приемлемым уровнем риска в сочетании с комплексным подходом к обновлению корпуса. Наша бесплатно загружаемая электронная книга Smart Enclosure, Historic Masonry Retrofits, — еще один полезный инструмент. Но всегда действуйте осторожно.

** Примечание к скриту

Сохранение низкого уровня влажности изнутри также предотвратит достижение кирпичной кладкой опасного уровня влажности, который может привести к замораживанию и оттаиванию — не только в наружной части, но и в самой холодной (внешней) части кладочного кирпича.Этот заливочный кирпич будет немного теплее и менее подвержен воздействию дождя, но поскольку для заливки использовался менее твердый кирпич, эти значения ниже, чем для лицевого кирпича. Этот критический уровень влажности называется S крит, и представляет собой уровень влажности по сравнению с вакуумным насыщением кирпича. Если для конкретного кирпича этот порог будет превышен (см. Эту статью ASHRAE), а температура будет ниже 23 ° F, вероятно, произойдет повреждение при замораживании и оттаивании. Если уровень влажности остается ниже этого уровня, кирпич может замерзнуть без повреждений.Для исторического лицевого кирпича, на котором были обнаружены какие-либо повреждения, особенно если здания какое-то время не отапливались, или для кирпича, который был протестирован на Scrit, эти значения могут достигать 0,80. Для насыпного кирпича значения могут быть намного ниже и составлять 0,4 или 0,3. Это испытание кирпичной кладки представляет собой гораздо более сложное мероприятие, чем надлежащая гидроизоляция, визуальный осмотр, испытание карстеновских трубок и т. Д., И оправдано, когда присутствуют повреждения, требуются более высокие значения изоляции, присутствуют другие опасения по поводу конструкции или сочетание таких факторов.

Как показано на графиках ниже, влажность кирпича в кирпиче в значительной степени зависит от типа используемой изоляции, ее толщины и наличия установленного интеллектуального пароизолятора ProClima INTELLO. Если значение Scrit превышено, это зависит от типа кирпича, но очевидно, что нагрузка на стену изнутри может добавить значительное количество влаги в исторические стены и увеличить вероятность повреждения при замораживании и оттаивании. На этом графике показано содержание влаги в наружном 3/8 дюймовом слое заполнителя.

Как устанавливают RetroFoam в наружные кирпичные стены

Как устанавливают RetroFoam в наружные кирпичные стены? (Быстрый ответ)

Инъекционная пена
 RetroFoam устанавливается в существующие стены с кирпичными наружными стенами путем просверливания трех 5/8-дюймовых отверстий вверху, посередине и внизу каждой полости в растворе, так что инжекционная пена полностью заполняет пространство. 

После впрыска пены отверстия заполняются раствором и все очищается.


Давайте подробно рассмотрим, как RetroFoam устанавливается в наружные кирпичные стены.


Вы могли подумать, что для изоляции внешних кирпичных стен необходимо вырвать все кирпичи, но это не так — по крайней мере, не с изоляцией RetroFoam.

Наши дилеры RetroFoam имеют опыт работы с инъекционной изоляцией для существующих домов, поэтому они знают, как работать с вашим кирпичом. Не нужно будет вырывать кирпич или устанавливать изоляцию из пенопласта изнутри.

Наша миссия — обучать домовладельцев всему, что касается утеплителя RetroFoam для дома. В этой статье мы расскажем, как утеплить кирпичные стены снаружи с помощью RetroFoam.

Изоляция наружных кирпичных стен с помощью пенопласта снаружи

Работать с кирпичом снаружи немного сложнее, чем с алюминием или винилом, но не так сложно, как с деревом.

Прежде чем мы перейдем к добавлению теплоизоляции к существующим стенам, давайте сначала поговорим о том, что уже там есть.

Если стены покрыты стекловолокном, это не проблема, потому что изоляция из пенопласта будет сжимать его, заполняя полость. Если в стенах целлюлоза, все сложнее.

В случае с изоляцией из целлюлозы, ее нужно либо удалить, либо вместо этого заизолировать полость, но об этом через минуту. Теперь перейдем к процессу установки внешней кирпичной стены.

Установщик просверлит 5/8-дюймовые отверстия вверху, посередине и внизу каждой полости в растворе.Это сделано для того, чтобы установщик мог убедиться, что полость полностью заполнена при впрыскивании пены.

По окончании добавления изоляционной пены в существующие стены отверстия заполняются строительным раствором, чтобы не было воздушных зазоров.

А теперь пора поговорить о том, где в стене устанавливается RetroFoam.

Следует ли изолировать полость витка или между стойками?

