Байпас в системе отопления | Частный дом
Байпас в системе отопления — отрезок трубопровода, который установлен параллельно регулирующей и запорной арматуре.Основные элементы конструкции и деталей байпаса: 1 — циркуляционный насос; 2 — фильтр грубой очистки; 3 — запорные краны; 4 — запорный кран на байпасе.
Байпас в системе отопления
На схеме (Рис 1) представлен ручной байпас в системе отопления частного дома, позволяющей работать системе открытого и закрытого типа, в режиме принудительной или естественной циркуляции, даже во время аварийного отключения электропитания. По факту, байпасом здесь на схеме является участок трубы обратной магистрали с запорным краном [4], между двумя подключениями линии циркуляционного насоса.
Байпас в системе отопления может работать или только во время запуска, что позволяет быстро произвести прогрев всех радиаторов одновременно, или на постоянной основе. А так же его устанавливают в случае, каких — либо причин плохой естественной циркуляции отопления, например: не правильный или не удачный монтаж системы.
Обратный клапан в отоплении
Обратный клапан в отоплении можно установить на байпасе вместо крана [4]. Клапан, во время включения циркуляционного насоса, находится в закрытом состоянии, а если происходит отключения электричества, он автоматически открывается, что позволяет перейти системе на естественную циркуляцию. Включение в байпас автоматического обратного клапана является спорным. В случае, если обратный клапан в отоплении неправильно работает, по причине попадания в него механических включений теплоносителя (окалина, ржавчина и т. д.), что особо актуально при стальных трубах и чугунных радиаторах, то визуально это проверить невозможно, а фильтр перед ним ставить нельзя.
Установка байпаса
Установка байпаса делается недалеко от котла на обратной магистрали, там, где теплоноситель (вода) имеет наименьшую температуру. Место установки должно быть не слишком близко к котлу, чтобы не допустить перегрева насоса. Для предотвращения завоздушивания, во время заполнения системы отопления, конструкцию байпаса монтируют в горизонтальной плоскости.
Диаметр условного прохода (Ду) устройства линии байпаса такой же, как и у обратной магистрали и составляет 40 — 50 мм, а диаметр труб врезки циркуляционного насоса [1] с запорными кранами [3] и фильтром [2] соответствует Ду насоса. Примерный вариант схемы установки ручного байпаса на (Рис 1). Фильтр грубой очистки ставится только перед насосом, по направлению движения воды. Все краны, на случай поломки, лучше укомплектовать фитингами разборного типа. Очень удобно во время установки устройства байпаса в систему отопления, применение Американок (Фото 1), которые позволят быстро и без особых проблем провести ремонтные работы. Для запорной арматуры эффективнее применять шаровые краны, а не вентиля.
Для работы отопления с естественной циркуляцией кран [4] должен быть открыт и отключен циркуляционный насос. Когда система отопления функционирует в режиме принудительной циркуляции, краны [3] открыты, кран [4] закрыт и включен насос.
Байпас радиатора
Байпас радиатора (схема на Рис 2 и Рис 3) устанавливается в однотрубной системе, между подводящей и обратной трубой подключения прибора к отопления. В первую очередь он предназначен для регулирования нагрева каждого в отдельности прибора обогрева, при помощи терморегулирующих или запорных кранов [6] и отлаживания циркуляции теплоносителя краном [5]. Во вторых, для проведение ремонтных работ с радиатором без отключения и слива системы отопления. Для этого открывается до конца кран [5] и после этого перекрываются краны [6]. Чтобы другие приборы отопления на этом стояке (выше или ниже отключенного) дальше продолжали нормально функционировать, правильно диаметр байпаса радиатора сделать таким же как и диаметр стояка. Смотрите видео. Такие же схемы актуальны и при монтаже полотенцесушителя.
Байпас в системе отопления часто является обязательной необходимостью для ее качественной работы.
Установка байпаса на радиатор отопления, батарею в СПБ недорого
В САНКТ-ПЕТЕРБУРГЕ, МЫ РАБОТАЕМ В ЭТИХ РАЙОНАХ ГОРОДА:
Адмиралтейский район, Василеостровский район, Выборгский район, Калининский район, Кировский район, Колпинский район, Красногвардейский район, Красносельский район, Кронштадтcкий район, Курортный район, Московский район, Невский район, Петроградский район, Петродворцовый район, Приморский район, Пушкинский район, Фрунзенский район, Центральный район, п.Осиновая роща и п.Юкки
МЫ ПРЕДЛАГАЕМ УСЛУГИ ЭЛЕКТРИКА, САНТЕХНИКА, МАСТЕРА НА ЧАС, ПЛИТОЧНИКА, ПЛОТНИКА, МАЛЯРА:
в пос. Юкки, на Парнасе, в Мурино, Буграх, Сертолово, Токсово, Кузьмолово, в пос. Песочный, Девяткино и Новом Девяткино.
Также наши мастера обслуживают Кудрово, Янино, Всеволожск, Кировск, район Уткиной Заводи, Новосаратовку, пос. Колтуши, Петро-Славянку.
НАШИ МАСТЕРА ПРОЖИВАЮТ У ЭТИХ СТАНЦИЙ МЕТРО:
Автово, Адмиралтейская, Академическая, Балтийская, Беговая, Бухарестская, Василеостровская, Владимирская, Волковская, Выборгская, Горьковская, Гостиный двор, Гражданский проспект, Приморская, Девяткино, Достоевская, Елизаровская, Звёздная, Звенигородская, Кировский завод, Комендантский проспект, Крестовский остров, Купчино, Ладожская, Ленинский проспект, Лесная, Лиговский проспект, Ломоносовская, Маяковская, Международная, Московская, Московские ворота, Нарвская, Невский проспект, Новочеркасская, Обводный канал, Обухово, Озерки, Парк Победы, Парнас, Петроградская, Пионерская, Площадь Александра Невского, Площадь Александра Невского 2, Площадь Восстания, Площадь Ленина, Площадь Мужества, Политехническая, Пролетарская, Проспект Большевиков, Проспект Ветеранов, Проспект Просвещения, Пушкинская, Рыбацкое, Садовая, Сенная площадь, Спасская, Спортивная, Старая Деревня, Технологический институт, Удельная, Улица Дыбенко, Фрунзенская, Чёрная речка, Чернышевская, Чкаловская, Электросила.
Вызов в Запорожское, Сосново, Лемболово, Гарболово.
Байпас в системе отопления
Что такое байпас
Точный перевод с английского простого термина «bypass» обозначает перенаправление в обход основной магистрали или трубопровода. Фактически это просто обводная труба, позволяющая обойти какой-то проблемный участок или узел. В системе отопления дома байпасная труба играет роль не менее важную, чем предохранительный клапан или батареи.
Зачем нужен обводная байпасная труба? Ремонт гидравлических узлов системы отопления всегда был сопряжен с большими вспомогательными работами, а ремонт отопления в зимний период зачастую превращался просто в пытку. Поэтому сервисные мастера, специализирующиеся в ремонте насосов и узлов системы отопления дома, рекомендуют использовать конструкцию для всех батарей и котла, если таковой в доме имеется.
Разновидности байпаса
Специалисты, используя термин байпас в отоплении дома, чаще всего подразумевают перемычку главного насоса системы индивидуального обогрева жилья. В реальности байпас используется немного шире в следующих вариантах:
- Перепускная труба, позволяющая отключить из гидравлического контура труб неработающий циркуляционный насос котла индивидуальной системы отопления;
- Устройство, дающее возможность вывести из системы отопления и не использовать при работающем отоплении любой узел системы – аккумулятор тепла, сушилки, батареи отопления.
Совет! Байпас является незаменимым инструментом, особенно в случаях нестабильного электропитания, или если батареи отопления находятся в аварийном состоянии.
В последнем случае прорыв свища на радиаторе может привести к затоплению соседей этажом ниже в многоквартирном доме. Байпасная магистраль, особенно в исполнении с обратным клапаном, позволит предотвратить большие неприятности.
Практические конструкции байпасной трубы
Несмотря на внешние различия, принцип и устройство байпаса практически идентичны, как для батареи центрального отопления в квартире, так и для электрического насоса, перекачивающего теплоноситель индивидуального отопления дома.
Как не замерзнуть при работающем индивидуальном отоплении
Первое назначение системы байпас в индивидуальном отоплении отнюдь не в повышении экономичности или эффективности отопительных приборов. Байпас, прежде всего, нужен для предупреждения выхода из строя индивидуального котла и разморозки батарей при отключении электроэнергии в следующих ситуациях.
Если у вас в индивидуальной системе отопления стоит малоинерционный котел на природном газе, его работа контролируется и обеспечивается газовой автоматикой и насосом прокачки теплоносителя. При отключении электроэнергии котел и насос остановятся, батареи будут остывать, вплоть до полного размораживания. При использовании твердого топлива остановка циркуляции грозит не только размораживанием радиаторов, а прежде всего перегревом или прогаром теплообменника котла, что нередко случается в условиях частного дома.
Установка байпасной магистрали с обратным клапаном позволяет организовать движение теплоносителя в системе отопления по принципу самотека, когда более тяжелый холодный теплоноситель вытеснял из теплообменника более легкий. Но для этого нужно, чтобы трубы, котел и батареи отопления были приспособлены для работы в условиях естественной циркуляции теплоносителя.
Как работает байпас в индивидуальном отоплении частного дома
Конструктивно байпасная система представляет: перепускную трубу с двумя ручными шаровыми клапанами, посадочным местом под циркуляционный насос и фильтром;
Устанавливается байпас непосредственно на патрубок для входа в котел холодной воды. В штатном режиме работы теплоноситель засасывается работающим циркуляционным насосом и выталкивается в котел для нагрева. При остановке мотора его крыльчатка создает сильное сопротивление потоку жидкости и в отдельных случаях способна даже закупорить трубу. Чтобы организовать полноценное протекание в ручном режиме, перекрываются краны, и поток теплоносителя направляется напрямую.
Для работы байпасного обвода и смены направления потока было бы достаточно одного крана. Чтобы получить возможность демонтировать главный насос, необходим второй кран, который также отсечет его от труб систем отопления.
К такой системе существует два основных требования:
- Установка магистрали с насосом в верхнем положении для уменьшения завоздушивания линии;
- Краны для переключения потоков жидкости и патрубки выбираются на четверть дюйма меньше диаметра основной обводной магистрали.
- Наличие в линии байпаса качественного фильтра для удаления ржавчины и загрязнений.
Автоматический байпас с шариковым обратным клапаном
В работе байпаса важным является своевременно выполнить переключение, зачастую от этого зависит работоспособность отопительного котла и всей системы. В отличие от байпасной схемы с ручным переключением, автоматический обратный клапан позволяет перенаправить поток за пару секунд. В обычном режиме напор жидкости на выходе из насоса прижимает шарик к седлу клапана, тем самым блокирует поток в обходном канале. При остановке насоса напор исчезает, и рабочий элемент обратного клапана освобождает обходную магистраль для движения жидкости самотеком.
Байпас в системе центрального отопления дома
Система обводного байпасного канала может быть полезной не только в системах индивидуального отопления. Установка прибора может быть выполнена как в двухтрубной, так и в однотрубной системах. Наиболее эффективным байпасная система будет в двухтрубной системе.
Кроме возможности ремонта батарей и всей арматуры системы отопления в доме, байпас позволяет довольно точно регулировать количество горячей воды, перепускаемой через радиатор. Подобные системы работают примерно по одной схеме, как для двухтрубных, так и для однотрубных линий центрального отопления. В современных двухтрубных системах отопления установка и применение байпаса является обязательным требованием СНиП отопления. Это делается для экономии горячей воды в системе отопления. При относительно высокой температуре воздуха на улице и работе батарей на полную мощность в помещении может возникнуть перегрев. Раньше избыток тепла ликвидировали с помощью открытых настежь окон, теперь с целью экономии ресурсов температуру батареи можно снижать байпасом.
К сожалению, подобная регулировка возможна только в одном направлении. Повысить температуру батареи байпасом практически невозможно. Поэтому для однотрубной системы ваша экономия на энергии позволит добавить тепла в квартирах на верхних и нижних этажах.
Байпасный обвод уже стал незаменимым для сушилок в ванных комнатах. В такие теплообменники энергии подается с избытком для поддержания надлежащего температурного режима, поэтому есть необходимость в ручной регулировке нагрева.
Байпасная конструкция позволяет довольно быстро и эффективно выполнять заполнение системы и удалять воздушные пробки.
Изготовить и установить байпасную трубу можно собственными силами. Обводную линию можно спаять из алюминий-пропиленовой или металлопластиковой труб, добавив пару тройников и кранов для горячей воды.
Общая оценка влияния байпаса на экономию энергии
Наличие байпасной системы в системе индивидуального отопления позволяет экономить электроэнергию, но способ экономии требует реализации специального режима работы циркуляционного насоса. В этом режиме насос включается на 30-60 сек на максимальной мощности. По достижении оптимальных 2-3 м/с мотор отключается, и теплоноситель движется по инерции еще 2-2,5 мин по обходной линии. Общие затраты электроэнергии на привод насоса уменьшаются на 40-50%.
Кроме экономии электроэнергии, котел с байпасной линией потребляет на 10% меньше газа.
Использование байпасной магистрали не является единственным способом организовать отопление в режиме самотека. Основной проблемой является устройство улитки центробежного насоса. В промышленных центробежных насосах уже довольно давно используется конструкция с дополнительным объемом улитки и утопленным рабочим колесом. Такая схема обладает минимальным сопротивлением потоку, и при остановке мотора поток жидкости протекает без потерь.
Заключение
Практичность и полезность байпасной конструкции подтверждена в десятках тысяч установленных приборов. Современные газовые и твердотопливные котлы в обязательном порядке оснащаются приборами обводной линии. Старые котлы переоборудуются с установкой байпасной магистрали, как изготовленной собственноручно, но чаще — промышленного изготовления, с сертифицированными клапаном и датчиком жидкости.
Схема отопления ленинградка | Секреты и Нюансы
Особенности ленинградки Монтаж системы
Ленинградка — схема одной трубы, и у неё есть как плюсы, так и минусы. Давайте их подробно разберём, а Вы уж решите, подходит она Вам или нет.
Эта схема отопления выполняется как в горизонтальном, так и в вертикальном исполнении.
При вертикальном исполнении подача теплоносителя происходит сверху. Для этого делается верхний контур, располагающийся или на чердаке, или в стене выше радиаторов отопления, и уже от него спускаются вниз стояки, к которым подключаются радиаторы.
В многоэтажных домах такая схема себя оправдывает, а в одно — двухэтажных домах лучше делать горизонтальную ленинградку, которую мы и будем разбирать по косточкам.
Горизонтальная схема отопления ленинградка предпочтительна в тех случаях, когда труба укладывается (прячется) в стену.
Делается она, как я уже говорил, на одной трубе, металлической или полипропиленовой, только не металлопластиковой.
Из секции коллектора Подача выходит труба, к ней подсоединяются и вход и выход радиатора, затем следующего радиатора (я делал до 8 штук), и пройдя последний, возвращается в коллектор на секцию Обратка.
Особенности ленинградки
Cначала о плюсах, так как они гораздо весомее.
1. Дешевизна. Радиаторы питаются с одной трубы. Прямая экономия на количестве и стоимости трубы и теплоизолятора, в который она упаковывается.
2. Экономичность. Теплоносителя для такой линии нужно сравнительно меньше, и для поддержания заданной температуры, потребуется меньше газа
3. Сравнительно проще монтаж. При монтаже в стену, штроб делается только для одной трубы. Это гораздо легче и опять экономия на теплоизоляторе, так как помимо изоляции трубы, ещё утепляется штроб по внутренней поверхности.
Знаю, что утепление штроба частенько не делают, но так же знаю, как потом чешут репу: и почему это интересно на одном участке падает температура.
А падать она может потому, что под штукатуркой в кладке стены остаются сквозные каналы или образуются трещины в наружной штукатурке, или мыши проедят наружный утеплитель.
А так как штробление нарушает внутреннюю штукатурку, то появляются мостики холода, которые образуют на трубе конденсат и охлаждают , даже если она в теплоизоляции.
К утеплению магистрали отопления, будь она в стене, в полу, или под потолком в гипсокартонном коробе, относитесь серьёзно.
Иначе получите трещины в паркете или на потолке, недостаточно теплые радиаторы, перерасход газа и конденсат там где он не нужен..
Теперь о минусах. Минус схемы отопления ленинградка — необходимость и сложность балансировки.
Первые радиаторы, после включения отопления или после повышения заданной температуры, получают больше тепла, чем последние, а значит будут горячее.
Постепенно, температура в радиаторах выравнивается, но лучше сделать так, чтоб они прогревались и охлаждались сразу одинаково.
Для этого, после запуска отопления, подождав минут 10-15, нужно помаленьку поджимать вентиля первых радиаторов, пока прогрев не станет равномерным.
Дело это не терпит спешки, и частенько затягивается, поэтому я и отношу балансировку к минусам ленинградки.
Монтаж системы
Для схемы на 4-5 радиаторов диаметр магистрали Ø25, диаметра отводов и байпаса Ø20, а для схемы 6-8 батарей, лучше взять магистраль Ø32, отводы и байпас Ø25, иначе сделать балансировку будет проблематично.
Байпас (зауженный участок магистрали между отводами к радиаторам), обеспечивает затекание теплоносителя в радиаторы, снятие отдельной батареи, без отключения линии и проведение балансировки.
Байпас с отводами делается отдельно, после чего вваривается в магистраль.
Расстояние между отводами рассчитывается и делается с допуском ±2 мм так, чтоб когда к ним приварятся угловые вентили с американкой, между этими вентилями, точно уместился бы радиатор.
На подтягивание американки у вас будет допустимый люфт 1-2 миллиметра, превысив который она пойдёт на перекос и потечёт.
Чтоб получить точный размер, возьмём радиатор, ввернём в него угловые вентили, с комбинированными муфтами, и замерим расстояние между центрами муфт.
Затем к отводам приварим тройники, и к одному тройнику байпас. Второй тройник делается уже точно по размеру, причем размер берётся между центрами отводов, и плюс к этому отметим размер посадки байпаса в тройник.
Какие нюансы есть при сварке этого узла.
Грубейшая ошибка в этой работе — внутренний наплыв. Подробнее об этом в статье Сварка полипропилена.
Не стоит возлагать надежды на насос, встраиваемый в систему отопления. Мол поставим насос, и он везде всё прогонит.
Прогнать то он, конечно прогонит, но если половина проходного диаметра закроется наплывом, то теплоноситель, даже под давлением, предпочтёт проскочить по другой чистой магистрали, имеющейся на коллекторе.
А на каждую линию насос не поставишь — дороговато, да и с балансировкой опять же проблемы
Так же и в отвод наполовину, или даже на четверть закрытый наплывом, тепла пойдёт меньше, чем в чистый проход.
Если наплыв закроет часть магистрали после первого или второго радиатора, то в третьем и четвёртом температура станет ощутимо ниже.
Так что остерегайтесь наплывов, и проверяйте каждое сделанное соединение.
Если же наплыв образовался, лучше переделать сразу, чем потом ковырять стену.
Когда элемент готов, вешаем радиатор с угловыми вентилями и комбинированными муфтами на место, закладываем в штроб байпаз с отводами, замеряем необходимую длину отводов, отрезаем лишнее, снимаем комбинированные муфты и привариваем к отводам.
Затем собраем узел, и радиатор и вентили и байпас, устанавливаем на место и подводим к этой части магистраль, делаем на ней метки для сварки, после чего отсоединяем и убираем радиатор и вентили.
На картинках, у меня муфты ещё не установлены, но лучше приварить сразу.
Теперь свариваем байас и магистраль, но перед этим обязательно определяем, какой конец приваривать первым. Случается такая ситуация, что приварив один край, со второго не возможно вставить паяльник, между тройником и трубой.
Так что обязательно прикиньте, какую часть Вы соедините в первую очередь, и как потом соедините вторую.
После этого, займёмся теплоизоляцией и креплением. Изолировать можно кому чем нравится. Главное, чтоб магистраль теряла как можно меньше тепла.
На этом объекте оставалось много пенофола 3 мм., поэтому я сделал два слоя, один отражателем внутрь к трубе, другой наружу. Пришлось повозиться, но зато свёл потери тепла к минимуму.
Перед креплением трубы, снова навешиваем радиаторы, собираем «на живую», и крепим магистраль в штробе. О том как крепить трубы, я писал в статье Тёплые полы.
Затем участки прилегающие к батареям, дополнительно и окончательно закрепляем гипсом, после чего радиаторы снимаются до окончания отделки. Вентили остаются, чтоб испытать магистраль на протечку.
Возможно у Вас возникнут ещё вопросы по схеме отопления ленинградка и не только — спрашивайте в комментариях.
Желаю трудовых успехов.
Раздел Стройка >>>Подраздел Отопление>>>
Байпас в системе отопления: как работает, для чего нужен
Что такое байпас, можно объяснить довольно просто, — это отрезок трубопровода системы водоснабжения или отопления, устанавливаемый в ключевых местах контура. Таким простым инженерным решением облегчается ремонт и обслуживание трубопроводной арматуры, насосов, повышается экономичность работы и качество обогрева помещений. При помощи байпаса можно отключить рабочий элемент системы, вернее, пустить в обход него поток теплоносителя.
Устройство байпаса
Байпас еще называют байпасным обводом, то есть, трубопроводом для перенаправления потока рабочей среды в обход определенной точки отопительной системы, где находится радиатор отопления, насос, разветвление и т.п. Обводная труба одним концом подсоединяется к входящей трубе контура, другим — к отводящей. Перед входом байпаса на участке до элемента системы монтируется запорная арматура: кран, вентиль, задвижка. Поток носителя перекрывается или полностью, или выполняется регулировка количества его поступления на прибор.
Обходные трубы сначала применяли с целью проведения ремонтов или обслуживания трубопроводных магистралей без полной остановки функционирования. В последствии это простое решение стало обязательным условием при монтаже однотрубных систем и стало называться байпасом. В двухтрубных контурах в устройстве совсем нет потребности.
Какие бывают виды байпасов
Запорную арматуру устанавливают не только после входного или перед выходным отверстием обвода, но и на нем. Относительно этой особенности, а также в зависимости от типа запорных механизмов, обходы разделяют на три вида:
- С механическим (ручным) управлением.
- Статичные (нерегулируемые).
- Автоматические.
Каждой разновидности свойственны свои конструкционные особенности, а также способы использования.
В вертикальных схемах разводки труб конструкции байпасов состоят из подсоединенных патрубков с тройниками, распределяющими потоки по нескольким отопительным радиаторам.
Нерегулируемый байпас
Если на обводной трубе или перед входной трубой отопительного прибора нет никаких элементов запорной арматуры, то такой байпас — неуправляемый. В таких случаях конструкция трубопровода сделана по упрощенной схеме, но предусматривающей установку в будущем дополнительных приборов отопления. После их установки уже будут задействованы байпасы. Когда проектируются новые трубопроводные системы, то подразумевается отсутствие регулирующей запорной арматуры, и расчеты производятся только с условием свободного перемещения рабочей среды без гидравлических сил.
При дальнейшей эксплуатации вносятся корректировки в расчеты. В зависимости от предназначения того или иного участка, на схемах статичных обводов устанавливают допустимые значения гидравлических давлений. В соответствии с расчетными данными подбирается оборудование с требуемыми характеристиками.
Проходное сечение обходной вертикальной трубы всегда меньше внутреннего диаметра основных магистральных разветвлений. Это необходимо для того, чтобы свободный поток теплоносителя под действием тяжести не уходил целиком в ближе расположенную обводную трубу. Если диаметры будут одинаковы, тогда большая часть рабочей среды по обходной трубе не будет доходить до отопительного прибора, а будет циркулировать перед ним.
Другие физические законы используются в горизонтальных разводках отопительных систем. Здесь расчеты делаются на стремлении горячей среды из-за меньшего удельного веса подниматься вверх. Диаметры обводных контуров в нижних разводках должны быть такие, как и сечения основных магистральных труб, а диаметры отводов к отопительным приборам — меньше. Так в регулируемых элементах системы напор увеличивается, теплоноситель распределяется по контуру более равномерно.
Байпас с ручным регулированием
Ручное управление потоком по обходной трубе осуществляется шаровыми кранами. Применяется именно такая конструкция запорного механизма, так как в открытом проходном отверстии крана не создается никаких помех, влияющих даже на незначительные флуктуации гидравлического давления. Дополнительное гидравлическое сопротивление негативно влияет на точность регулировки температурного режима. При полностью закрытом кране весь теплоноситель проходит через обвод. Это называется основным путем хода рабочей среды по системе.
На заметку: поверхностям шаровых механизмов кранов, если они не используются длительное время, свойственно прикипать одна к другой, поэтому краны нужно периодически проворачивать, даже без необходимости.
Байпасы с кранами ручной регулировки делают, как правило, в индивидуальных отопительных системах частных домов. Если запорные устройства будут установлены на обводных перемычках в многоэтажных жилых домах, то возникает риск неосторожного перекрытия поступления воды соседним потребителям. Регулируемые вручную — также применяются для обвязки гидравлических насосов в однотрубных отопительных системах.
Автоматический байпас
Обводные трубы с автоматической трубопроводной арматурой применяют для обвязки гидравлических насосов со свободным перемещением рабочей среды без перекачивающих агрегатов. В них нагнетающие насосы могут быть установлены в качестве ускорителя потока в многоэтажных зданиях для уменьшения теплопотери и увеличения КПД для более равномерного прогрева помещений.
При автоматическом управлении потоками их перенаправление происходит в зависимости от установленных температурных значений носителя без участия человеческого фактора. При работающем насосе вода проходит только через него, в это время электрический обвод перекрыт. Если насос перестает работать (при отсутствии электричества или вследствие неисправности), тогда рабочая среда проходит по обходной трубе. Поток частично или полностью перекрывают обездвиженные лопасти агрегата.
Байпасы с автоматическим управлением подразделяются на два типа:
- Клапанные;
- Инжекционные.
В автоматических байпасах с клапанным распределением носителя шаровые краны врезают в обходные трубы. Так удается уменьшать гидравлическое сопротивление, чтобы обеспечить максимально свободное перемещение рабочей среды самотеком.
Работающий насос повышает давление, вследствие чего увеличивается и скорость перемещения теплоносителя, который не успев остыть устремляется обратно в магистраль. Далее, с минимальными потерями температуры, он беспрепятственно перемещается по контуру для заполнения других отопительных элементов. Чтобы не допустить обратного тока жидкости, применяются обратные клапаны.
В механизме обратного клапана есть стальной шарик, который при обратном движении рабочей среды плотно прижат в седле регулирующего устройства, а при прямом ее движении оставляет проходное отверстие открытым.
Включенный насос создает давление, и теплоноситель поджимает шарик к седлу, перекрывая прямую линию. Если насос выключается, то рабочая среда начинает проходить через обводные трубы. Следует учитывать, что клапанные обводы чувствительны к загрязнениям носителя (окалинам, ржавчине, хлопьям накипи), поэтому в них необходимо использовать фильтры. В числе трубопроводной арматуры есть специальные врезные отстойники со сменными фильтрующими элементами и сливными кранами.
Инжекционные байпасы функционируют по схеме действия гидроэлеватора. В трубу главной магистрали врезают насосный узел таким образом, чтобы входная и выходная труба байпаса имели продолжение внутри основной трубы водопроводной магистрали.
Давление от включенного насоса проталкивает часть жидкости в диффузор входной трубы, таким образом ускоряется ее циркуляция через агрегат. На выходном патрубке внутренний диаметр сужается, образуя своеобразное сопло, из которого теплоноситель с ускорением возвращается в главную трубу. С напорной струей увлекается остальная рабочая среда; ей передается кинетическая энергия напора. Ускоряется весь поток в основной линии, и вода в магистрали продолжает движение, но уже с ускорением. Обратные токи в таких случаях не исключаются. При выключенном насосе рабочая среда движется через обвод непринудительно.
В тепломагистралях с инжекционными байпасами импульс перемещению жидкости передается от энергии напора. Здесь также запорное оборудование требует поддержания чистоты рабочей среды при помощи фильтров.
Назначение байпасных участков
В обводных трубопроводах сохраняется циркуляция теплоносителя в случаях выхода из строя насосного агрегата, или во время отсутствия электроснабжения. Любой отопительный элемент, находящийся под управлением байпасом, можно отключить или вовсе отсоединить от общей магистрали, направив поток по обходной трубе путем закрытия кранов на входном и выходном патрубках. Таким образом при плановом обслуживании отопительной системы, нет необходимости ее отключать и полностью сливать жидкость.
В индивидуальных отопительных системах частных домов обводы используются для:
- врезки дополнительных радиаторов
- обвязки циркуляционных насосов
- при обустройстве теплых полов для подсоединения распределительного коллектора
- создания малого контура в системе отопления твердотопливным котлом.
При обвязке циркуляционного насоса обвод выполняет функцию основного трубопровода. Поэтому именно в обходную трубу врезают запорную арматуру, а не на входных или выходных патрубках. Только таким способом монтажа можно исключить рециркуляцию носителя.
Обводы для радиаторов отопления
Обходные трубы применяют исключительно в однотрубных системах, так как в коллекторных разводках и двухтрубных системах радиаторные батареи подсоединяются к подающей магистрали параллельно, и на них теплоноситель поступает с одинаковой температурой. На работоспособность всей системы не будет влиять нарушение функционала какого-либо одного отопительного контура, если установлены отсекающие краны.
В последовательно подключенных радиаторных батареях в однотрубной системе вода быстрее охлаждается в процессе прохождения по всем контурам. На выходе она будет тем холоднее, чем больше теплоотдача радиатора. Но, если в однотрубной системе байпасов нет, тогда ближние к основной магистрали батареи будут принимать максимум тепла (будут чрезмерно горячими), а последние — лишь слегка нагретыми. Соединенные перемычкой обратная и подающая трубы разделяют на две части поток рабочей среды, один из которых отдает тепло в помещение, а второй, сохраняя температуру, поступает через обходную трубу к следующей батарее. С байпасами вся цепь радиаторов будет работать равномерно с одинаковой температурой как на ближнем к основной магистрали отопительном приборе, так и на дальнем.
Байпас в обвязке насоса
Подключение циркуляционных насосов в байпасы целесообразно в системах с самотечным перемещением рабочей среды. В схеме предусматривается разгонный коллектор, используются определенные диаметры труб, соблюдаются углы наклона. Благодаря насосам, повышается эффективность работы при отоплении домов в северных регионах, где температура окружающей среды может опускаться ниже 30°С. Однако здесь следует учитывать то обстоятельство, что принудительных системах отопления эффективность обогрева будет сведена практически к нулю, если насос выйдет из строя или отключат централизованную подачу электроэнергии. Чтобы исключить таких случаях проблему с отоплением, лучше сразу позаботиться об автономной системе энергообеспечения, а сами насосы устанавливать не на байпасах, а на основной магистрали.
Подключенный насос на обводе предотвращает противоток теплоносителя и его перемещение по замкнутому кругу, поддерживая таким образом его высокую температуру. Но даже при наличии в обводе насоса, в него необходимо врезать обратный клапан, который также предотвратит конвекционное реверсное перемещение рабочей среды. В инжекционном, обратное движение теплоносителя исключается.
Гидравлический насос можно установить на байпас самостоятельно, но в продаже есть и готовые насосные узлы. Разводка труб делается так, как позволяет свободное место.
Байпас в разводке систем теплых полов
Байпас в системе теплого пола, это часть его смесительного узла. Обводная труба работает постоянно, благодаря чему обеспечивается правильное функционирование теплого пола.
Если в подающей трубе температура теплоносителя достигает 80°С, то через байпас на контур пола вода подается уже с рабочей температурой 40-45°С. Чтобы теплоноситель для пола подготавливался правильно, в смесительном узле применяется трехходовый клапан, пропускающий строго нужное количество нагретой воды. Оставшийся теплоноситель проходит через байпас, смешивается с остывшей водой из коллектора и направляется по магистральной трубе к котлу.
Функция трехходового клапана — дозировано пропускать рабочую среду для нагрева, а избыток возвращать по байпасу в магистраль.
Байпас в отопительной системе с твердотопливным котлом
В такой обвязке байпас исполняет ключевую роль — формирует малый контур перемещения рабочей среды. Одной стороной обвод подсоединяется к подающей трубе, другой — к трехходовому клапану на обратном патрубке. Вода, возвращающаяся от теплоотдающего контура, смешивается в клапане с горячей водой из байпаса. Поэтому к котлу поступает жидкость с температурой около 50°С.
К твердотопливному котлу такую обвязку делать необходимо, так как от холодной воды на его стенках будет образовываться конденсат, что чревато быстрой коррозией и преждевременным выходом котла из строя.
Заключение
Как видим, простой отрезок трубы может исполнять ключевую роль в эффективности систем тепло обеспечения. Байпас распределяет поток рабочей среды так, чтобы обеспечить должную температуру теплоносителя на все радиаторные батареи независимо от их расположения относительно основной магистрали. При помощи обводных труб можно обслуживать отопительные контуры и ремонтировать их нагревательные элементы без необходимости остановки работы всей системы.
Байпас для циркуляционного насоса в системе отопления: сборка и установка
Циркуляционный насос является основным элементом наряду с водогрейным котлом, если конструкция системы отопления предполагает наличие принудительной циркуляции. Даже при использовании сил гравитации и естественной циркуляции насос способен улучшить и дополнить показатели системы в лучшую сторону. При установке оборудования, как того требуют правила, обязательно используется байпас для циркуляционного насоса в системе отопления. Его наличие обусловлено целым рядом причин, игнорировать которые попросту не следует.
Зачем нужен
Байпас – это перемычка, соединяющая вход и выход одного из элементов отопительного контура, обходной путь, по которому вода может течь, не заходя в радиатор, насос или даже котел.
Для циркуляционного насоса байпас нужен, чтобы:
- исключить из работающего контура насос;
- настраивать производительность контура отопления;
- предотвращать режим холостого хода;
- в любой момент демонтировать оборудование для ремонта или технического обслуживания.
Циркуляционный насос позволяет монтировать трубопровод от котла к радиаторам по произвольным маршрутам, повышает скорость течения теплоносителя, делает его не зависящим от других параметров системы, тем самым повышая теплоотдачу и эффективность. Однако он же делает систему отопления зависимой от электричества.
Если по какой-то причине электричества нет, остается надеяться на блок бесперебойного питания или же переключиться в режим естественной циркуляции, насколько это позволяет конструкция. Только вот насос сам по себе создает сопротивление току теплоносителя в нерабочем состоянии. Байпас как раз и призван разрешить эту проблему.
Для насоса байпас выполнен как продолжение основной трубы от котла к контуру отопления с большим диаметром. В то время как насос подключается параллельно этому участку. Если дать возможность воде течь в обход, то и сопротивления никакого не будет. Для этого на байпасе устанавливается клапан или шаровой вентиль.
Второй момент, когда не обойтись без байпаса – это спуск теплоносителя и наполнение системы вновь. Насос не позволит свободно наполняться трубам и радиаторам жидкостью, создавая препятствие. Результатом может стать образование воздушной пробки, от чего сложно избавиться. Полностью открытый ток по байпасу целиком снимает проблему.
При обустройстве байпаса обязательно монтируются шаровые вентили по входу и выходу насоса, для его быстрого демонтажа. При этом отопление работает в режиме естественной циркуляции, не захолаживая дом.
Последний случай с тонкой настройкой производительности используется достаточно редко. Достаточно установить одну из двух-трех скоростей насоса, чтобы регулировать скорость потока и напор. Однако если на каждом радиаторе имеется свой терморегулятор очень важно предусмотреть защиту насоса. Если все радиаторы перекрыты, и в системе повышается сопротивление току теплоносителя, то байпас спасает от перезагрузки на оборудование, замыкая контур частично на себя.
Как собрать
Байпас для циркуляционного насоса в идеале представляется продолжением обратной трубы, идущей от радиаторов к котлу. Параллельно выбранному участку трубы устанавливается насос, для которого врезаются патрубки. Чтобы предотвратить постоянный ток через байпас, нужна запорная арматура или клапан.
По линии включения насоса устанавливаются:
- шаровой вентиль;
- фильтр грубой очистки;
- насос на соединениях американках;
- шаровой вентиль.
По краям данной сборки устанавливаются колена и патрубки для врезки в основную трубу. Порядок элементов указан согласно направлению тока жидкости, так фильтр должен быть строго перед насосом. Диаметр труб подбирается равный выходному сечению насоса, в то время как для байпаса используется та же труба что и для самой обратки.
Схема сборки байпасаНа участке самого байпаса устанавливается только запорная или регулирующая арматура: шаровой обратный клапан, шаровой или игольчатый вентиль.
Шаровой обратный клапан предпочтительней для организации байпаса циркуляционному насосу. Он действует по принципу золотника. Если насос включен, то шар внутри клапана под воздействием напора перекрывает ток через байпас. Если же насос выключен, то преобладает прямой ток жидкости от котла в обход насоса, и клапан этому не препятствует.
Шаровой вентиль имеет две позиции закрыт/открыт. Устанавливать его в промежуточных положениях запрещено, так как быстро истирается и покрывается осадком поверхность запорного шара, что приводит к порче тефлоновой вставки. Если необходимо тонко настроить пропускную способность байпаса, то предпочтение отдается игольчатому вентилю, только учитывая, что проходное сечение у него существенно меньше, чем у шарового того же размера.
Лучше воспользоваться готовыми решениями. Производятся подготовленные байпасы для циркуляционных насосов. В них уже вмонтированы шаровые клапаны или вентили на общем участке трубы и вся обвязка для насоса, включая фильтр и крепления. Готовый байпас может оказаться куда надежнее по сборке и долговечнее в эксплуатации. Место установки насоса унифицировано, и подходит для любой модели подходящей мощности и пропускной способности. Выбирать предстоит по диаметру основной трубы и производительности.