Вы знаете, как устанавливается RetroFoam, теперь давайте кратко обсудим, куда он идет.

Полость витка — это небольшое воздушное пространство между кирпичом и полостью стойки. С одной стороны кирпич, с другой — обшивка, отделяющая его от полости стойки.

Вы, наверное, думаете, что изоляция полости вайпа имеет наибольший смысл, но это не всегда так.

Предпочтительным методом при принятии решения о том, изолировать ли полость штыря или полость стойки, является полость стойки, и вот почему.

Вы хотите сохранить кирпичную внешность.Когда инъекционная пена попадает в полость, есть вероятность того, что давление может вытолкнуть кирпичи. Из-за этой возможности установщики не торопятся, и процесс занимает намного больше времени, но даже с этой мерой предосторожности кирпичи могут вытолкнуться.

Из-за этого предпочтительным методом является просверливание раствора через полость под шип прямо в полость стойки для впрыскивания пены.

Бывают случаи, когда полость wythe лучший вариант.

Например, если в полости стены есть целлюлоза, то вместо этого будет утеплена изоляция.

Другой сценарий — если стены обшиты панелями. Пена для инъекций может вызвать выталкивание панелей, что может быть сложно исправить в зависимости от того, как они прикреплены.

Введение пенопласта в существующие стены в вашем доме

Лучшее понимание того, как ваш дилер RetroFoam будет работать с вашим кирпичным фасадом, не означает, что у вас все еще нет вопросов или проблем.

Мы работали с домовладельцами, которые беспокоились о том, как будут выглядеть отверстия в растворе. Честно говоря, это может быть заметно, но в большинстве случаев после непогоды вы даже не можете сказать это с дороги — вам нужно будет подойти поближе и лично, чтобы увидеть, где были просверлены отверстия.

У вас также есть возможность установить RetroFoam изнутри вашего дома.

Если у вас есть еще вопросы, у нас есть ответы. Посетите нашу страницу установки RetroFoam, чтобы узнать больше о других процессах установки.Если вы хотите узнать больше о RetroFoam, посетите наш Учебный центр.

Статьи по теме

Кто не подходит для утепления дома RetroFoam?

Как определить, есть ли изоляция в стене

Как установщики RetroFoam узнают, что полость заполнена при утеплении существующих стен?

Для ремонта дома лучше установить изоляцию внутри или снаружи?

Ecohome 12 февраля 2019 г. 9:38

Кирпич в качестве внешней отделки в 3 раза дороже и в 3 раза дороже любой другой облицовки, так что я бы не стал избавляться от него по прихоти.Если вы действительно не можете выдержать его внешний вид или его разрушение, я бы сделал это решающими факторами. Если вы все равно делаете ремонт интерьера, я бы сказал, что утеплять лучше всего изнутри, и есть несколько способов. Во-первых, обратитесь к лицензированному электрику для проверки проводки, чтобы убедиться, что она безопасна и соответствует требованиям.

Что касается изоляции, вы можете выбрать один из нескольких методов:

Если у вас стена 2×6 и вы не хотите терять внутреннее пространство, я бы порекомендовал аэрозольную пену, у нее самое высокое значение R на дюйм на дюйм.Если у вас только стена 2х4 (что, к сожалению, почти наверняка так), было бы очень разумно пожертвовать внутренним пространством, чтобы разместить более толстую изоляцию.

Распыляемая пена

обеспечивает изоляцию, пароизоляцию, а также воздушный барьер, поэтому это хорошее решение «все в одном», хотя мы бы порекомендовали вам приобрести один из брендов, которые перешли на пенообразователи с более низким ПГП, которые, насколько нам известно, на данный момент Демилек и Эластохим.

Помимо распыляемой пены, вы можете заполнить внешние полости изоляционным войлоком, плотно упакованной целлюлозой, вы также можете добавить панели из жесткого пенопласта, панели Rockwool и т. Д., Существует множество методов.Вы должны убедиться, что какой бы метод вы ни выбрали, он герметичен и не задерживает влагу внутри. Следующие несколько страниц могут помочь вам принять эти решения. Прочтите их, и по мере того, как вы приближаетесь к принятию решения, не стесняйтесь оставить черту, если у вас есть короткий список. В последнее время у нас было очень загруженное время, поэтому мы можем быть уверены, что ответим быстрее и уточним, извините, что потребовалось время, чтобы ответить вам.

Если ваш фасад все равно нуждается в ремонте, рассмотрите варианты изоляции старой стены снаружи здесь

Внутренняя изоляция каменных стен

Версия этой статьи опубликована в июльском / августовском выпуске журнала Home Energy Magazine за июль / август 2014 года.