Установка
Перед установкой следует спустить полностью теплоноситель из системы. Циркуляционный насос с байпасом монтируется на обратной холодной трубе непосредственно возле котла отопления. Это снижает воздействие высоких температур на оборудование.
Необходимо первоначально определить оптимальный вариант включения:
- Для пластиковой трубы лучше использовать разборные соединения по типу американки и подсоединять собранный заранее блок насоса с байпасом. Ветку с насосом подключать с помощью тройников впаянных в основную трубу.
- Для стальных труб вначале ввариваются патрубки для ветки с насосом, а после уже вентиль на байпасе.
Следует учитывать при работе со сваркой, что вентили не переносят перегрева. Особенно шаровые, у которых может деформироваться тефлоновая вставка. Место соединения основной трубы следует дистанцировать от вентиля с помощью протяженных патрубков или штуцеров минимум на 20 см с обеих сторон. Запорная арматура при этом объединяется со штуцерами резьбовыми соединениями.
Ориентировать всю конструкцию надо таким образом, чтобы выходы насоса располагались строго вертикально или горизонтально, а рабочий вал строго горизонтально. Это повысит живучесть оборудования, снизит выработку деталей. Ко всем вентилям должен сохраняться свободный доступ и ничто не должно мешать их перекрытию. Следует предусмотреть запас пространства для простоты демонтажа насоса и других элементов.
Отопление вот-вот включат или Правильный монтаж батареи центрального отопления в квартире.
Отопление вот-вот включат
или
Правильный монтаж батареи центрального отопления в квартире.
На дворе Осень. Холодно сейчас в наших домах, после столь жаркого лета.
Отопление вот-вот включат, и нужно быть к этому готовым. Важно понимать, что помимо тепла, которое радиаторы отопления (батареи) нам отдают в течение года, существенное значение приобретает их правильный выбор, монтаж, и последующее максимально комфортное их обслуживание.
В отоплении многоэтажных домов в основном применяется однотрубная система, в ней запрещено устанавливать терморегулирующие клапаны радиаторов, при отсутствии перемычки между подающей и обратной трубами.
1. вентиль или термо-регулирующий клапан
2. запорный клапан (детентор)
3. воздуховыпускной клапан (кран Маевского)
4. заглушка
5. вентиль
6. байпас
Однозначного критерия, как правильно подключить батарею отопления, не существует. Унифицированность конструкции радиаторов позволяет осуществлять подвод труб снизу, сбоку и с обеих торцевых сторон батареи. В настоящее время кроме металлических труб широко используются металлопластиковые, полиэтиленовые и полипропиленовые трубы.
Наиболее оптимальным в комплексном соотношении цена/качество/простота монтажа для частного дома, коттеджа является подключение радиатора отопления (батареи) полипропиленом.
Боковое подключение батарей отопления
Такой способ заключается в подсоединении подводящей ветки (с горячим теплоносителем) к верхнему патрубку радиатора, отводящей ветки — к нижнему. Таким способом обеспечивается максимальная теплоотдача. В случае использования бокового одностороннего подключения для радиатора с большим количеством секций, необходимо установить удлинитель протока теплоносителя, так как последние секции плохо прогреваются. Боковое подключение является наиболее общепринятой схемой для многоэтажных домов с центральной системой горячего отопления.
Диагональное подключение
Принцип разводки заключен в подсоединении горячей воды к верхнему патрубку с одной стороны радиатора и подсоединении обратки к нижнему патрубку противоположной стороны батареи. Горячий теплоноситель равномерно распределен по всему объему радиатора. Схема отлично подходит для многосекционных батарей отопления и обеспечивает номинальную теплоотдачу.
Нижнее подключение
Его используют в особых случаях, когда обогревающая система размещена в полу. Труба с горячей водой и труба с остывшей водой подсоединены с противоположных сторон радиатора к его нижним патрубкам и уходят вертикально в пол. Такая схема проигрывает по эффективности боковому и диагональному подключениям.
Внимание! В однотрубной системе обязательно наличие нерегулируемой байпасной линии, диаметр которой меньше основной линии на одну ступень.
Если дом многоэтажный и старый – лучше не рисковать оставив чугунные радиаторы, т.к. со временем внутренние проходные отверстия все равно забиваются (качество теплоносителя оставляет желать лучшего), за многолетний срок эксплуатации происходит значительная коррозия (в некоторых местах начинается течь), да и внешний вид с многочисленными слоями краски, прямо скажем, ужасный.
Решать конечно Вам, но заменить батареи на более эстетичные и надежные биметаллические БЫЛО БЫ ПРАВИЛЬНО.
Помимо перечисленных, назову ещё три причины, по которым может быть, необходимо заменить батареи отопления:
— во-первых, в подводящих трубах могут быть свищи;
— во-вторых, батареи отопления, могут располагаться не под окнами, а быть развернуты в комнатах.
— в-третьих, перспектива залить квартиру бурой горячей жидкостью, да ещё обрадовать тем же соседей снизу – мало привлекательна.
Весь процессзамены батарей отопления можно разбить на два этапа – это подготовительный этап, потому что от того на сколько тщательно Вы подготовитесь к данному процессу, не пропустите даже самой маленькой мелочи, будет зависеть результат и быстрота замены отопления. «Почему важна быстрота?» — спросите Вы. А потому, что если весь этот процесс происходит в отопительный сезон, а это чаще всего и происходит. Осенью — в начале отопительного сезона вылезают все неприятности, придется отключать систему отопления минимум по стояку, на котором расположены радиаторы, а максимум зависит от наличия и работоспособности запорных вентилей в подвале (которым уже тоже по 30 лет). В практике бывают случаи, когда отключают целый дом, т.к. это бывает единственной работоспособной задвижкой.
И второй этап – это собственно сам процесс замены батарей отопления.
Необходимо действовать по плану:
— замеряете все необходимые размеры;
Обозначения на схеме:
1 — выходное отверстие из радиатора соседа сверху;
2,4,5,7,9,12,13,15,17,18,20 – труба металическая;
3,6,16,19 – уголок 90˚;
8,14 – тройник;
10, 11- шаровой кран;
21- входное отверстие в радиатор соседа снизу.
Замеряете необходимые длины трубы в своей квартире (сумма отрезков 7,9,12,13,15, при необходимости 5, 17). Диаметр трубы берете тот же, каким была подключена заменяемая батарея отопления.
— закупаете новые радиаторы отопления с фурнитурой, фитинги и трубы.
— подготавливаете необходимый инструмент.
Несколько рекомендаций, которые помогут Вам, правильно выполнить в доме работы по отопительным радиаторам (батареям).
1. Сантехник при доме.
Начнем с того, что установку батареи центрального отопления обычно не выполняет сантехник, вызванный по «желтым страницам», поскольку это очень ответственная работа и здесь должен быть штатный сантехник, обслуживающий данный дом или управляющая организация. Ведь с батареями центрального отопления шутки плохи , и в случае плохого монтажа, Вы ничего не сможете сделать, если вдруг просочится кипяток и польется к Вам на пол и дальше вниз к соседям. Вообще есть работы, где вызов мастера является обязательным.
2. Количество секций батареи на квадратный метр
Очень спорный вопрос. Дело в том, что нормы, которые заложены в справочниках по отопительным системам предусматривают такую температуру, которая лично для Вас может оказаться абсолютно не приемлема. Одни любят, чтобы было слегка прохладно в квартире, другие, наоборот, не терпит, если в доме ниже +25 градусов. Поэтому, лучший совет, сходите к своим знакомым, у которых уже установлены батареи и оцените, как бы Вы себя чувствовали в подобной ситуации. Например, так сделал Я. Сколько, меня не уверял сантехник, что 5 секций мне будет за глаза, я все же поставил 6, а потом жалел, что не 8. Вот Вам и расчет!, Вот Вам и нормы по справочникам! Сантехник Вам в этом точно не помощник!
3. Применяйте только итальянские или немецкие комплектующие !!!
Вы же понимаете, в серьезном деле — качество, качество и еще раз качество. Здесь не экономьте !!! Никогда !!!
Лучше подкопите денег. Мой Вам добрый совет!
4. Когда пускают воду, постарайтесь быть дома.
Ну здесь все понятно, объяснять особо не нужно.
5. Наличие шаровых кранов с концов батареи — обязательно!
Шаровые краны с концов батареи очень важны, т.к. в случае проблем с батареей, Вы всегда сможете перекрыть воду и поменять батарею или секцию.
6. Наличие перемычки с шаровым краном обязательно!
Внимание! Отсутствие перемычки на батареи центрального отопления, пожалуй, самая распространенная ошибка! Перемычка нужна для того, чтобы, если вдруг, Вы зимой надумали чинить батарею, прочищать ее или наращивать дополнительные секции, то закрыв шаровые краны, Вы обязаны обеспечить проток воды через Вашу квартиру! Вода в Вашем доме постоянно должна идти! Эту роль и выполняет перемычка.
Вы ее ставите и открываете на ней шаровый кран. Все. Ток горячей воды через Вашу квартиру обеспечен!
Хочу поделиться с Вами довольно Важной информацией, касающейся перемычки или Байпаса– это одно и тоже, для тех, кто не знает.
Батареи центрального отопления со снятыми заглушками, таят в себе скрытую опасность. Так вот, на этом дело-то не заканчивается.
Речь пойдет о трубопроводной обвязке радиаторов отопления батарей. Рассмотрим классическую современную обвязку радиатора с металлопластиковыми трубами, в которой присутствуют 3 вентиля:
Внимание! Следует помнить, что подводить теплоноситель к усиленным радиаторам под высоким давлением нужно только по металлическим трубам. Металлопластик может не выдержать такого давления, и последствия будут самыми печальными.
Два вентиля перекрывают радиатор и один стоит на байпасе (перемычке) и может направлять поток или через радиатор или в обход. Также хорошо виден переход со стальной трубы на металлопластиковую.
Теперь самое главное – в чём тут скрытая опасность??! А вот в чём! Если, что то случится с радиатором: сам потечет или уплотнение штуцера нарушится, то мы его спокойно отключим вентилями.
А что делать, если что-то случится с перемычкой? Ничего нельзя сделать! Туши свет и сливай воду (причём в прямом и переносном смысле). Представили, какая таится здесь опасность затопления горячей водой всех нижних этажей? Я думаю, что ещё не представили. Все скажут, что металлопластиковые трубы используются повсеместно, а Вы тут прикопались, к какой то перемычке на радиаторе отопления (батарее). Попробую объяснить – все металлопластиковые трубы, которые мы ставим в ванной, туалете и на кухне скрыты от прямого доступа. Они проходят или в коробах, или внутри шкафов, а ещё лучше – полностью замуровываются в стены!
Примечание: Байпас батареи всегда открыт и находится, что самое главное, в местах постоянного пребывания людей!
Убедил хоть на половину? Теперь посмотрим, как её можно повредить! Я приведу несколько вариантов:
– Вы передвигаете диван, смотрите на батарею и окружающую мебель и забываете про перемычку. С усилием придвинув спинку дивана к стене и задев перемычку, вы её обязательно вырвите из фитингов.
– Ваш маленький ребёнок заигрался с чем-нибудь тяжёлым (например с папиным молотком) и, ударив по перемычке, сломал её. (когда моему другу было 4 года, он сломал маме палец на ноге, когда ему попался в руку молоток. Правда, правда…).
– Сосед сверху или снизу, позавидовав вашему ремонту, тоже начал менять батареи. При раскручивании с большим усилием старых муфт, труба (стояк) может начать поворачиваться из за плохого крепления в перекрытии. Это может привести к разгерметизации крепления металлопластика к фитингу.
Это лишь несколько примеров, которые приходят на ум.
Внимание! Единственный способ избежать возможных причин поломки перемычки – это делать её из стальной трубы. Тогда металлопластик будет только между батареей и вентилями. Нужно всего лишь найти сантехника с неформальным подходом к своей работе, который согласится сделать байпас из куска стальной трубы. Вы ещё сэкономите на двух лишних фитингах!
Установить стальную перемычку на батарею центрального отопления у себя дома
Для данной работы Вам в любом случае нужен сантехник, поскольку будут нюансы монтажа, когда Вы один не справитесь. Второй момент — это постараться уговорить сантехника на такую необычную для него работу, поскольку как монтировать перемычку, арматуру и батарею – он знает, но Ваша стальная труба его может удивить.
Всего Вас ожидает 4 трудности, о каждой из которых по порядку.
Трудность 1. Где найти стальную водопроводную трубу?
Не во всех магазинах, продающих водопроводную арматуру и пластиковые трубы — есть стальная труба! Но проблема, на самом деле, решается очень просто – на Вашей старой батарее должна быть перемычка, вот её и можно использовать:
Итак, трубу под перемычку Вы нашли. Если Вы будете ее переставлять, то необходимо ее как-то монтировать. Все стальные трубы, как известно, соединяются с помощью сварки или скруткой резьбовых соединений.
Если Ваша труба приварена с двух сторон, и вы решили ее переставить. Для этого
снимаете байпас (перемычку), а потом нарезаете резьбу с двух сторон.
ВНИМАНИЕ! Убедитесь, что Вы отключили воду в батарее отопления !!!
Отпиливаете трубу под самое Т-образное перекрестие, чтобы иметь как можно длиннее трубу. Отпилить можно либо с помощью ножовки, либо с помощью болгарки.
Если байпаса нет – замерьте и приобретите необходимой длинны, бесшовную стальную оцинкованную трубу ¾ или ½ дюйма. Также следует приобрести специальный кран, или, как его называют кран Маевского.
В процессе эксплуатации батарей в их верхних частях собираются пузырьки воздуха и образуют воздушную пробку. Для ее удаления в верхней части батареи отопления должен быть установлен кран Маевского, с помощью которого можно стравливать воздух. Существуют так же автоматические удалители воздуха, но они дороже, менее надежны и срабатывают в любое время — вы будете рады проснуться ночью от громкого шипения?
Примечание: Для внутридомовых систем отопления, как правило, используют ½- и ¾-дюймовые трубы с диаметром условного прохода 15 см и 20 см соответственно.
Трудность 2. Как нарезать резьбу на втором конце трубы и на перемычки ?
С помощью шведок, отсоединяете радиатор отопления (батарею), вывинчивая переходные муфты с труб резьбовых соединений. Там где есть старая резьба, проходите по ней леркой — это специальный инструмент для нарезания черновой и чистовой резьбы, чтобы её обновить. Тут серьёзных усилий не потребуется.
Примечание: Приспособление для нарезки черновой резьбы требует определенного пространства.
Сначала нарезаете 5,5-6 витков черновой резьбы, для этого промазываем трубу и резцы маслом, солидолом, или домашним салом, для того, чтобы легче нарезалась резьба, и меньше был износ инструмента.
Затем резьбу проходите чистовой плашкой. Так же смазывая резьбу и зубья на плашке. Теперь накручиваете тройник без льна, и считаете на сколько оборотов он накручивается. Обычно в тройнике 5-6 витков, поэтому нарезаете на трубе 5.5 витков, наматываете лен, промазывая голую резьбу и поверхность подмотки паковочной пастой или масленой краской немного.
Когда вы затягиваете резьбовое соединение, лен пропитывается равномерно.Накручиваете два тройника на трубы. Небольшое количество краски неизбежно выдавится на край тройника. Чтобы она не бросалась в глаза — лучше взять краску в тон радиатору.
Внимание! Обязательно, на железную трубу нужно накручивать не менее 4-ох оборотов!!!
Собираете всю конструкцию без перемычки, и точно отмеряете длину новой перемычки, ведь дальше ее нужно распилить по размеру и нарезать резьбу.
Вы отпилили или купили перемычку нужного размера и диаметра, распилив предварительно пополам, и держите ее в руках.
Внимание! Чтобы, радиатор отопления работал правильно, нельзя уменьшать диаметр трубы подключения к радиатору. Если стояк отопления диаметром ¾, а перемычка ½ -дюйма, то трубы подключения к радиатору отопления диаметром ¾ дюйма.
Самая большая трудность заключается в том, что при нарезании резьбы труба должна быть зафиксирована: руками ее не удержать, т. к. труба будет в любом случае проворачиваться. В идеале нарезать резьбу на стальной трубе лучше всего на токарном станке, если нет станка, то в тисках. Но тисков такого размера в квартирах ни у кого нет, а если и найдёте, то их негде закрепить, потому что ни один стол такого усилия не выдержит, сто процентов!
В гараже, на даче у себя или у знакомых зажав в тиски перемычку и взяв вороток или рычаг с леркой нарезаете резьбу с двух сторон по аналогии рассказанной выше.
Трудность 3. Как монтировать готовую перемычку?
Теперь в установленные два тройника, монтируете перемычку – один конец крепится в нижнем тройнике, другой в верхнем тройнике.
На верхнюю резьбу перемычки наматываете лён, и начинаете ввинчивать в верхний тройник. Аналогичную процедуру выполняем с нижней перемычкой. Далее ставите два шаровых крана к батареи.
Внимание! Если уплотнителя (пакли) будет мало – соединение будет не герметичным, если много – может произойти разрыв деталей, поскольку большинство сантехнических изделий изготовлены из цветных металлов (бронза, латунь), а они, как известно, достаточно мягкие.
Длина перемычки, состоящая из двух частей должна быть такой, что бы их можно было закрутить до упора с усилием в верхний и нижний байпасные тройники, а (переходник) или шаровой кран на байпасе должен вывинчиваться так, что бы полностью освободить сечение, но и слишком сильно вывинтиться не должны. Поэтому, еще до нарезания резьбы, перемычка должна быть точно замерена по длине!
На резьбы подводки в середине байпаса сгоняете контргайки для переходника (переходной муфты) или шарового крана.
Переходник накручиваете полностью, на одну из перемычек нижнею (верхнею). Предварительно намотав лен на эту резьбу по аналогии рассказанной выше. После этого на резьбу второй перемычки также наворачиваете лён с пастой или краской. Выкручивая переходник из одной перемычки, вкручиваете во вторую, так чтобы переходник стал на середине резьбы этих перемычек. Затягиваете с умеренным усилием контргайки, которые, кстати, Вы не забыли навинтить на центральные части перемычки байпаса перед монтажом.
Примечание: Данный способ позволяет самостоятельно без сварки, используя современные тройники, правильно и самое главное надежно выполнить монтаж байпаса в квартире, а при желании установить на нем шаровой кран.
Трудность 4. Придется в магазине поискать нужный тройник!
Любой водопроводчик знает, как делать сборку деталей, но здесь есть еще один нюанс! Все современные тройники выглядят примерно так:
Внимание! В эти тройники трубу можно закрутить только в верхнюю часть! Дальше ввинчиваться труба не будет. Тройники, которые позволяли ввинчивать трубы с перекрыванием сечения выпускались в большой массе, только в советское время. Сейчас их довольно сложно найти. Придется обойти немало магазинов, прежде чем найти, где их продают. В некоторых магазинах, продавцы даже не понимают, о чем их спрашивают.