ПОДЕЛИТЬСЯ

Щелкните здесь, чтобы прочитать больше статей о Building America

Несущие каменные здания составляют значительную часть существующего строительного фонда. Программа DOE Building America поставила цель сократить потребление энергии в доме на 30–50% по сравнению с энергетическими нормами 2009 года для новых домов и использованием энергии до модернизации в существующих домах. Для достижения этой цели необходимо улучшить изоляцию и воздухонепроницаемость стен из массивной кладки, если речь идет о жилых домах с массовой кладкой.Чтобы помочь отрасли решить проблемы энергопотребления и влажности каменных стен, Building Science Corporation (BSC), одна из десяти групп Министерства энергетики США по строительству, провела исследования и разработки, которые привели к публикации недавнего руководства «Measure Guideline: Внутренняя изоляция каменных стен ». Это руководство кратко излагается в настоящей статье. Полный текст руководства можно загрузить с веб-сайта Building America (см. «Узнать больше»).


Различные варианты модернизации внутренней пеноизоляции на кладке.(Корпорация Строительной Науки)


Оценка строительства и участка Habitat Merrimack Valley (вверху) и оценка строительства и участка проекта Byggmeister (внизу). Оба являются текущими проектами Building America. (Корпорация Строительной Науки)


Рисунок 1. Пример стратегии, изложенный в полном руководстве рекомендуемого подхода к внутренней изоляции каменных стен (Building Science Corporation)

Обзор

Наружная изоляция обеспечивает идеальные условия для долговечности здания.Тем не менее, многие здания нельзя дооснащать изоляцией снаружи по причинам, связанным с сохранением исторического наследия, стоимостью, зонированием или ограничениями по пространству или эстетикой. Добавление теплоизоляции к внутренним сторонам наружных стен таких каменных зданий в холодном, особенно в холодном и влажном климате, может снизить производительность и долговечность. Необходимо соблюдать особые принципы контроля влажности, чтобы обеспечить успешную утепленную модернизацию сплошной несущей кирпичной стены.

Неизолированная кладка (даже толстая многослойная конструкция) будет иметь среднее значение R примерно равное R-5, что намного ниже текущих требований энергетического кодекса.В холодном климате изоляция дает существенные преимущества (см. «Изоляция каменных зданий в холодном климате», HE март / апрель 2010 г., стр. 29). Зимние термомассовые преимущества оставления кирпичной кладки без теплоизоляции незначительны в климате с преобладанием тепла по сравнению с местами с высокими суточными колебаниями внутренней заданной точки (как в более мягком климате).

Добавление теплоизоляции к внутренней стороне наружных стен повысит герметичность здания. Это, в свою очередь, может вызвать проблемы с качеством воздуха в помещении (IAQ).Для решения этих проблем необходимо применять механическую вентиляцию, контроль источников загрязнения и меры безопасности при горении. При изучении проблемы влажности основная предпосылка заключается в том, что стены из каменной кладки управляют влагой иначе, чем современные дренированные конструкции. Таким образом, внутренняя изоляция сильно влияет на баланс влаги (внутрь и наружу). Во-первых, кирпичная стена становится холоднее, когда ее утепляют внутри. Внутренняя поверхность кирпичной стены изменяется от умеренных до отрицательных.Кроме того, внутренняя изоляция уменьшает высыхание внутренней части за счет охлаждения кирпичной кладки, добавления паронепроницаемых слоев внутри и за счет минимизации потока энергии через стену. Кроме того, поток влаги, вызванный утечкой воздуха в границу раздела между кладкой и изоляцией, может привести к конденсации. Наконец, влага может гнить или разъедать встроенные деревянные бруски, что снижает их долговечность. Для предотвращения этих проблем требуется отличная герметичность.

Существуют различные способы утепления каменных стен в интерьере.Не рекомендуется устанавливать гипсокартон на стену из стальных каркасов, заполненную утеплителем из войлока. Такой подход будет способствовать образованию конденсата в зимнее время и росту плесени в стене, вызванному утечкой внутреннего воздуха в холодную границу раздела между изоляцией и кладкой. Это усугубится в герметичном здании.

Более удачный подход — распыление герметичной изоляционной пены непосредственно на внутреннюю сторону существующей кладки. При таком подходе вся конденсация утечки воздуха строго контролируется.Это наиболее практичный способ обеспечить высокий уровень герметичности существующих зданий. Распыляемая пена также действует как барьер для влаги, и любое случайное попадание дождя будет локализовано и контролироваться. Пенополиуретан высокой плотности с закрытыми ячейками обычно является хорошим выбором для более тонких областей применения (например, 2 дюйма SPF с закрытыми ячейками). Полупроницаемые пенопласты с открытыми порами (например, 5 дюймов SPF с открытыми порами) могут быть хорошим выбором для большей толщины, если зимой внутри поддерживается низкая влажность и температура наружного воздуха не слишком низкая.

Жесткая изоляция из пенопласта различных типов использовалась при внутренней переоборудовании, но ее гораздо сложнее установить, так как необходимо тщательно следить за тем, чтобы плита плотно прилегала к кладке и образовывала полный воздух. барьер. Обратите внимание, что оголенная кладка оказалась значительным источником утечки воздуха; это указывает на необходимость создания воздухонепроницаемого слоя, который обычно наносится на внутреннюю поверхность кладки.

Другой вариант сборки — объединение аэрозольной или жесткой вспененной плиты с волокнистой воздухопроницаемой изоляцией из стекловолокна или целлюлозы для создания менее дорогостоящей конструкции стены с высоким сопротивлением.Климатические условия и, следовательно, необходимость контроля конденсации определяют относительную толщину слоя пены.

Тепловой мостик через деревянный каркас будет иметь минимальное влияние на тепловые характеристики, если каркас с деревянными стойками допускает изоляцию не менее 1 дюйма, а предпочтительно 2 дюйма. Однако тепловые мосты через легкие стальные конструкции имеют большое значение. В этом случае зазор для утеплителя между каркасом и кладкой должен быть максимальным; желательно, чтобы в отсеке для стальных стоек было мало изоляции или не было ее вообще.Стальные фиксаторы на обратной стороне кладки также увеличивают тепловые мосты; их следует заменить термически непроводящим материалом.

Контроль влажности

При модернизации внутренней кладки крайне важно контролировать попадание воды в стену. Это особенно важно, потому что протечка воды больше не будет видна изнутри, пока не появятся пятна на стенах. Если невозможно решить проблему дождя и модернизировать ее, не следует устанавливать внутреннюю изоляцию.

Окна и двери не впитывают воду и, следовательно, сбрасывают всю дождевую воду, которая на них попадает. Чтобы дождевая вода не разрушала кладку, поверхностный дренаж дождевой воды не должен концентрироваться на стене под дверью или окном, и эта вода должна отводиться с фасада здания. Дренаж и осушение достигаются путем установки наклонной детали подоконника с концевыми перемычками и достаточного водослива за стеной внизу. Особенно уязвимы подоконники типа Rowlock, так как они состоят из отдельных кирпичей с швами из раствора, что будет источником утечки воды.Одно из возможных решений для уменьшения нагрузки воды на нижнюю стену — это покрыть ряд уключин металлическим окладом.

Утечка через стык между стеной и окном или сам оконный блок может способствовать увеличению влажности кирпичной кладки. Следует установить подоконник, который направляет воду на подоконник наружу. Колпачки и заглушки парапетов могут страдать от таких проблем, как недостаточный уклон, неправильный уклон, несоответствующие свесы и несоответствующие кромки капель, все из которых могут привести к скоплению воды на кладке ниже.Для решения этих проблем необходимо установить выступающие края капель и гидроизоляцию под крышкой.

Детали, такие как каменная кладка и полосы, могут собирать воду и оседать на фасаде здания. Решения включают в себя защитные колпачки и кромки капель под этими элементами.

Интерфейсы кровля-стена также могут собирать воду. Вырезные обшивки предотвратят эту проблему.

Водосточные трубы, водостоки и водостоки, когда они неправильно спроектированы или не работают, могут концентрировать огромное количество воды, что делает очень вероятным повреждение от замораживания-оттаивания (FT).

Когда кирпич закапывается ниже уровня земли, сильное флюоресценция и растрескивание могут возникнуть в результате поглощения капиллярной воды (впитывания влаги) через кирпич. Рекомендуемое решение — исключить капиллярный контакт между грунтом и кирпичом. Риск, близкий к классу, — это брызги воды; это уменьшается за счет более мягкого озеленения (не тротуара) или за счет удаления сточных вод с крыши и стен от прилегающей земли.

Другой риск для долговечности — это гигротермическое поведение чувствительных к влаге деревянных балок, встроенных в несущую кладку.Исследователи провели моделирование, чтобы изучить термическое и влажностное поведение встроенных балок до и после изоляции. В целом, это моделирование указывает на существенную неопределенность в отношении того, как деревянные элементы, встроенные в кирпичную кладку, на самом деле ведут себя при эксплуатации после модернизации изоляции. Необходимы дальнейшие исследования, включая использование двумерного гидротермического моделирования и измерений на месте как в изолированной, так и в неизолированной конфигурациях.