Выглядит такой тройник так – совсем некрасивый и чёрный:
Отечественная промышленность выпускает такие тройники до сих пор. Надо просто сразу поставить перед собой или водопроводчиком задачу — хороший водопроводчик уж точно знает, где можно купить нужный тройник.
Внимание! Радиаторы необходимо устанавливать строго вертикально,
поскольку, если ребра радиатора будут под наклоном, то со временем будет равномерно накапливаться воздух, который надо будет постоянно выдувать через особый кран Маевского вручную, это приведет к снижению мощности самого радиатора.
Внимание! После того, как батареи смонтированы — обязательно заполните стояки и внимательно осмотрите резьбы и сами приборы на предмет течей. Понятно, что давление и температура не будут равны эксплуатационному — однако все серьезные огрехи вылезут.
Примечание: Если радиаторы отопления (батареи) меняются зимой, в разгар сезона — при запуске стояков лучше иметь с собой любое средство связи, позволяющее при серьезной утечке сбросить стояки сразу, не тратя время на подъем в квартиру и обратный спуск.
И не нужно забывать, что и демонтаж (а это тоже встречается) также должен быть правильным, чтобы не привести к возможной беде.
Внимание! Самопроизвольный перенос и подключение собственного радиатора отопления (батареи), без согласования со специалистами ЖКХ может создать массу проблем и себе, и соседям.
Желаю Удачи!!!
P. S. Далеко не уходите! Возвращайтесь снова, Дорогие Читатели. Обязательно подпишитесь на новые статьи информационного портала «azbukainfo-tlt.ru» и получайте свежую, полезную информацию по ремонту своего жилища — своими руками, по оптимизации бюджета, полезную информацию по строительству вашего дома, купле-продаже квартир, аренды и всего, что касается недвижимости. Хотите оперативно узнавать о новых статьях — установите Виджет Яндекса.
Если Вы неуверенны в своих силах и полученных знаний, опасаетесь за жизнь свою и своих близких, переживаете за безопасность своего жилища Оставить заявку — Специалисты компании, помогут Вам, в решении всех насущных проблем и вопросов.
P.S.S. Какие вопросы у вас еще есть по этой теме? Напишите внизу, в комментариях, а я постараюсь найти на них ответы. Так же не забудьте поделиться со своими друзьями и знакомыми найденной информацией, т. к. она им тоже может понадобится — просто нажмите одну из кнопок социальных сетей, расположенных ниже.
На главную
Bypass Pipe — обзор
4.6 Полуактивный регулируемый демпфирующий демпфер
В качестве классического примера полуактивной системы управления полуактивные регулируемые демпферы могут регулировать структурное демпфирование в реальном времени с помощью дополнительного демпфирующего устройства, которое устанавливается на деформация элементов конструкций. Как правило, полуактивные демпферы с переменным демпфированием состоят из традиционного жидкостного демпфера или вязкого демпфера и управляемого сервоклапана, а демпфирующую силу можно регулировать, управляя сервоклапаном для изменения потока жидкости.Этот метод очень эффективен и может значительно снизить вибрацию конструкции. В этом разделе подробно обсуждается регулируемый демпфер.
4.6.1 Основные принципы
Система регулируемого демпфирования впервые предложена Хроватом [98], демпфирование регулируется в реальном времени с помощью дополнительного демпфирующего устройства. Классический демпфер с регулируемым демпфированием показан на рис. 4.46. Он состоит из гидроцилиндра, поршня и электрогидравлического сервоклапана. Для регулировки размера открытия сервоклапана требуется очень небольшая энергия, а демпфирующая сила может быть достигнута до 100–200 т.
Рисунок 4.46. Эскиз масляной заслонки с регулируемым отверстием.
Демпфирующая сила, обеспечиваемая регулируемым демпфером, зависит от размера открытия сервоклапана. Как показано на рис. 4.46, когда клапан полностью открыт, заслонка может обеспечивать минимальную демпфирующую силу, называемую состоянием пассивного выключения. Напротив, максимальная сила демпфирования обеспечивается, когда сервоклапан полностью закрыт, что называется пассивным состоянием. Диапазон демпфирующей силы, обеспечиваемой демпфером, находится между пассивным выключением и пассивным включением и может регулироваться в соответствии с динамической реакцией конструкции.
4.6.2 Конструкция и дизайн
На основе принципа работы технологии управления полуактивным регулируемым демпфированием, некоторые устройства переменного демпфирования были разработаны и экспериментально исследованы многими исследователями [189–192] [189] [190] [191] [192]. Эти полуактивные демпферы с регулируемым демпфированием используются для регулировки демпфирования, так что динамические характеристики конструкции могут быть уменьшены в соответствии с требованиями.
Симанс и Константину [193] разработали демпфер с регулируемым демпфированием на основе пассивного демпфера для вязкой жидкости, как показано на рис.4.47. Это устройство состоит из масляного цилиндра с впуском и выпуском масла, поршня с отверстиями, перепускного трубопровода с сервоуправлением и гидроаккумулятора. Система сервоуправления представляет собой катушку с замкнутым контуром управления. Когда небольшое отверстие байпасной трубы закрыто, жидкость будет течь прямо из одной масляной камеры в другую масляную камеру через небольшое отверстие в поршне и не будет вытекать из байпасной трубы. В настоящее время это устройство эквивалентно традиционному пассивному демпферу вязкой жидкости и может обеспечить наибольший коэффициент демпфирования cdmax.Когда небольшое отверстие в байпасной трубе открывается полностью, жидкость будет течь из одной камеры в другую через оба отверстия в поршне и байпасную трубу. Устройство также эквивалентно традиционному пассивному демпферу вязкой жидкости, но обеспечивает наименьший коэффициент демпфирования cdmin. Регулируя размер проема отверстия байпасной трубы, коэффициент демпфирования устройства изменяется от самого маленького с закрытыми отверстиями до самого большого с полностью открытыми отверстиями в байпасном трубопроводе.
Рисунок 4.47. Конструкция регулируемого демпфирующего демпфера.
4.6.3 Математическая модель
Демпфер с регулируемым демпфированием фактически похож на гидравлическую систему, поэтому математическая модель может быть создана с использованием теории механики жидкости в соответствии со структурой масляного контура. Классическое устройство переменного демпфирования будет использовано для введения метода моделирования [194], а вычислительная модель показана на рис. 4.48.
Рисунок 4.48. Расчетная модель переменного демпфирующего устройства.
Предполагая, что сила, приложенная к поршню, равна ud, а относительная скорость равна x ·, эффективная площадь поршня равна Ap, давление в двух полостях равно p1, p2, а соответствующие объемы равны V1, V2. Коэффициент демпфирования — cv (регулируется по напряжению).
В соответствии с балансом сил штока поршня, управляющая сила устройства может быть записана следующим образом:
(4.57) F = Ap (p2 − p1)
Предполагая, что жидкость в сервоклапане несжимаема, давление линейно относительно расхода, тогда
(4.58) Q1 = Q2, p2 − p1 = cvQ
Предполагая, что жидкость в гидроцилиндре сжимаемая, объемный модуль упругости равен β, тогда изменение объема из-за изменения давления равно
(4.59) p · 1V1 = — βV · 1, p · 2V2 = −βV · 2
, где знак минус означает уменьшение объема жидкости.
Скорости изменения потока следующие:
(4.60) V · 1 = −Q1 + Apx ·, V · 2 = Q2 − Apx ·
На основе приведенных выше уравнений скорость изменения давления в двух полостях из-за к движению штока поршня составляет [194]
(4.61) p · 2 = −βV2FApcv + βV2Apx ·
(4.62) −p · 1 = −βV1FApcv + βV1Apx ·
Объединяя два приведенных выше уравнения, скорость падения давления составляет
(4.63) p · 2− p · 1 = −βApcv (1V1 + 1V2) F + βAp (1V1 + 1V2) x ·
Согласно формуле. (4.57) регулируемое управляющее усилие регулируемого демпфера демпфирования можно записать следующим образом:
(4.64) F · = kdcdF + kdx ·
, где kd = 4βAp2 / VT — жесткость гидравлической системы, VT = 4 ((1 / V1) + (1 / V2)) — 1, cd = cvAp2 — коэффициент демпфирования гидравлической системы.Уравнение (4.64) является окончательным расчетным уравнением демпфирующей силы регулируемого демпфирующего устройства.
4.6.4 Методы анализа и проектирования
Схематическая модель полуактивного демпфера с регулируемым демпфированием, используемого для контроля вибрации конструкции в одиночной свободе, показана на рис. 4.49. В зависимости от типа демпфирующей силы, обеспечиваемой устройством, уравнения движения управляемой конструкции могут быть выражены следующим образом:
Рисунок 4.49. Схематическая модель управляемой конструкции.
(4.65) uncontrolledmx¨ + cx · + kx = f
(4.66) Пассив-onmx¨ + (c + cdmax) x · + kx = f
(4.67) Пассив-offmx¨ + (c + cdmin) x · + kx = f
(4.68) Полуактивный mx¨ + cx · + kx + cd (v, t) x · = f
где f — помеха, cd (v, t) — коэффициент демпфирования при относительно напряжения и времени, обеспечиваемых демпфером с изменяемым демпфированием. Трехэтажная рамная конструкция используется для анализа регулирующего воздействия различных демпферов. Масса и жесткость яруса mi = 4 × 105 кг, ki = 2 × 108 Н / м соответственно.Принимается коэффициент демпфирования Рэлея, и оба первых два коэффициента демпфирования равны 0,05. EI Centro wave используется с пиковым значением 200 галлонов. На каждом этаже расположены три демпфера с изменяемым демпфированием, максимальный коэффициент демпфирования трех полуактивных демпферов с изменяемым демпфированием c1dmax = 7,7012 × 106 Н · с / м, c2dmax = 7,7232 · 106 Н · с / м, c3dmax = 5,42 · 106 Н · с / м, минимальные коэффициенты демпфирования трех демпферов составляют c1dmin = 9,6265 × 105 Н · с / м, c2dmin = 9,6539 · 105 Н · с / м, c3dmin = 6,7716 × 105 Н · с / м. Дополнительный коэффициент демпфирования за счет демпфера (пассивное выключенное состояние) равен 2.34%, максимальные ответы при различных стратегиях контроля приведены в таблице 4.5.
Таблица 4.5. Максимальные отклики и управляющие силы при различном управлении демпфированием
Алгоритм управления | Максимальное перемещение по этажу (см) | Максимальное ускорение (м / с 2 ) | Максимальное управляющее усилие (кН) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Без управления | 2.37 | 2,07 | 1,20 | 3,72 | 4,49 | 5,99 | — | — | — |
Пассивное отключение | 2.20 | 1,09 9011 9011 | 1,09 | 2,20 | 1,09 9011 9011 | 188,87 | 168,93 | 86,93 | |
Полуактивный | 1,44 | 1,16 | 0,65 | 2,46 | 3,10 | 3,48 | 77 | 731.20 | 417,13 |
Оптимальная стратегия управления Bang-Bang, которая может быть выражена как:
(4.69) cd (t) = cdmaxux · <0cdminux · ≥0
Согласно таблице 4.5, результаты показывают, что как смещение, так и ускорение конструкции уменьшаются за счет использования пассивного управления и полуактивного управления. Для сравнения, метод пассивного управления может уменьшить динамические реакции лишь в небольшой степени, в то время как реакции на ускорение и смещение конструкции с использованием полуактивного управления могут быть уменьшены на 30-40%, что показывает, что полуактивное управление может обеспечить превосходный контроль. эффект.Кроме того, в управляющем эффекте алгоритма пассивного отключения преобладает конструкция минимального коэффициента демпфирования cidmin (i = 1,2,3). По-видимому, контролирующий эффект будет более значительным с увеличением cidmin.
4.6.5 Испытания и инженерные приложения
Значительное количество исследований и разработок было проведено в отношении полуактивных регулируемых демпфирующих устройств. Кавасима [192], Симанс и Константину [193] и Нива [190] провели серию механических испытаний демпферов с различным демпфированием при различных частотах и амплитудах возбуждения и получили кривые гистерезиса сила-смещение.Симанс [193] провел испытание вибростола на трехэтажной стальной рамной конструкции с регулируемыми демпферами. Коэффициент геометрического подобия модели и прототипа — 1: 4, общая масса конструкции — 2868 кг с 956 кг на каждый слой. Устройство переменного демпфирования установлено в нижней части конструкции, и динамические характеристики могут быть измерены с помощью датчиков ускорения и датчиков смещения. Результаты исследований показывают, что устройства переменного демпфирования могут значительно снизить динамические характеристики конструкций.Нива и Кобори [190] использовали регулируемый демпфер для управления стальным офисным зданием, расположенным в городе Сидзуока. Восемь демпферов были установлены на фронтоне от одного до четырех слоев, и результаты показывают, что разработанный демпфер может значительно увеличить демпфирование конструкции и довольно эффективно снизить пиковые характеристики стальной конструкции. Как известно, длительная нагрузка транспортного средства на мост приведет к эффекту усталости, поэтому демпфер с регулируемым демпфированием особенно подходит для контроля вибрации конструкции моста.Кавасима [192], Шинозука [195], Паттен [196] и Гэвин [194,197] [194] [197] провели множество исследований по контролю вибрации мостов с помощью регулируемого демпфирующего устройства. Паттен впервые применил регулируемое демпфирующее устройство в реальном инженерном проекте по снижению вибрации моста I-35 в Америке, и результаты показывают, что полуактивный регулируемый демпфер имеет превосходный регулирующий эффект, а минимальный срок службы может быть увеличен на 35,8 лет. Ли и др. [198] разработали вид жидкостного вязкого полуактивного демпфера и экспериментально изучили характеристики контроллера полуактивного демпфера, затем пятиэтажная стальная конструкция в масштабе 1: 4 с полуактивным демпфером и без него была испытана с использованием вибростола под EL- Возбуждения землетрясений в Центре и Тяньцзине, в которых использовались законы управления Hrovat и алгоритмы ON / OFF.Результаты показали, что полуактивный демпфер значительно снизил реакцию на землетрясение. Ян и др. [199] изучали эффективность использования полуактивного регулируемого демпфера для управления сейсмически возбужденными конструкциями, и результаты показывают, что эффективность регулируемых демпферов в снижении сейсмического отклика конструкций зависит от отношения частот возмущений к собственным частотам конструкций, а скорее чем собственные частоты конструкций.
Вышеупомянутые тесты и результаты предыдущих исследований показали, что полуактивный демпфер с регулируемым демпфированием эффективен в снижении структурных откликов.
Гравитационное водяное отопление, вопросы и ответы
Опубликовано: 17 июня 2014 г.
Категории: Горячая вода
Q: Как давно используется самотечное водонагревание?
A: Гравитационное водяное отопление незаметно началось в Соединенных Штатах между 1875 и 1885 годами. Это был импорт из Канады, безопасный заменитель парового тепла, который снискал во всем мире печально известную репутацию довольно опасного способа обогрева. обогреть здание.
В: Что не так со Steam?
A: Изначально проблема с паром заключалась в том, что он работал под давлением и часто взрывался с катастрофическими последствиями. С другой стороны, системы горячего водоснабжения были открыты для атмосферы и относительно безопасны, потому что старожилы обычно ограничивали их высокой температурой 180 градусов по Фаренгейту. В те дни вы могли сравнить разницу между тем, как гравитация … водяную систему и паровую систему к системе открытого кипящего котла с водой, и скороварка сошла с ума!
Q: Значит, горячая вода под действием силы тяжести стала популярной, потому что она была безопасной?
A: Да, и потому, что эти системы также были просты в обслуживании и большую часть времени работали с небольшими проблемами или без них.У них было много чего, и они быстро стали предпочтительным способом обогрева больших американских домов незадолго до начала века.
Q: Это простая система?
A: Теоретически да. Единственная движущаяся часть — это сама вода, но чтобы получить эту воду, куда он хотел, слесарь-трубщик должен был объединить знания и опыт мистера Гудренча и мистера Уизарда. Если он делал свою работу хорошо, система работала прекрасно. Если он этого не сделал, это превратилось в кошмар равновесия.
Q: Как выглядит типичная самотечная система горячего водоснабжения?
A: Вот схема системы «подачи».
Q: Почему они назвали это подачей?
A: Потому что вода подается снизу (котел) вверх (самый высокий радиатор).
Q: Где циркулятор?
A: Нет! Циркуляционные насосы, которые мы используем в современных системах горячего водоснабжения, еще не были изобретены, поэтому для подачи воды из бойлера в радиаторы старожилы полагались на основной закон физики: горячая вода поднимается, холодная вода опускается.
В: Почему?
A: Из-за разницы в плотности горячей и холодной воды.Кубический фут воды при температуре 180 градусов по Фаренгейту занимает около пяти процентов пространства, чем кубический фут воды при температуре 40 градусов по Фаренгейту. Он также весит примерно на два фунта меньше.
Q: Здесь появляется термин «гравитация»?
A: Да! Когда вы нагреваете воду в бойлере, она поднимается по трубам, потому что она легче, чем относительно холодная вода в трубопроводах системы. Эта более холодная вода, в свою очередь, падает обратно в котел (под действием силы тяжести), и вскоре вы получаете поток теплой воды, свободно движущийся от котла к радиаторам, в виде колеса обозрения.
В: От чего зависит скорость движения воды?
A: Несколько вещей. Во-первых, это высота системы. Чем выше здание, тем быстрее поток. В разумных пределах, конечно, потому что, если здание слишком высокое, вода будет охлаждаться и замедлять циркуляцию к верхним этажам. Трехэтажный дом — это практический предел для самотечного водяного отопления.
И еще есть размер труб. Чем больше трубы, тем быстрее будет течь вода. Это связано с тем, что большие трубы обладают меньшим сопротивлением потоку, чем маленькие трубы.Это также причина того, что старожилы использовали на своих котлах два питающих и два обратных отвода.
В конечном счете, размер труб был также причиной того, что пар заменил гравитационное водяное тепло в американских домах. С годами паровое тепло стало безопаснее, но трубы большого диаметра, необходимые для гравитационных систем, по-прежнему были дорогими.
Третий фактор, определяющий скорость циркуляции воды, — это состояние труб. Когда трубы новые, они гладкие изнутри.Они оказывают очень небольшое сопротивление медленно движущейся воде. Однако по мере старения в трубах образуются маленькие укромные уголки и трещины из-за кислородной коррозии. Эти крошечные внутренние заусенцы увеличивают сопротивление трения, что, в свою очередь, замедляет поток и перенос тепла к радиаторам. В настоящее время мы обычно решаем эту проблему, добавляя в систему циркулятор.
Наконец, разница в температуре подаваемой и обратной воды. Чем горячее вода, тем быстрее она циркулирует.Однако старожилы всегда поддерживали максимальную температуру на уровне 180 градусов по Фаренгейту, чтобы вода никогда не приближалась к точке кипения.
Q: Старожилы работали с определенной разницей температур подачи и возврата?
A: Да, и для достижения максимальной эффективности они ограничили максимальную разницу температур между подачей и возвратом до 20 градусов по Фаренгейту. Это было функцией размера трубы (чем меньше трубы, тем больше перепад температуры, и наоборот. ).Таким образом, в самый холодный день года, если вода выходит из котла при максимальной температуре 180 градусов по Фаренгейту, она вернется к минимуму 160 градусов по Фаренгейту. Это, конечно, предполагает, что слесарь-монтажник следовал общепринятым методикам прокладки трубопроводов. день.
В: Горячая вода занимала больше места, чем холодная?
A: Несомненно! Как я уже говорил, когда вы нагреваете воду с 40 до 180 градусов по Фаренгейту, в результате получается примерно на пять процентов больше воды, чем вначале. У вас должно быть место для этой «лишней» воды.
Q: Как поступили с «лишней» водой?
A: Они использовали расширительные бачки.
Q: Как выглядит расширительный бачок?
A: Типичный выглядел так.
Q: Куда пропал расширительный бачок?
A: Обычно в верхней точке системы. Обычно вы найдете их на чердаке. Резервуар дает расширяющейся и сжимающейся воде место, где она может подниматься и опускаться.
Q: Предположим, я налил слишком много воды в систему, когда впервые заправляю ее.Что случится?
A: Он вытечет из бака через вентиляционное отверстие и попадет на крышу.
В: Может ли это причинить вред?
A: Не в систему. Если система старая, на крыше могут остаться пятна ржавчины, но не более того.
Q: Сколько воды мне следует налить в бак при первом заполнении системы?
A: Обычно вам следует поддерживать резервуар на одну треть заполненным, когда вода холодная (часто сбоку резервуара есть измерительное стекло, чтобы вы могли видеть, что вы делаете).По мере того, как вода нагревается и расширяется, она поднимается до верхних двух третей резервуара и останавливается, прежде чем вытечь на крышу.
Q: Как они заправляли эти баки?
A: Некоторые баки имели автоматический заправочный клапан, очень похожий на шаровой кран в унитазе. Остальные, старожилы, вручную заполнили вентиль, который находился либо внизу в подвале, либо на чердаке.
Q: Погодите, если вы в подвале, как вы можете узнать, сколько воды в чердаке?
A: Хороший вопрос! Скорее всего, у котла был «высотомер», который показывал высоту воды в системе.Манометр регистрировал высоту в футах, а также статическое давление.
Q: Что такое статическое давление?
A: Это давление, создаваемое водой внутри котла, когда она накапливается в трубопроводе системы. Манометр регистрирует статическое давление в фунтах на квадратный дюйм (psi). Один фунт на квадратный дюйм поднимет воду на 2,31 фута (это 28 дюймов) прямо вверх, и вот здесь и появляется «высота».
Q: Нужно ли вам принимать какие-либо особые меры предосторожности при работе с системой гравитации подачи?
A: Да, если вам нужно слить воду из системы, будьте осторожны при ее пополнении.Начните с открытыми вентиляционными отверстиями в радиаторе. Затем медленно заполняйте систему, по одному этажу. Когда вода потечет из форточок на первом этаже, быстро закройте их все. Затем продолжайте заливку, пока вода не поднимется на второй этаж. Закройте все вентиляционные отверстия и поднимитесь на третий этаж. После того, как вы заполните все радиаторы, заполните систему до одной трети от заполнения расширительного бачка.
Q: Почему этот метод важен?
A: Потому что в этих больших трубах и радиаторах так много воздуха.Если вы попытаетесь заполнить систему сразу, а затем вернуться и выпустить воздух из каждого радиатора, выходящий из одного радиатора воздух вызовет выпадение воды из расширительного бачка и ближайших радиаторов. Это может втянуть больше воздуха в трубопровод системы.
Q: Что произойдет, если я не буду следовать этой процедуре заполнения?
A: Обычно возникают «фантомные» проблемы с воздухом. Сегодня в этом радиаторе появляется воздух. Вы выпустите это из головы. Завтра он там в радиаторе. Вы выпустите это из себя.На следующий день проблема появляется где-то еще. Это может сводить с ума.
Q: Как воздух из нагретой воды выходит из системы после первоначальной продувки?
A: Он выходит через переливную трубу, которая выходит через крышу. Обычно резервуар находится на верхнем стояке основной системы в высокой точке. Бак отводит большую часть воздуха, выделяемого нагретой котловой водой. Если часть этого воздуха попадет в радиаторы, а не в бак, это может замедлить поступление тепла в комнаты.В идеале, при использовании этого типа системы, кто-то должен спускать воздух из радиаторов в начале каждого отопительного сезона.
Q: Существует ли опасность замерзания чердака, если чердак не изолирован должным образом.
A: Да, есть. И если это произойдет, расширяющейся системной воде будет некуда деваться. Чтобы избежать этой потенциально опасной ситуации, многие старожилы так подключили свои резервуары.
Эта вторая труба, подключенная к боковой стороне бака, позволяет горячей системной воде циркулировать через бак.Поскольку вода горячая и находится в движении, вероятность замерзания значительно ниже.
Q: Почему они просто не пошли дальше и не протрубили все свои резервуары таким образом?
A: Поскольку при такой циркуляции воды через открытый резервуар скорость испарения воды из системы увеличивается. Это означает, что кому-то нужно добавить больше пресной воды. Пресная вода увеличивает скорость коррозии в системе и со временем замедляет циркуляцию.
Q: Предположим, я решил модернизировать систему, добавив циркуляционный насос или заменив котел.Стоит ли держать открытый резервуар?
A: В таком случае вы, вероятно, захотите закрыть систему, заменив открытый расширительный бак на чердаке закрытым компрессорным баком. Это не всегда необходимо, но это сокращает коррозию, возникающую в системе.
Q: В чем разница между расширительным бачком и компрессорным баком?
A: Это действительно вопрос семантики. «Расширительный» резервуар — это открытый резервуар. «Компрессионный» резервуар — это закрытый резервуар.Большинство людей меняют термины. Пока человек, с которым вы разговариваете, знает, что вы имеете в виду, на самом деле не имеет большого значения, как вы это называете.
Q: Были ли другие типы гравитационных систем?
A: Да. Если бы первоначальный владелец дома стал первоклассным, он бы установил надземную гравитационную систему, подобную этой.
Q: Чем система накладных расходов отличается от системы подачи наверх?
A: В потолочной системе вода сначала идет на чердак (или в водопровод, подвешенный к потолку верхнего этажа), а затем попадает в радиаторы.Поскольку этот «экспресс-стояк» очень велик, он обеспечивает меньшее сопротивление трения воде. В результате горячая вода движется от котла к радиаторам быстрее, чем в системе подпитки.
Еще один плюс — то, как более холодная вода протягивает горячую воду через радиаторы, когда она падает по возвратным стоякам. Эта сила противодействует эффектам трения и заставляет радиаторы нагреваться быстрее. В результате система с накладными расходами обычно дешевле в эксплуатации.
В: Легче ли вентилировать этот тип системы?
A: Да, намного проще.Фактически, из-за того, как радиаторы подключены к сети, вам не нужны вентиляционные отверстия радиатора с этой системой. Все вентиляционные отверстия системы автоматически проходят через чердак. Заполнение этой системы также не займет много времени, и вам не нужно беспокоиться о разливе воды по всему полу во время вентиляции, как в случае с системой подачи.
Q: Как они подключили радиаторы к сети в этой системе?
A: Они всегда использовали верхнее и нижнее подключение. Они могут входить в верхнюю часть радиатора с одной стороны и выходить через нижнюю часть с противоположной стороны, либо они могут входить и выходить с одной и той же стороны.Этот второй метод сэкономил стояк, что сделало установку менее дорогой.
Q: Разве для этой работы им не потребовались специальные приспособления?
A: Да. Пришлось отводить воду через радиатор. Для этого использовали тройник особого типа. Вот фотография одного из них.
Q: Как они назвали эту тройку?
A: Они назвали его фитингом «O-S» в честь его изобретателя, Оливера Шлеммера из Цинциннати, штат Огайо. Это было прекрасное простое устройство.
В: Это похоже на футболку «Монофло»?
A: Да, но O-S на много лет предшествовала Monoflo. В 1930-е годы компания Bell & Gossett представила свою футболку «Monoflo» (название является торговой маркой). Он сыграл большую роль в отоплении домов в Америке в годы перед Второй мировой войной.
В: Эти специальные тройники «говорят» воде, куда идти?
A: В некотором смысле да. Они создают путь наименьшего сопротивления для воды и направляют ее к радиатору.
В: Есть ли другой способ направления воды в системе такого типа?
A: Есть несколько способов, и все они критически важны для работы системы.
Q: Почему это?
A: Потому что трубы в гравитационной системе очень большие и содержат много холодной воды при запуске. Не вся вода станет горячей одновременно. А поскольку горячая вода легче холодной, она имеет тенденцию лететь прямо в радиаторы верхнего этажа — как воздушный шар.Это путь наименьшего сопротивления.
Q: То есть верхние этажи нагреваются быстрее, чем нижние этажи в гравитационной системе?
A: Да, и это приводит к дисбалансу системы.
Q: Как старожилы обходили эту проблему?
A: Иногда к ручным клапанам радиаторов верхнего этажа добавляли диафрагмы. Вот как это выглядит.
Q: Что такое диафрагма?
A: Это круглый кусок металла с маленьким отверстием в центре.Вы можете сделать его самостоятельно из листового металла; большинство старожилов сделали свои.
В: Как диафрагма направляла воду?
A: За счет увеличения сопротивления через радиатор назначили. Если вода с трудом попадет, скажем, в радиатор верхнего этажа из-за диафрагмы, вместо этого она попадет в радиатор на нижнем этаже. В этом смысле диафрагма аналогична фитингам «O-S» и «Monoflo». Однако большая разница заключалась в том, что вместо того, чтобы направлять воду в радиатор, которому он был назначен, диафрагма направляла воду от этого радиатора.
Q: Какие еще методы использовали старожилы, чтобы заставить воду идти туда, куда она должна была идти?
A: Чаще всего они проводят работу таким образом, чтобы вообще избежать проблемы. Вот еще раз взгляните на эту систему подачи.
У нас три радиатора — два на втором этаже, один на первом. Горячая вода стремительно поднимается на второй этаж. Но посмотрите внимательно на то, как слесарь делает боковые отрывы от питающей магистрали.Обратите внимание, как подача горячей воды в радиатор №1 идет сбоку от магистрали. Монтажник сделал это так, потому что при запуске самая горячая вода будет в верхней части водопровода.
Самая горячая вода хочет попасть в радиатор №1, но не может попасть туда сразу, потому что вода в нижней части горизонтальной магистрали холоднее, чем вода в верхней части горизонтальной магистрали. Эта более холодная (и более тяжелая) вода вытесняет более горячую воду и направляет ее к радиатору №3, который находится на первом этаже.
Q: Значит, из подвала видно, куда идут стояки?
A: Да! Обычно они питали радиаторы верхнего этажа со стороны основного, а радиаторы первого этажа — сверху. Таким образом, система вошла в более естественный баланс.
Q: Они делали то же самое со своими вертикальными подступенками?
A: Да, были. Часто они поставляли радиатор второго этажа с верхней части стояка, а радиатор третьего этажа со стороны того же стояка.
В данном случае радиатор второго этажа является нижним из двух. Вот почему вода в него попадает через верхнюю часть стояка.
Q: Как насчет горизонтальной сети? Старожилы использовали одинаковый размер по всему зданию?
A: Обычно нет. Было принято уменьшать размер магистрали подачи, когда она проходила вокруг здания, но если монтажник слишком быстро сокращал трубу, поток останавливался из-за слишком большого общего сопротивления.
Q: Каким правилам они следовали?
A: Как правило, они хотели, чтобы внутренняя площадь поперечного сечения магистрали соответствовала или превышала внутреннюю площадь поперечного сечения всех подключенных ручных клапанов радиатора. Если бы магистраль была слишком маленькой (или если бы кто-то добавил радиаторы к существующей магистрали), некоторые радиаторы не смогли бы хорошо нагреться. Компетентные слесари сидели и просчитывали каждую работу, над которой они работали. Они знали, что нет двух одинаковых.
Q: Что такое внутренняя площадь поперечного сечения?
A: Посмотрите на круглый конец трубы.Внутренний круг на открытом конце представляет собой внутреннюю площадь поперечного сечения. Используя математику, вы можете вычислить, сколько квадратных дюймов пространства внутри этого круга.
Q: Вы можете привести несколько примеров?
A: Конечно! Вот список труб обычного размера, используемых в гравитационных системах, с площадью поперечного сечения в квадратных дюймах.
1 «= 0,86
1-1 / 4 «= 1,5
1-1 / 2 «= 2,04
2 «= 3,36
2-1 / 2 «= 4,78
3 дюйма = 7.39
3-1 / 2 «= 9,89
4 дюйма = 12,73
5 дюймов = 19,99
6 дюймов = 28,89
8 дюймов = 51,15
Q: Как насчет питающей и обратной сети. Их нужно держать близко друг к другу?
A: Да, в идеале обратная магистраль должна быть параллельна основной на расстоянии не более 8-1 / 2 дюймов. Он должен упасть только тогда, когда достигнет котельной.
Q: Как старожилы вернули отдачу от радиаторов обратно в сеть?
A: Они следовали этому правилу: возврат от радиаторов на первом этаже должен поступать со стороны возвратной магистрали, потому что они уходят сверху.Это важно, потому что возврат от одного радиатора может заблокировать возврат от другого, если температуры, возвращаемые от двух радиаторов, немного отличаются, что почти всегда будет.
Q: Были ли какие-то специальные фитинги для сети?
A: Они использовали несколько из них. Вот два примера наиболее распространенных. Это называется фитингом Эврика.
Эта футболка была известна как основная футболка Phelps Single Main Tee.
Обратите внимание, как горячая вода выходит из верхней части фитинга, а холодная течет обратно в боковую часть.Эти старожилы были умны, не так ли?
В: Сложно ли устранять неисправности самотечных систем горячего водоснабжения?
A: Поиск и устранение неисправностей может быть сложной задачей. В системе могут быть места, где горячая и холодная вода переходят друг в друга по одной трубе. Это может быть совершенно нормально, но вам нужно «увидеть» это в своем воображении, чтобы понять, что происходит.
Некоторые проблемы могли существовать годами до вашего участия. Что-то столь же простое, как неразвернутая труба, может остановить нагрев радиатора, но также и коррозия, которая нарастает после шестидесяти или семидесяти лет эксплуатации.Вам нужно будет ясно мыслить и задавать много вопросов.
Q: Здесь вода течет так же, как в системе с принудительной циркуляцией?
A: Вовсе нет! Фактически, теплотворная способность горячей воды является зеркальным отражением принудительного нагрева горячей воды. Когда вы используете циркуляционный насос в любой системе, путь наименьшего сопротивления всегда будет самым коротким (наименьшее падение давления) петлей, потому что это путь с наименьшим сопротивлением потоку. Вода ленива, и когда вы ее качаете, она всегда хочет вернуться на всасывание насоса как можно быстрее.Помните, что в системе горячего водоснабжения путь наименьшего сопротивления — это верхний этаж, который обычно является самым длинным. Это противоположное, зеркальное отображение насосной системы.
Q: Вы можете наглядно показать разницу?
A: Когда я устраняю проблемы, связанные с гравитационным нагревом горячей воды, я всегда думаю о конвективных токах в отапливаемом помещении. Думай вместе со мной.
Воздух выходит из радиатора, потому что он горячий и легкий (по той же причине, по которой вода выходит из бойлера).Воздух ползет по потолку и отдает тепло тем, к чему прикасается (как вода отдает тепло радиаторам). По мере охлаждения воздух в комнате становится тяжелее и падает (так же, как вода падает из радиаторов). Наконец, когда он достигает уровня земли, теперь относительно холодный воздух (например, относительно холодная вода внутри гравитационной системы) перемещается по полу (или, в случае воды, обратно к котлу) и попадает в нижнюю часть радиатора. чтобы заменить поднимающийся горячий воздух.
А теперь предположим, что вы включили потолочный вентилятор в той отапливаемой комнате. Вы бы поспешили изменить конвекционный поток, не так ли? Вы будете «качать» воздух по комнате вместо того, чтобы позволять ему подниматься и опускаться под действием его собственной плавучести. Он пойдет туда, где сопротивление будет наименьшим, когда вентилятор будет включен, не так ли? Конечно, будет — так же, как горячая вода движется туда, куда ей говорит насос.
В этом разница между теплом горячей воды самотеком и принудительным водяным теплом. Один движется за счет естественной конвекции, другой — за счет насоса.
Q: Могут ли те пластины с отверстиями, на которые мы смотрели раньше, вызвать проблемы в системе?
A: Иногда. Когда вы добавляете циркуляционный насос к гравитационной системе, путь наименьшего сопротивления естественным образом переходит к радиаторам первого этажа, потому что это кратчайший путь обратно к котлу. Вода больше не хочет идти на верхний этаж. Эти диафрагмы установлены в радиаторах верхнего этажа. Старожил поставил их туда, чтобы вода стекала на нижние этажи.
Q: Что в этом плохого?
A: Итак, теперь, когда вы прокачиваете систему, отверстия будут обеспечивать, чтобы сопротивление через радиаторы верхнего этажа всегда было больше, чем через радиаторы нижнего этажа.Фактически, как только вы добавите циркуляционный насос, у вас, вероятно, вообще не будет потока через радиаторы верхнего этажа!
В: Разве вы не сможете сразу определить, что проблема связана с отверстиями?
A: Наверное, нет, потому что эта проблема в точности похожа на проблему с воздухом. Думаю об этом. Проблема на верхнем этаже. Возможно, вы слили воду из системы при установке циркуляционного насоса. А теперь у людей нет тепла. Это похоже на проблему с воздухом, но на самом деле это проблема с потоком.
Q: Как я узнаю, что это проблема с потоком?
A: Когда вы спускаете воздух из радиатора, воздух не поступает. А если нет воздуха, это не проблема с воздухом!
Q: Итак, какое решение?
A: Снимите диафрагмы с радиаторов верхнего этажа и вставьте их в радиаторы первого этажа. Другими словами, переверните зеркальное отображение. Система придет в равновесие, и эта фантомная «воздушная» проблема останется просто плохим воспоминанием.
В: Есть ли еще что-нибудь, на что мне нужно обратить внимание?
A: Да, художники! Если у вас внезапно возникла проблема с отключением тепла на нижнем этаже системы гравитационного горячего водоснабжения, проверьте, не снимал ли кто-нибудь радиаторы, чтобы смыть с них краску (или снял радиатор, чтобы покрасить стену за ним).Маляры и малярщики часто закрывают ручные вентили и отключают радиаторы, чтобы облегчить свою работу. Когда это происходит, отверстия обычно выпадают из штуцеров ручного клапана. Так как средний художник не знает, что такое нагревание (гравитация или иное), он не знает, что делать с диафрагмой. Для него это похоже на мусор. Он выбросит его в мусор и решит, что оказывает владельцу услугу, «избавляясь от этого потерянного куска металла, который забивал трубы и блокировал тепло.»Однако без диафрагмы большая часть воды будет течь на верхний этаж.
В: Когда лучше перевести гравитационную систему горячего водоснабжения на принудительную циркуляцию?
A: Обычно, когда гравитационная система замедляется из-за коррозии, которая происходила на протяжении многих лет. Эти маленькие укромные уголки и щели в трубе замедляют поток и останавливают тепло. Естественная реакция — повышение температуры, чтобы вода циркулировала быстрее. Но вы можете только подтолкнуть температуру до того, как начнете просить о проблемах.Вот и пришло время перевести систему на принудительную циркуляцию.
Q: Что это значит?
A: Вы должны добавить циркуляционный насос и (обычно) закрыть систему от атмосферы. Вам также придется внести некоторые изменения в трубопровод возле котла.
Q: Что изменилось?
A: Старый котел, вероятно, имеет два выхода и два входа, потому что в те дни идея заключалась в том, чтобы получить максимально возможный поток воды под действием силы тяжести через котел. Чем больше отверстий, тем лучше циркуляция.Этот трубопровод выглядел так.
Когда вы добавите новый циркуляционный насос, вам не нужно будет использовать такие большие трубы, выходящие и выходящие из котла. Фактически, вы захотите уменьшить размер трубопровода, расположенного рядом с котлом, чтобы дать циркулятору возможность «оттолкнуться».
Q: Зачем циркулятору нужно что-то «толкать»?
A: Чтобы он не сработал на своем внутреннем предохранителе от перегрузки. Циркуляционный насос выполняет свою максимальную работу при небольшом сопротивлении потоку или его отсутствии.В гравитационной системе большие трубы не могут оказывать большого сопротивления.
Q: Потребуются ли мне эти двойные входы и выходы на котле?
A: Нет, и это еще одна причина, по которой вам следует переделать трубопровод около котла. С двумя входами и двумя выходами перекачиваемый поток может замкнуться вокруг котла без выхода в систему.
Q: Может, я не хочу ремонтировать котел?
A: Возможно, вам придется использовать два циркуляционных насоса — по одному на каждой линии подачи.
Q: Как я узнаю, какой размер трубы использовать в новом котле?
A: Хорошее практическое правило — взять самую большую трубу, разделить ее пополам и затем опустить на один размер. Это станет размером вашего нового трубопровода около котла. Например, предположим, что самая большая труба имеет размер 2-1 / 2 дюйма (если есть два входа и выхода, вам нужно рассмотреть только один из них). Разделите это пополам и получите 1-1 / 4 дюйма. Теперь уменьшите размер до 1 дюйма, и это то, что вы будете использовать в своем новом бойлере.
Если ваш самый большой размер — два дюйма, протяните новый котел диаметром 3/4 дюйма. Это будет выглядеть странно и может вызвать у вас дискомфорт, но это сработает. Для разных систем требуются разные методы прокладки трубопроводов. Один размер не подходит всем, и гравитационная конверсия определенно отличается от совершенно новой работы с принудительной циркуляцией.
Q: Как определить размер циркуляционного насоса для работы по переоборудованию?
A: С этими работами очень легко. Вам нужен высокий расход при относительно низком напоре.Хорошим выбором будет циркуляционный насос, подобный Bell & Gossett Series 100.
Ваша цель — как можно быстрее переместить много воды по системе, несмотря на очень небольшое сопротивление потоку. Этот тип циркуляционного насоса именно этим и занимается.
В. Могу ли я использовать вместо этого небольшой циркуляционный насос с водяной смазкой?
A: Это прекрасные циркуляционные насосы для большинства современных систем с принудительной циркуляцией, но здесь не лучший выбор. Вам не нужно создавать большое напорное давление на этих работах по переоборудованию, потому что трубы огромны, а сопротивление потоку практически отсутствует.Использование небольшого высокоскоростного циркуляционного насоса с мокрым ротором — плохой выбор для преобразования силы тяжести, потому что он будет делать прямо противоположное тому, что вы пытаетесь достичь.
В: Я не уверен, что понимаю разницу между расходом и напором. Вы можете это объяснить?
A: Конечно! Поток — это «поезд», по которому движется тепло. Поток «доставляет товар» к радиаторам. Голова — это сопротивление потоку, и это тоже важно, но только по отношению к потоку.
Q: Ну а что тогда определяет напор?
A: В общем размер труб.Чем меньше трубы, тем больше требуется напор насоса, и наоборот. Поскольку гравитационные системы имеют очень большие трубы, нет необходимости в циркуляционном насосе с высоким напором. Что вам нужно, так это высокий расход.
Q: Где лучше всего установить циркулятор?
A: Всегда лучше ставить его на подающей стороне котла, откачивая от компрессионного бака. Циркуляционный насос, подключенный таким образом, будет добавлять свое давление к давлению наполнения системы и облегчает вывод воздуха.Система также будет работать тише.
Q: Должен ли я использовать байпас вокруг котла на этих работах?
A: Большинство производителей котлов рекомендуют устанавливать байпас вокруг своих новых котлов, когда вы используете их в гравитационной системе. Вот как выглядит этот байпасный трубопровод.
Q: В чем причина обхода?
A: Он предназначен для защиты котла от конденсации и теплового удара.
В: Что такое тепловой удар?
A: Тепловой удар — это то, что происходит с горячим металлом, когда по нему попадает относительно холодная возвратная вода.Если вынуть стеклянную тарелку из духовки и промыть ее холодной водой, она сломается, не так ли? Это тепловой шок.
Q: Как байпасный трубопровод помогает предотвратить это?
A: Байпас позволяет горячей котловой воде попадать в обратную более холодную воду и повышать ее температуру. Затем комбинированный поток поступает в котел при температуре выше 140 градусов по Фаренгейту, что является минимально допустимым для многих котлов.
Q: Вы сказали что-то о конденсации. Что все это значит?
A: Если температура обратной воды слишком низкая, дымовые газы могут достичь точки росы и превратиться в жидкость внутри котла.Эта жидкость очень агрессивна по отношению к металлу. Это может в мгновение ока повредить или разрушить котел. Используя байпас, вы смешиваете горячую подаваемую воду с относительно холодной возвратной водой и повышаете температуру котловой воды до точки, при которой газы не могут конденсироваться внутри котла.
В: Обводной канал служит какой-либо другой цели?
A: В некоторых случаях установщик соединит байпас со стороной всасывания циркуляционного насоса и использует балансировочные клапаны, чтобы отвести значительную часть потока системы вокруг котла.Это позволяет котлу достичь предельной температуры и выключиться. Без байпаса большой объем воды, проходящей через котел, часто поддерживает низкую температуру и не дает котлу достичь верхнего предела, что может увеличить счет за топливо.
Q: Есть ли другой способ прокладки нового котла без байпаса?
A: Вы можете использовать методы первичной / вторичной откачки.
Q: Что такое первичная / вторичная перекачка?
A: Это способ рассматривать поток через систему и поток через котел как две отдельные вещи.
Q: Есть ли в этом преимущество?
A: Это связано с тем, что некоторым котлам для работы с максимальным потенциалом требуется минимальный расход. Этот поток может не совпадать с потоком, который вам нужен в системе. Если вы используете обходную линию, кто-нибудь может ее отрегулировать после того, как вы уйдете. Это может вызвать проблемы как с котлом, так и с системой.
Q: Как мне прокладывать трубопровод для первичного / вторичного потока?
A: Свяжите существующие линии подачи и возврата вместе, чтобы сформировать системный контур.Затем используйте два стандартных тройника, расстояние между которыми не превышает 30 см, и прикрепите новый бойлер к петле. Нравится.
Первичный насос обслуживает систему, а вторичный насос обслуживает котел. Вы очень просто удовлетворяете потребности обоих потоков. Расстояние между тройниками не более двенадцати дюймов позволяет насосам работать независимо. Когда вторичный насос выключен, через котел не будет потока, если вы сохраните расстояние в пределах этого 12-дюймового предела.
В: Почему это важно?
A: Управляя потоком через котел, вы берете на себя ответственность за потери системы в режиме ожидания. Если горелка выключена, а насос котла остановлен, потери в дымоход будут минимальными.
Q: Как мне управлять такой первичной / вторичной системой, как эта?
A: Вы можете включить оба насоса и горелку одновременно. Или, что еще лучше, вы можете запустить системный насос (первичный) на регуляторе сброса наружного воздуха и включить насос котла (вторичный) и горелку в соответствии с температурными потребностями здания в любой заданный день.Это идеальный способ управления старой самотечной системой горячего водоснабжения.
Q: Могу ли я использовать более одного котла с этим типом системы?
A: Конечно, можете! Эта система идеально подходит для установки с несколькими котлами. Смотреть.
Здесь мы используем два котла вместо одного. Первичный насос перемещает воду через радиаторы. Включаются вторичные (котловые) насосы, чтобы пропустить часть первичного потока через котлы. В мягкие дни вы будете использовать только один бойлер, в более холодные дни бойлеры будут работать вместе, чтобы поддерживать температуру воды до нужного уровня.
Q: В чем преимущество использования двух котлов?
A: Каждый котел рассчитан на половину максимальной нагрузки. Например, допустим, общая необходимая нагрузка в самый холодный день года составляет 250 000 БТЕ / час. Если мы будем использовать два котла мощностью 125 000 БТЕ / час вместо одного котла на 250 000 БТЕ / час, мы будем сжигать примерно вдвое меньше топлива в течение большей части отопительного сезона.
Q: Вы сказали, что мы избавимся от открытого расширительного бачка на чердаке, когда переведем систему на принудительную циркуляцию.Почему мы должны это делать?
A: Чугунные и стальные котлы служат намного дольше, когда система закрыта. Это потому, что в замкнутой системе намного меньше кислородной коррозии.
Q: Всегда ли нужно избавляться от открытого резервуара?
A: Не обязательно. Хорошим выбором для гравитационного переоборудования является котел с медными оребрениями. Эти котлы изготовлены из цветных металлов и особенно хорошо справляются с кислородом. Они также невосприимчивы к тепловым ударам (у них есть гибкие теплообменники) и хорошо работают с более холодной водой (обычно до 105 градусов по Фаренгейту).
Q: Допустим, я решил закрыть систему. Что мне нужно знать, чтобы определить размер закрытого компрессионного бака для работы по переоборудованию?
A: Вам нужно знать три вещи:
- Галлонов воды в системе
- Разница между давлением заполнения и сброса, и
- Средняя температура воды в системе, которая в данном случае не должна превышать 170 градусов по Фаренгейту
В: Почему средняя температура воды ограничена 170 градусами по Фаренгейту?
A: Чтобы вода не превратилась в пар в открытом чердаке.Старожилы рассчитали свое излучение, чтобы обеспечить много тепла в самый холодный день года с максимальным пределом температуры в 180 градусов по Фаренгейту. Вода покидала котел при 180 и возвращалась примерно при 160, давая им среднюю температуру 170 F в пределах излучения.
Q: Что произойдет, если я запущу систему с более горячей водой?
A: Вы, вероятно, перегреете людей и увеличите их счета за топливо.
Q: Каковы рекомендации по выбору размера компрессионного бака из простой стали для работы по переоборудованию под действием силы тяжести?
A: Измерьте общее излучение системы, а затем примените это практическое правило:
- Если объем радиации составляет менее 1000 квадратных футов, умножьте полученное значение на.03, чтобы определить размер резервуара в галлонах.
- Если общая радиация составляет от 1000 до 2000 квадратных футов, используйте 0,025 в качестве множителя.
- Если общая радиационная нагрузка превышает 2000 квадратных футов, используйте 0,02 в качестве множителя.
- Это даст вам размер стандартного стального компрессионного бака в галлонах.
Q: Как я узнаю, сколько квадратных футов излучения содержит каждый радиатор?
A: Вы можете использовать эту таблицу в качестве руководства:
Вопрос: Чему равен квадратный фут эквивалентного прямого излучения в британских тепловых единицах в час?
A: Для преобразования силы тяжести мы можем сказать, что каждый квадратный фут EDR будет равен 150 британских тепловых единиц в час, когда средняя температура воды составляет 170 градусов по Фаренгейту
Q: Будут ли эти танки больше, чем на более современной системе?
A: Да, эти резервуары будут намного больше, чем те, которые вы бы использовали для работы с принудительной циркуляцией.Это связано с тем, что для работ, рассчитанных с учетом циркуляционных насосов, используются трубы меньшего размера. Меньшая труба означает меньше воды в системе. Меньше воды означает меньшее расширение, а меньшее расширение означает меньший компрессионный бак.
Q: Предположим, я хочу использовать компрессионные баки мембранного типа, как мне выбрать их размер для работы по гравитационному преобразованию?
A: Вы можете использовать это практическое правило:
Возьмите размер стандартного стального компрессионного бака в галлонах и умножьте на 0,55, если здание двухэтажное или.44, если здание трехэтажное. Ответ даст вам объем мембранного бака.
Q: Вы можете привести мне пример этого?
A: Конечно! Допустим, у нас есть двухэтажный дом с площадью излучения в 1000 квадратных футов. Сначала определим размер стандартного стального резервуара: 1000 X 0,03 = 30 галлонов. Теперь, поскольку это двухэтажный дом, мы должны умножить это на 0,55, чтобы получить объем мембранного бака. (30 X 0,55 = 16,5 галлонов необходимого объема в мембранном баке)
Q: Где я могу найти «объем» мембранного бака?
A: В технических характеристиках производителя.Вот, например, номинальные объемы стандартных мембранных резервуаров производства Amtrol, Inc. Первое число — это номер модели резервуара, а следующее — его объем:
15 = 2
30 = 4,4
60 = 7,6
90 = 14
SX-30V = 14
SX-40V = 20
SX-60V = 32
SX-90V = 44
SX-110V = 62
SX-160V = 86
А вот объемы цистерн производства Vent-Rite (Flexcon Industries):
VR 15 F = 2.1
VR 30 F = 4,5
VR 60 F = 6,1
VR 90 F = 21
SX VR30 F = 21
SX VR40 F = 21,0
SX VR60 F = 29,0
SX VR90 F = 37,0
SX VR110 F = 53,0
SX VR160 F = 74,0
Для здания в нашем примере вы должны использовать Amtrol SX-40-V, Vent-Rite VR 90 F или любую комбинацию меньших резервуаров, объем которых равен или превышает 16,5 галлона. При желании вы можете использовать, например, четыре Amtrol 30 или четыре Vent-Rite VR 30 F.
Q: Нужно ли мне что-либо проверять на этих резервуарах перед их установкой?
A: Да, всегда проверяйте давление воздуха на стороне диафрагмы резервуара. Оно должно равняться давлению заполнения системы, когда бак отключен от системы. Давление заполнения для двухэтажного здания обычно составляет 12 фунтов на квадратный дюйм; для трехэтажного здания это 18 фунтов на кв. дюйм. Если давление слишком низкое, увеличьте его с помощью велосипедного насоса или воздушного компрессора. Давление в баке (когда он отсоединен от системы) всегда должно равняться давлению наполнения системы (настройке редукционного клапана).
Q: Какой метод выбрать для замены котла?
A: Вы должны рассчитать новый котел на основе двух вещей: точного расчета теплопотерь здания и точного измерения существующей радиации. Не соглашайтесь на одно или другое, проверьте их обоих и сравните.
В: Почему это так важно?
A: Проверив тепловые потери и излучение, вы сможете рассчитать надлежащую расчетную температуру для преобразованной системы.Многие старожилы увеличивали размеры своих радиаторов, потому что в единственных доступных на тот момент диаграммах излучения указывались параметры пара. Один квадратный фут EDR при работе с паром дает 240 британских тепловых единиц в час. Один квадратный фут EDR при работе с горячей водой (исходя из средней температуры воды 170 градусов по Фаренгейту) дает 150 британских тепловых единиц в час. Это связано с тем, что вода при температуре 170 градусов по Фаренгейту холоднее пара при температуре 215 градусов по Фаренгейту.
Чтобы компенсировать графики, старожилы добавили 60 процентов к своим размерам радиации. Как вы понимаете, это привело к значительному завышению размеров.
В: Это плохо?
A: Это действительно может сработать. Если радиаторы слишком большие, вы сможете эксплуатировать систему при относительно низкой средней температуре воды. Я обнаружил, что большинство конверсионных работ хорошо работают при средней температуре воды 150 градусов по Фаренгейту (в районе Нью-Йорка), и это в тот день, когда температура наружного воздуха равна нулю! Более низкая температура котловой воды означает меньшие расходы на топливо.
Q: Есть ли время, когда мне нужно увеличить размер нового котла на этих работах?
A: Нет! Нет абсолютно никаких причин увеличивать размер котла.При выборе размера учитывайте теплопотери здания в том виде, в котором оно существует сегодня. Проложите его правильно, используя обводную линию, о которой мы говорили ранее. Затем, если работа перегружена, соответственно уменьшите верхний предел температуры воды, чтобы сэкономить топливо.
Q: Какие гидравлические аксессуары мне нужны для этих работ?
A: Используйте хороший воздухоотделитель, чтобы уменьшить вероятность возникновения воздушных шумов и проблем с недостатком тепла. Разместите его в новом трубопроводе около котла на стороне подачи системы (где вода наиболее горячая), непосредственно перед циркуляционным насосом.Вы должны разместить компрессионный бак рядом с воздушным сепаратором.
Заполните систему редуктором давления в точке, где вы подключили компрессионный бак к системе. Это «точка отсутствия изменения давления», единственное место в системе, где давление в циркуляционном насосе не может повлиять на давление в системе.
Вам также понадобится клапан регулирования потока, чтобы предотвратить циркуляцию под действием силы тяжести, когда циркуляционный насос выключен. Вставьте его сразу после циркуляционного насоса.
Q: Если бы я хотел, могу ли я снова переключить систему в режим гравитации?
A: Да, это одна из приятных особенностей этих заданий по преобразованию.Их очень легко переключить обратно (по крайней мере, временно), если что-то случится с циркулятором. Все, что вам нужно сделать, это открыть маленький рычаг в верхней части клапана регулирования расхода, и горячая вода снова поднимется из котла в радиаторы.
В. Какие у меня варианты управления этими заданиями преобразования?
A: Ну, есть первичная / вторичная подкачка. Мы уже смотрели на это раньше. Также на радиаторы можно установить термостатические вентили.
Эти устройства определяют температуру воздуха в каждой комнате и регулируют поток воды через радиатор. Они полностью автономны и не требуют электропроводки. Они служат годами, относительно недороги и существуют с 1920-х годов. Я обнаружил, что они поддерживают комнатную температуру в пределах одного или двух градусов по Фаренгейту от заданного значения. С термостатическими радиаторными клапанами каждая комната становится отдельной зоной.
Если вы решите их использовать, установите циркуляционный насос на непрерывную работу в холодные месяцы.Клапаны позаботятся об уровне комфорта в каждой комнате. Если вы хотите сделать еще один шаг управления, измените температуру котла на основе того контроллера сброса наружного воздуха, о котором я упоминал ранее. Этот контроль также помогает избавиться от любых шумов расширения / сжатия, которые могут возникнуть в системе.
Q: Есть ли более простой способ управлять заданием преобразования?
A: Самый простой способ — настроить комнатный термостат одновременно на включение горелки и циркуляционного насоса. Это не дает вам возможности зонировать каждую комнату, но это дешевле и работает.Не забывайте, что байпасная линия вокруг вашего нового котла
Q: Предположим, я решил оставить старый котел и просто добавить циркуляционный насос и клапан регулирования расхода. Это сэкономит мне топливо?
A: Не удивляйтесь, если это увеличит счета за топливо! Старые котлы и гравитационные системы хорошо работают вместе, потому что, когда горелка выключается, остаточное тепло в котле поднимается в радиаторы. Однако, когда вы устанавливаете регулирующий клапан, остаточное тепло идет вверх по дымоходу, а не в радиаторы.Результат? Более высокие счета за топливо.
Q: Как насчет того, чтобы я просто установил циркуляционный насос на этот старый котел и забыл о регулирующем клапане?
A: Это поможет снизить счета за топливо за счет более быстрого перемещения горячей воды к радиаторам, не останавливая при этом попадание остаточного тепла в радиаторы. Тем не менее, вам придется повозиться с датчиком нагрева термостата, чтобы система не перегрузилась. Кроме того, вам может понадобиться более одного циркуляционного насоса, если имеется более одного набора линий подачи и возврата.
Q: Могу ли я добавить зону к существующей гравитационной системе, подключив линии подачи и возврата с помощью циркулятора и петли плинтуса?
A: Я бы не стал этого делать. Принудительный поток через вашу новую зону обязательно повлияет на работу вашей гравитационной системы. То, как это влияет на это, будет варьироваться от системы к системе (нет двух одинаковых), но, судя по тому, что я видел, это обычно приводит к проблемам. На твоем месте я бы этого не сделал.
Если люди заинтересованы в зонировании, поговорите с ними о добавлении циркуляционного насоса в основную часть дома и упомяните те термостатические радиаторные клапаны, о которых я вам говорил ранее.
Q: Существовали ли специализированные системы самотечного водяного отопления?
A: Да, компания Honeywell создала систему под названием «ускоренный нагрев горячей воды», которая была очень популярна в свое время.
Q: Когда они использовали эту систему?
A: В первые дни этого века.
Q: Эти системы все еще существуют?
A: Их там достаточно, чтобы от удивления почесать затылок.
Вопрос: Чего компания Honeywell пыталась достичь с помощью этой системы?
A: Они хотели найти более быстрый способ перекачки воды из бойлера в радиатор.Они знали, что, если они смогут это сделать, они сэкономят деньги потребителей на топливе.
Q: Почему они просто не использовали циркулятор?
A: Потому что циркуляторов еще не изобрели!
Q: Так как же заставить воду двигаться быстрее, не используя циркуляционный насос?
A: Путем повышения температуры. Чем горячее вода, тем быстрее она течет.
В: Но если бы повысили температуру воды, не возникнет ли проблема с закипанием воды в открытом расширительном баке?
A: Да, при нормальных обстоятельствах, но с системой Honeywell старожилы смогли запустить систему под давлением.
Q: Какое давление?
A: До 10 фунтов на квадратный дюйм на верхнем этаже, а поскольку точка кипения воды увеличивается с повышением давления, они могут иметь температуру до 240 градусов по Фаренгейту в радиаторах. Это заставляло воду циркулировать очень быстро.
В: Была ли опасность при давлении в системе такого типа?
A: Обычно это происходит потому, что расширительный бачок был слабым звеном. Обычно его делали из меди или оцинкованной стали и скрепляли заклепками.Он не был построен, чтобы выдерживать нагрузку. Приложите слишком большое давление, и резервуар может (и часто случалось!) Взорваться, унеся с собой крышу дома.
Однако в системе Honeywell специальное устройство, называемое генератором тепла, удерживало резервуар отдельно от котла, трубопроводов системы и излучения.
Q: Как выглядело это устройство?
A: Он был сделан из чугуна и имел высоту около 2-1 / 2 футов.
Внутри основной трубы блока была узкая стальная трубка, которая опускалась в сосуд, наполненный ртутью.
Q: Почему они использовали ртуть?
A: Потому что он тяжелый. Они использовали ртуть для отделения воды в бойлере, трубопроводах и радиации от воды в открытом расширительном баке. Посмотрите, как теплогенератор подключен к системе.
Верхняя труба подходила к открытому резервуару. Боковая труба подключила систему к теплогенератору. Ртуть разделяла две стороны.
Q: Как работал теплогенератор?
A: По мере того, как старожилы создавали давление в системе, вода в котле, трубопроводах и излучении расширялась и давила на ртуть.
Ртуть поднималась по узкой трубке и каскадом стекала обратно в горшок через более широкую внешнюю трубку. Пока вода расширялась, ртуть продолжала циркулировать.
Q: Почему ртуть не поднялась в открытый расширительный бачок?
A: Из-за его веса. Меркьюри довольно тяжелый. Фактически, он почти в четырнадцать раз тяжелее воды.
В: Может ли вода из котла, трубопроводов и радиации попасть на дно ртутной трубки?
A: Да, если давление в системе поднимется достаточно высоко.Затем вода поступает в трубку и отделяется от ртути в этой широкой разделительной камере в верхней части теплогенератора. Оттуда он поднимается в расширительный бачок.
Q: Значит, теплогенератор не позволял давлению в системе подниматься выше определенного значения?
A: Верно! Он ограничивал давление в системе до 10 фунтов на кв. Дюйм в верхней части, не оказывая никакого давления на открытый расширительный бак. Это делало операцию полностью безопасной, а также заставляло воду циркулировать очень быстро.
Q: Я могу видеть, как устройство Honeywell увеличило скорость нагрева системы, но какие преимущества, если таковые имеются, оно дало установщику?
A: Из-за более высоких температур установщик мог уменьшить все свое излучение на целых 15 процентов.
Q: Старожилы использовали другие типы устройств, такие как это?
A: Да, был подобный, под названием Klymax Heat Economizer (звучит сексуально, не правда ли?). Вот изображение одного, прикрепленного к дну открытого расширительного бачка.
Q: Были ли другие?
A: Были и другие. Вот еще один пример. Они назвали его «Теплоудержателем Фелпса».
Это устройство работает путем открытия и закрытия клапана двойного действия, который был заключен в чугунный корпус. Сторона клапана, которая открывалась к атмосферному резервуару, имела вес 16-1 / 2 фунта. Этот вес поднимет и откроет клапан, когда система достигнет 250 градусов по Фаренгейту. Затем расширенная вода благополучно переместится в открытый резервуар.
Когда давление упало ниже 16-1 / 2 фунта, груз закрыл клапан, и сжатая вода открыла фиксирующий клапан, который позволил воде из резервуара снова попасть в трубопровод системы.
В: Использовала ли компания Honeywell специальный клапан на радиаторах?
A: Да, у них было что-то под названием «Уникальный» клапан, и, судя по его внешнему виду, я уверен, вы понимаете, почему они назвали его уникальным!
Q: Как этот клапан работал?
A: Чтобы понять, надо заглянуть внутрь.Вот фотография клапана, когда он был закрыт.
Как видите, вода протекала мимо радиатора, когда клапан находился в этом положении, но посмотрите, что происходит, когда вы открываете клапан.
Теперь вода поступает в радиатор с одной стороны внутренней перегородки, так как возвратная вода охладителя движется противотоком мимо другой стороны перегородки.
В: Была ли это та же компания Honeywell, которую мы знаем сегодня?
A: Одно и то же!
Grower 101: Изучение вариантов обогрева под столешницей
Трудно достичь однородной температуры в корневой зоне с помощью топочной системы отопления, которая циркулирует тепло по верху растения, или котла, который перекачивает воду через излучение ребер вдоль боковых стенок.Размещение тепла наверху или под скамейками сначала нагревает контейнеры, прежде чем он поднимется, чтобы нагреть воздух, а для большинства культур температура почвы более важна для хорошего роста, чем температура воздуха.
Дополнительным преимуществом обогрева корневой зоны является потенциальная экономия затрат на топливо в течение всего отопительного сезона. Температура воздуха в теплице может быть на 5-10¼ F ниже, чем температура почвы, и при этом расти хорошо. Эта более низкая температура воздуха означает, что потери тепла между внутри и снаружи теплицы меньше, что приводит к 10-процентному или более сокращению расхода топлива.
Исследования Билла Робертса и других сотрудников Университета Рутгерса показали, что около 20 британских тепловых единиц на кв. Фут. площади скамейки достаточно для обеспечения обогрева корневой зоны без чрезмерного высушивания растений и гибели нежных корней. В северном климате это обеспечит около 25% тепла, необходимого теплице в самую холодную ночь. Весной и осенью он, вероятно, обеспечит все необходимое тепло.
Компоненты системы отопления корневой зоны включают источник тепла горячей водой, распределительный трубопровод, радиацию и систему управления.В этой статье мы рассмотрим эти компоненты, чтобы увидеть, какие есть варианты.
Выберите источник горячей воды
Если в настоящее время у вас есть котельная, обогревающая теплицу, ее, вероятно, можно будет модифицировать, чтобы она давала воду 100–130 ° F, необходимую для обогрева корневой зоны. Существующая мощность должна быть достаточной, так как тепло просто перенаправляется от ребер или труб в область корневой зоны.
Если у вас есть конденсационный котел, в котором котел может безопасно работать с температурой обратной воды менее 140 ° F, то концевой выключатель установлен на самую высокую температуру воды, которую вы хотите использовать в трубопроводе корневой зоны.Если котел будет использоваться и для высокой температуры (180¼F), и для нагрева корневой зоны, то для получения низкотемпературной воды потребуется байпасный контур и смесительный клапан.
Большинство парниковых котлов не имеют конденсации и требуют байпасного контура и смесительного клапана для поддержания температуры воды в котле выше 140 ° F. Обычно используется трехходовой клапан, позволяющий смешивать воду из котла с возвратной водой. из корневой зоны и направляют обратно в котел или смешивают с возвратной водой и подают в систему корневой зоны.
В связи с нынешним интересом к альтернативным энергетическим системам, древесные и угольные котлы возвращаются. Поскольку с этими системами бороться с пожаром сложнее и тепло продолжает нагреваться после закрытия заслонки, обычно устанавливается буферный резервуар. В этом баке емкостью несколько сотен галлонов накапливается избыточная горячая вода из бойлера. После смешивания с возвратной водой из корневой зоны, вода распределяется обратно в корневую зону при желаемой температуре.
Для обеспечения обогрева корневой зоны одиночного птичника или небольшой скамейки отлично подойдет водонагреватель для бытового потребления.Эти обогреватели, работающие на газе, масле или электричестве, доступны мощностью от 30 000 до 40 000 британских тепловых единиц в час. и отапливает до 2000 кв. футов. площади скамейки. Большие коммерческие водонагреватели и проточные водонагреватели также успешно использовались.
Выберите подходящий трубопровод
Распределительная труба, по которой горячая вода идет от котла к системе корневой зоны, требует тщательного выбора. Для байпасного контура и трубопровода возле котла следует использовать металлическую трубу — медную или железную, так как температура воды высокая.Если температура воды, которая будет распределяться в корневой зоне, ниже 130¼F, ПВХ — хороший выбор, потому что он размягчается и проседает при температуре выше 140¼F.
Система должна быть спроектирована так, чтобы петли труб были как можно короче, чтобы уменьшить трение и тепловые потери. Размещение котла ближе к центру отапливаемого участка скамейки позволит решить эту задачу. Использование трехтрубной системы обратного возврата обеспечит воду одинаковой температуры для всех контуров. Систему можно зонировать, чтобы отдельные скамейки или участки в теплице могли нагреваться до разной температуры.Каждая зона требует отдельного циркуляционного насоса и трубопровода. Изолируйте высокотемпературные трубы и трубы большого диаметра, по которым проходит большой объем воды, для экономии энергии.
Выберите свою систему
Есть несколько систем, которые используются для обогрева скамейки. Контейнеры, контактирующие с источником тепла, получают теплопроводное и конвективное тепло. Там, где нет контакта, тепло передается в основном за счет излучения.
Настольные матыили трубки из EPDM, расположенные на расстоянии 2-3 дюймов друг от друга, хорошо подходят для размножения и контейнеров.Вода течет по трубам из коллектора или трубы теплой воды и возвращается обратно в коллектор или трубу холодной воды. Трубки и маты должны выдерживать УФ-излучение, удобрения и высокие температуры.
Некоторые производители прикрепили трубки из PEX (сшитого полиэтилена) к нижней стороне скамеек из проволочной сетки. Помимо того, что PEX устойчив к истиранию и химическим веществам, он предотвращает диффузию кислорода, который может вызвать коррозию котлов, резервуаров и водопровода.
Также можно подвесить голую железную трубу или ребристую трубу с низким выходом на глубину примерно 18 дюймов под столешницей.Обычно трубу подвешивают на цепочке или крючках к опорным каркасам скамейки. Наполненная водой с температурой 120¼F, стальная труба без покрытия диаметром 11Ú2 дюймов будет выделять около 50 БТЕ на погонный фут. Алюминиевая труба диаметром три четверти дюйма с двумя 1-дюймовыми ребрами будет выделять такое же количество Btus и удерживать только одну треть объема воды. Это уменьшает количество воды, необходимое в системе, и снижает превышение температуры после отключения системы. Под скамейкой шириной 6 футов петля из оголенной трубы или ребра обеспечит необходимые 20 БТЕ на кв.футов
Циркуляционный насос и система управления
Циркуляционный насос системы отопления обычно используется для перемещения нагретой воды через излучение. В системе с несколькими зонами используется либо один насос на зону, либо один насос большего размера с зонными клапанами. Размер насоса должен зависеть от количества петель и потерь на трение в трубопроводе. Поскольку система является закрытой, потери напора из-за подъема трубы отсутствуют.
Датчик, контролирующий поток горячей воды к излучению корневой зоны, следует разместить в типичном горшке или на плоской поверхности в центре одной из скамеек.Самое простое управление — это термостат с выносной лампочкой датчика. Система корневой зоны также может быть подключена в качестве основной зоны нагрева ко многим контроллерам и компьютерам.
Советы по эксплуатации
Если вы установите излучатель под скамейкой, прикрепите 18-дюймовую юбку по бокам скамейки, чтобы удержать тепло и не дать ему уйти и нагреть воздух в теплице. Коврики для защиты от сорняков или пластиковые листы хорошо подходят для этого.
Для предотвращения потери тепла под скамейкой из-за эффекта дымохода, держите скамейку заполненной растениями, постелите на поверхность скамейки коврик для защиты от сорняков перед тем, как ставить горшки, или накройте любые участки, с которых были удалены растения, пластиковой пленкой или другим материалом. .
Обогрев корневой зоны на скамейках может обеспечить более равномерное регулирование температуры, чем система обогрева, используемая для поддержания температуры воздуха в теплице. Это приводит к лучшему прорастанию семян, более быстрому укоренению черенков и лучшему росту растений и борьбе с болезнями горшечных растений. Система быстро окупится за счет экономии топлива за счет более низкой температуры воздуха, которую можно поддерживать.
Джон Барток младший
Джон Барток-младший — сельскохозяйственный инженер и почетный профессор кафедры управления природными ресурсами и инженерии Университета Коннектикута, Сторрс, Коннектикут.С ним можно связаться по адресу [электронная почта защищена]Сантехнические котлы | 2017-12-07 | phcppros
Водопроводные котлы; теперь это предмет большого спора! Кроме того, почти каждый человек, занимающийся обогреванием, считает свой способ наилучшим, и не смейте рассказывать им что-нибудь другое. Они могут воспринять это как прямое оскорбление. В их уме вы говорите им, что они всю жизнь поступали неправильно. Они знают, что это неправда, потому что их клиенты очень горячие.И поэтому они будут продолжать делать то, что делали раньше, и насмехаться над каждым, кто пытается сказать им иное.
Однажды вечером меня пригласили на вечеринку. Это было, когда я был моложе, чем сейчас, а это значит, что мне было едва исполнилось подросткового возраста. Как и у большинства других молодых людей того возраста, у меня были некоторые особенности, которые часто доставляли мне неприятности. Видите ли, я довольно давно изучал гидронику и самонадеянно считал, что все остальные в отопительном бизнесе умирают от желания узнать, что я узнал.Итак, я без смущения говорил о гидронике почти со всеми, хотели они это слышать или нет. Большинство, я полагаю, этого не сделали, но они отнеслись к этому вежливо. За исключением одного парня на вечеринке.
Эта вечеринка проходила в хижине на вершине Голубой горы, которая является частью Аппалачского горного хребта. Отсюда открывался захватывающий вид на долину Камберленд с высоты птичьего полета. Там было много замечательных людей, и, конечно же, я нашел там еще одного парня-отопителя и сразу же вовлек его в разговор о котлах.
Я спросил его: «А как вы прокладываете трубопроводы в своих котлах?»
Он сделал еще один глоток пива, вытер подбородок, принял вид знающего человека и продолжил рассказывать мне некоторые подробности о своем методе установки.
Я внимательно слушал, и когда он закончил говорить, я начал рассказывать ему о том, что я узнал, и о том, как правильно устанавливать котлы. Во время разговора я заметил, что его лицо потемнело и приобрело угрюмое телосложение. Неустрашимый, я продолжал, пока он внезапно не прервал меня.
«Вы хотите сказать мне, что знаете о котлах больше, чем старый сантехник, на которого я работаю?» он спросил. «Он занимается этим всю свою жизнь и знает почти все, что нужно знать о котлах! Он научил меня всему. Вы пытаетесь сказать мне, что он неправ? »
«Ну нет, — сказал я. «Просто …»
Не давая мне закончить фразу, он наклонился так близко, что я почувствовал запах алкоголя в его дыхании, и угрожающим тоном сказал: «Да, это так. Это именно то, что вы говорите! »
Я сделал шаг назад и попытался подобрать слова.Он выглядел так, будто был готов наброситься на меня.
После короткого, но неловкого момента молчания он усмехнулся и сказал: «Масляное тепло — лучшее тепло». После этой мощной изюминки он сделал еще один глоток пива, вытер капли со своего подбородка и направился прочь.
Этот опыт был для меня большим разочарованием, но он преподал мне урок. Не все хотят слышать о гидронике, особенно на вечеринке. И когда мы пытаемся поделиться знаниями о трубных котлах, от большинства людей требуется большая ловкость.И самое главное, не пытайтесь учить того, кто не хочет, чтобы его учили.
На протяжении многих лет я также узнал, что не существует «единственного способа» прокладки трубопроводов котлов, который всегда был бы правильным. То, как следует прокачивать котел, во многом зависит от того, к какой системе эмиттера он подключен. Итак, вот один метод, который дал мне чудесные результаты.
Котлы чугунные со старыми радиаторами
Многие из этих старых чугунных радиаторных систем все еще существуют.Некоторые из них существуют уже почти 100 лет и до сих пор согревают жильцов, но кажется, что радиаторы служат дольше, чем котлы, и поэтому мы часто проводим замену котла в такой системе. Некоторые люди выбирают новый высокоэффективный конденсационный котел, однако большинство замен по-прежнему представляют собой чугунные котлы.
Первое, что приходит на ум при установке чугунного котла в радиаторную систему, — это «защита котла.”
Что такое защита котла, спросите вы?
Что ж, это работает так: чугунная радиаторная система обычно содержит много воды, и вы только посмотрите на все большие старые стальные трубы. Вся эта вода, сталь и чугун приравнивается к большой массе! Вся эта масса должна быть нагрета до того, как радиаторы начнут выделять тепло.
Итак, когда термостат впервые включает котел и насос, холодная вода будет поступать в обратку котла на некоторое время, прежде чем система нагреется. Это делает блок котла холодным и вызывает конденсацию дымовых газов как внутри котла, так и в дымоходе.Это нехорошо, потому что эти котлы и их дымоходы не предназначены для обработки конденсата. Конденсат кислый, с PH 3-4, и вызывает ржавчину чугунного котельного блока. Это также приведет к повреждению вентиляционного отверстия котла и, в конечном итоге, дымохода.
Как сделать так, чтобы этого не произошло?
Рад, что вы спросили.
Есть несколько различных способов решения этой проблемы, и не все они равны по уровню эффективности и результирующей эффективности котла.
Для этого обсуждения предположим, что вы оказали тепловую нагрузку на здание и рассчитали котел в соответствии с фактической нагрузкой, а не рассчитали его с учетом излучения или просто заменили его на тот же размер, что и раньше. В конце концов, это лучший способ.
Первый метод, наименее эффективный для этого типа системы, заключается в следующем.
Аквастат котла обычно имеет клемму ZC-ZR вместе с клеммами C1 и C2. Эти терминалы могут использоваться для управления насосом системы или насосами.При правильном подключении клеммы не будут активировать насосы, пока котел не нагреется и не достигнет нижнего предела на аквастате. Как только это произойдет, насос включится, направит всю нагретую воду в систему и заменит ее холодной водой, возвращающейся из системы. Температура бойлера быстро падает, и насос снова выключается. Между тем бойлер, заполненный нагретой водой, которая была направлена в систему, начинает делать то же самое, что и горячая вода, когда она смешивается с более холодной водой; он пытается найти самое высокое место в системе.
Если у вас двухэтажный дом, вы обычно обнаружите, что нагретая вода сначала идет на верхний этаж. Это потому, что горячая вода легче, чем более плотная, холодная вода, и гравитация заставляет ее это делать. Этот процесс повторяется до тех пор, пока вся система не нагреется, а термостат не сработает. Это не очень эффективный способ запустить котел.
Второй метод делает шаг в правильном направлении. Он включает в себя все процедуры, описанные в первом методе, но добавляет еще одну функцию — байпасный контур с ручным балансирным клапаном.Что делает этот байпас, так это то, что часть возвратной воды проходит в обход котла и попадает непосредственно в подающую трубу котла. Это замедляет поток через котел и позволяет насосам оставаться включенными, а не включаться и выключаться, как описано в первом методе.
Перепускная труба должна быть такого же размера, как подающая и обратная трубы котла. Чтобы настроить расход в байпасе, нужно начать с полностью открытым клапаном. Затем должны быть включены все зоны. Как только котел достигнет нижнего предела и включит насосы, начните медленно закрывать байпас, следя за температурой котла.Клапан должен быть закрыт, насколько это возможно, в то же время позволяя котлу оставаться выше нижнего предела и, соответственно, насосам оставаться под напряжением. Это приведет к меньшей цикличности котла и позволит системе эмиттера нагреваться более равномерно.
Однако это не добавляет полной защиты котла. Температура возвратной воды по-прежнему будет такой же, как и температура возвратной воды из системы. Это будет просто пониженная скорость потока, что может поставить в затруднительное положение неосторожного подрядчика по отоплению.Снижение скорости потока через котел также снизит общую мощность котла в БТЕ / час после того, как система будет нагрета. Аналогичным образом, мощность излучения также будет уменьшена из-за более низкой температуры воды, вызванной подмешиванием возвратной воды в подачу котла. Обычно это не проблема для этих систем, так как многие из них имеют чрезмерное излучение по сравнению с фактическими потерями тепла в здании. В этом случае радиаторы могут адекватно обогревать пространство с более низкой температурой воды. Если размер излучения установлен правильно и требуется более высокая температура воды, система может не обеспечивать необходимое тепло в самые холодные дни года.
Третий метод использует те же принципы, что и второй метод, но байпас позиционируется иначе. Этот метод обеспечивает лучшую защиту котла, поскольку он смешивает горячую воду из котла с обратной водой, возвращающейся из системы, тем самым повышая фактическую температуру обратной воды, поступающей в котел.
Но давайте посмотрим, что происходит в системе. Прежде всего, мы снизили скорость потока в систему за счет байпаса. Это означает снижение тепловыделения системы, но, что более важно, мы создали большую дельту-Т между температурами подаваемой и возвратной воды.Обычно это плохо работает с этими радиаторными системами. Медленно движущаяся горячая вода быстро достигает самых высоких радиаторов и превращает их в надежные излучатели тепла, в то время как самые низкие радиаторы терпеливо ждут своей очереди за теплом. И это произойдет, но не раньше, чем жильцы второго этажа начнут вынашивать план, как спуститься вниз и сорвать термостат со стены.
В двух словах, это приводит к неравномерному нагреву.
Идем дальше.
Давайте возьмем новый подход и рассмотрим первичный вторичный трубопровод как наш четвертый метод.С помощью этого метода мы отделяем контур котла от контура системы и добавляем насос для каждого. Это обеспечивает полный поток как через котел, так и через систему и позволяет создать точку смешивания на близко расположенных тройниках, которые соединяют контур котла с контуром системы.
Это отличный подход для зонированной системы в большинстве случаев. Он позволяет включать и выключать отдельные зоны, не влияя на скорость потока через котел. Например, предположим, что включается одна зона. В этот момент скорость потока в системе должна быть ниже, чем в котле.Когда это произойдет, питательная вода котла будет попадать в подающий тройник и разделять направления.
Часть нагретой воды уйдет в систему (равная расходу в системе), а часть пойдет в противоположном направлении к обратному тройнику. В этот момент он смешается с возвратной водой из этой зоны и повысит температуру воды, возвращающейся в котел. Как видите, все идет отлично! Обеспечение защиты котла и поддержание полной мощности котла.
Но что происходит, когда все зоны требуют тепла одновременно?
Давай посмотрим на это.Если все правильно подобрано и сбалансировано, общий расход системы должен равняться расходу в контуре котла. В этот момент вся вода, подаваемая в котел, входит в подающий тройник и направляется в систему. Аналогичным образом, вся возвратная вода из системы возвращается в возвратный трубопровод котла. В этом сценарии у нас нет никакой защиты котла. Как если бы близко расположенных тройников не было и котел был напрямую подключен к трубопроводу.
Вы могли бы сказать: «Ну, этого никогда не случится.Все зоны никогда не посылают запрос на тепло одновременно ».
Я мог бы согласиться с вами, если бы сегодняшние тенденции совпадали с образом жизни прошлых лет. В последнее время кажется, что все настаивают на установке программируемых термостатов. И вы знаете, что они с ними делают, не так ли? Я тоже. Таким образом, два раза в день все зоны отправляют запрос на тепло в одно и то же время.
Так что же нам делать, спросите вы? Как мы можем улучшить ситуацию? Как мы можем обеспечить равномерное нагревание радиаторов, отделить расход системы от расхода котла, разрешить полную мощность котла и системы в БТЕ и одновременно обеспечить защиту возврата котла?
Ответ, как это обычно бывает, приходит из неожиданного места.И это вызвано тем, чего вы не ожидали — высокими затратами на электроэнергию. В последние годы мы неоднократно видели, как цены на нефть и сжиженный нефтяной газ резко зашкаливают. Это вызвало большой интерес к возобновляемым источникам энергии. Одной из таких систем, работающих на возобновляемых источниках энергии, является система биомассы. В этих системах обычно отсутствует точный контроль тепловой мощности котла, и поэтому требуется большой накопительный бак для хранения нагретой воды до тех пор, пока она не понадобится системе. Нагревание такого большого объема воды с помощью котла без конденсации породило изобретение смесительного устройства, предназначенного для подъема возвратной воды котла вместе с водой, подаваемой в котлы.
В этом пятом и моем предпочтительном методе мы устанавливаем байпас и первичный вторичный трубопровод через близкорасположенные тройники. В этом приложении вы заметите, что на байпасе не установлен ручной балансировочный клапан. Байпас управляется предохранительным клапаном котла (термостатический смесительный клапан). Этот клапан управляется термостатическим элементом, предназначенным для поддержания температуры на выходе не ниже указанного значения. Это достигается за счет управления потоком в байпасе и потоком из возвратного тройника близко расположенных тройников.Он может полностью закрыть любой входной порт.
Итак, запустим холодную систему. Включаются насос котла и горелка; канал возврата системы к предохранительному клапану котла (BPV) полностью закрыт; и байпас полностью открыт. Весь поток из котла просто проходит через байпас и возвращается обратно в котел. Тем временем насос системы работает, и вся вода течет прямо через близко расположенные тройники без добавления тепла. Когда котел нагревается и температура возвратной воды достигает 130 F, BPV начинает медленно закрывать байпас и открывать возвратный порт системы, поддерживая возврат котла на 130 F.При этом некоторая часть горячей воды, подаваемой в котел, начинает поступать в подающий тройник, где смешивается с водой в системе. Это медленно увеличивает теплоту воды в системе и равномерно и стабильно повышает температуру всех радиаторов.
Этот процесс продолжается до тех пор, пока температура возврата системы не станет равной 130 F, после чего байпас будет полностью отключен, или пока не исчезнет запрос на нагрев.
Этот метод прокладки трубопровода дает немало преимуществ. Котел можно настроить для работы в режиме холодного пуска, то есть можно отключить нижний предел.По запросу на тепло котел достигает рабочей точки максимальной эффективности в течение нескольких минут. В этот момент блок должен быть максимально холодным, не вызывая конденсации дымовых газов.
В однозонной системе он будет работать в этом рабочем состоянии большую часть отопительного сезона. Только когда наружная температура станет достаточно низкой, чтобы потребовать более высокую температуру воды, котел начнет работать с повышенной температурой воды и немного более низкой эффективностью. В однозонной системе этот метод превосходит метод, при котором котел работает по кривой сброса наружного воздуха.Котел включается, когда есть потребность в тепле, и не выключается, пока потребность не будет удовлетворена.
Он также обеспечивает очень равномерный и постоянный нагрев всех радиаторов.
Это значит, что клиенты довольны!
Умягчители воды и бойлеры | Смягчители воды Harvey
Читать 3 мин
«Можно ли использовать в бойлере смягченную воду?»
Это вопрос, который нам регулярно задают как заказчики, так и монтажники.
Советы изменились с годами, и отделить факты от вымысла может быть сложно без определенных знаний в этой области. Мы проделали за вас тяжелую работу, предоставив следующую информацию:
Простой ответ — да, использование умягченной воды в вашем котле вполне допустимо, если вы соблюдаете следующие рекомендации Совета по отоплению и горячему водоснабжению (HHIC):
«Если в доме установлен смягчитель воды, убедитесь, что первичный контур системы отопления заполнен водопроводной водой через общий байпасный клапан, как требуется в BS 14743.”
Примечание: установка для смягчения воды должна соответствовать стандарту BS 14743 (в котором указывается, что должен быть «общий байпасный клапан, который позволяет изолировать устройство для смягчения воды от сети, поддерживая подачу воды к конечному пользователю». см. Информационную и руководящую записку WRAS № 9-07-01 «Информация по установке ионообменных смягчителей воды в системах водоснабжения для бытовых нужд».
Проще говоря, использование смягчителя воды — это хорошо, если вы заполняете центральное отопление (радиаторы) неумягченной водой.Надежный установщик (в том числе и мы) всегда подберет общий байпасный клапан, что упростит этот процесс.
Если вам интересно узнать, как была достигнута эта позиция, прочтите, пожалуйста, полную историю, наши источники информации и все остальное, что вы, возможно, захотите узнать по этому вопросу.
Справочная информация об этом совете Harvey Water Softeners
До появления алюминиевых теплообменников в конце 80-х годов нормой считалось заполнение системы центрального отопления умягченной водой всякий раз, когда в доме имелся умягчитель воды.
До этого времени химические ингибиторы центрального отопления были разработаны для использования с жесткой водой, и сочетание алюминиевого теплообменника и химического ингибитора привело к некоторым проблемам с коррозией. Поэтому в стандарт BSI 1992 года по очистке воды (BS7593: 1992) было включено то, что умягченная вода не должна использоваться там, где есть алюминиевый теплообменник.
Это привело к значительной путанице, поскольку многие установщики и домовладельцы не знали, есть ли в котле алюминиевый теплообменник, поэтому в целях безопасности большинство людей рекомендовали заполнить систему отопления жесткой водой.
Можно ли наполнить систему центрального отопления умягченной водой?
Можно, и есть ингибиторы, подходящие для использования с умягченной водой. Тем не менее, рекомендуется ознакомиться с рекомендациями и гарантиями производителя вашего котла. Многие заявляют, что умягченную воду нельзя использовать в их системах, но некоторые производители котлов, использующие нержавеющую сталь и другие типы теплообменников, рады использованию умягченной воды, а некоторые действительно рекомендуют ее.
Мы всегда устанавливаем байпасный клапан в соответствии со стандартом BS14743, поэтому у вас есть возможность заливать его жесткой или смягченной водой.
Мы рады представить новый HarveyArc — экологически чистый умягчитель воды для вашего дома. HarveyArc, изготовленный из переработанного пропилена, является самым надежным, эффективным, компактным и экологичным умягчителем на рынке. Поговорите с нами об установке одного из них в вашем доме.
Как сделать шумные воздуховоды тише
Представьте, что сегодня тихий день, и у вас есть весь дом.Вы падаете на диван. Вы собираетесь поставить какую-нибудь мелодию — что-нибудь мягкое — и расслабиться. Может быть, вы наконец откроете ту новую книгу, которую собирались прочитать.
Но как только вы нажмете кнопку воспроизведения и откроете книгу — ух! Кондиционер ревет к жизни.
Теперь вы почти не слышите свою музыку. Вам придется увеличить громкость. И хотя вы хотите сосредоточиться на своей книге, вы не можете. Вы беспокоитесь, что не услышите дверной звонок, если он зазвонит.Или ваш телефон, если он вибрирует на стойке.
Все было нормально, пока не включился кондиционер. Теперь эти шумные воздуховоды вторгаются в ваше уединение.
За исключением того, что это могут быть не ваши воздуховоды. Может быть что-то еще.
Воздуховоды сами по себе не производят большого шума. Воздух, проходящий через них, создает шум, и различные факторы могут сделать движение воздуха более (или менее) слышимым.
Прежде чем углубляться в гайки и болты воздуховодов и уровни шума, давайте рассмотрим несколько основ снижения шума.Если воздух, проходящий через вашу систему, издает много шума, в первую очередь проверьте:
- Заслонки с закрытой вентиляцией: Одна закрытая заслонка, вероятно, не будет иметь большого значения, но одновременное закрытие нескольких заслонок может сделать вашу систему более шумной. Закрытие вентиляционных отверстий создает чрезмерную нагрузку на ваше оборудование HVAC. Хорошая идея — держать их все открытыми, без шума или без шума.
- Провисающие или изогнутые гибкие воздуховоды: Если гибкие воздуховоды установлены неправильно, они могут прогнуться или прогнуться.Эти провисания и изгибы могут затруднить движение воздуха в системе, что может увеличить статическое давление и создать шум.
- Грязные воздушные фильтры или воздуховоды: Со временем пыль и грязь накапливаются на ваших воздушных фильтрах и внутри ваших воздуховодов, что затрудняет перемещение воздуха для вашего оборудования. Это также может сделать систему более шумной. Решение состоит в том, чтобы регулярно чистить или заменять фильтр и очищать воздуховоды, если они начинают препятствовать потоку воздуха.
Если у вас дома в Атланте возникают проблемы с шумом в воздуховоде, наша команда может диагностировать проблему и помочь вам найти наилучшее решение.Свяжитесь с нами сегодня
Если вы проверили все это и устранили проблемы, ваши воздуховоды могут показаться не такими уж шумными. Но если они это сделают — а вы хотите сделать вашу систему тише — вы можете предпринять некоторые дополнительные шаги.
Высокое статическое давление делает поток воздуха более слышимым
Мы уже писали о статическом давлении. В каждой системе их есть, но во многих системах их слишком много. Когда статическое давление слишком высокое, это означает, что ваши воздуховоды не могут адекватно вместить объем воздуха, который ваше оборудование пытается пройти через них.
И когда объем воздуха превышает тот, для которого предназначены ваши воздуховоды, вы слышите шум.
Высокое статическое давление — распространенная проблема. Несмотря на то, что каждый дом индивидуален и требует уникального ремонта, вот некоторые из наиболее распространенных решений проблемы шума воздуха, возникающего из-за «сильного статического электричества»:
- Отрегулируйте скорость вентилятора. Ваш нагнетательный или печной вентилятор должен быть настроен на подачу правильного воздушного потока на тонну. Теоретически ваш установщик HVAC правильно настроил его во время установки.На самом деле не все установки идеальны, и многие вентиляторы настроены на слишком высокую скорость. Часто можно выбрать более низкую скорость вращения вентилятора, что снизит статическое давление, а также воздушный шум. Это исправление работает только тогда, когда скорость вентилятора изначально была слишком высокой. Снижение скорости при правильной настройке системы может привести к отсутствию воздушного потока по всему дому.
- Добавьте воздуховоды. Иногда оборудование подбирается правильно, но воздуховоды слишком малы для размещения такого объема воздуха.Когда это так — а это обычная проблема! — увеличение объема воздуховодов может снизить статическое давление и сделать вашу систему тише. Обычно мы устанавливаем воздуховоды большего размера в доступной зоне вокруг воздуходувки или печи и часто можем увеличить размер вашей возвратной и подающей пленумов.
- Добавьте байпасный канал. Если у вас есть несколько зон в одной системе, иногда можно добавить байпасный воздуховод, который сбрасывает давление в системе и снижает уровень шума.
- Добавить или расширить решетки и регистры. По нашему опыту, в большинстве домов не хватает возвратного воздуха. Добавление новых возвратов или увеличение размера существующей решетки — это один из способов снизить статическое давление и помочь вашей системе перемещать воздух. Это также может снизить уровень шума. Когда это возможно (и когда это имеет смысл), мы также можем привязать новые регистры снабжения к вашим воздуховодам или увеличить размер существующих регистров снабжения.
- Замените существующие регистры и решетки на высокоскоростные модели. Иногда в громком воздушном шуме виноваты тип регистров и решеток.