Изоляция каменного здания

При рассмотрении внутренней изоляции каменного здания мы рекомендуем строителям и подрядчикам предпринять следующие шаги для оценки рисков, связанных с этой модернизацией.

  1. Проведите оценку посещения объекта. Оцените утечку дождя, плохую детализацию и существующие повреждения FT.
  2. Проведите простые тесты и моделирование. Эти тесты касаются плотности в сухом состоянии, поглощения жидкой воды, содержания влаги при насыщении и базового гигротермического / WUFI моделирования.
  3. Провести детальные тесты и моделирование. Эти тесты касаются теплопроводности и критической степени насыщения Фагерлунда, или Scrit.
  4. Провести оценку загрузки сайта. Оценить нагрузку от дождя и режим выбега; контролировать выпадение дождя с помощью датчиков дождя.
  5. Провести мониторинг прототипа. Модернизируйте небольшую площадь здания и следите за температурой и влажностью, включая сравнение с моделями.
  6. Создайте программу технического обслуживания и ремонта, возможно, в форме руководства для владельца здания.

Хотя многие из этих модификаций внутренней изоляции внедряются по всей Северной Америке, необходимы дополнительные исследования по этой теме. Исследования должны касаться сравнения моделей и поведения в процессе эксплуатации, увеличения базы данных по внутренним изолированным зданиям из кирпичной кладки, лучшего понимания дождевых нагрузок на стены и использования прозрачных герметиков, таких как силаны и силоксаны.

Наружная изоляция каменных конструкций

Модернизация существующих зданий снаружи — лучшее техническое решение: внешняя изоляция обеспечивает высочайший уровень долговечности, энергоэффективности и комфорта с наименьшими техническими рисками. В частности, наружная изоляция и слои, регулирующие воздух / воду, имеют следующие преимущества:

  • Изоляцию и слои, регулирующие воздух / воду, можно легко сделать сплошными и, таким образом, защитить существующую конструкцию от дождя, конденсации и перепадов температуры.
  • Устранены тепловые мосты в перекрытиях и перегородках.
  • Увеличены преимущества термической массы.
  • Доступ для проведения работ зачастую проще.

При наличии возможности внешняя изоляция всегда должна быть предпочтительным вариантом модернизации с наименьшим риском. Эта изоляция может иметь форму внешнего покрытия, такого как система внешней изоляции и отделки или система дренажных панелей поверх изоляции и мембраны.

Внутренняя изоляция каменных конструкций

Несмотря на преимущества внешней теплоизоляции, многие здания необходимо модернизировать внутри по таким причинам, как сохранение исторического наследия, зонирование, ограничения пространства или эстетика (см. Рисунок 1).Несущие здания из каменной кладки часто (не всегда) имеют историческое значение и высоко ценятся за эстетический вид, что исключает возможность внешнего переоборудования.

Внутренняя переоборудование несущей кладки часто используется для сохранения внешнего вида. Существует множество возможных подходов к внутренней изоляции, которые в целом достаточно хорошо изучены. Добавление теплоизоляции, повышение герметичности, замена окон и улучшение защиты от дождя составляют обычный пакет модернизации. Добавление изоляции к стенам таких каменных зданий в холодном (особенно холодном и влажном) климате может вызвать проблемы с эксплуатационными характеристиками и долговечностью, в частности, гниение и повреждение FT.

Существуют определенные принципы контроля влажности, которые необходимо соблюдать для успешного внутреннего переоснащения массивной каменной стены. Цель данного руководства — представить текущее состояние дел в области гидробезопасных модификаций массивных каменных стен с некоторым обсуждением конкретных деталей, которые имеют более высокие риски долговечности. Это руководство содержит рекомендации по проектированию, архитектуре и подрядчикам для оценки и минимизации риска повреждения FT, возникающего из-за внутренней изоляции массивных стеновых сборок.Он также предоставляет аналогичные рекомендации для оценки и управления риском разложения встроенных деревянных элементов конструкции.

узнать больше

Straube, J.F., K. Ueno, and C.J. Schumacher. «Рекомендации по измерению: внутренняя изоляция каменных стен» Вашингтон, округ Колумбия: Министерство энергетики США, Программа Building America, июль 2012 г. Загрузить руководство ..

Отчеты об исследованиях

Building America, полевые руководства Energy Star и множество других технических материалов теперь легко доступны через Центр решений Building America.

Важные выводы

Внешний вид существующих зданий — лучшее техническое решение. Наружная изоляция обеспечивает высочайший уровень прочности, энергоэффективности и комфорта при минимальном техническом риске.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *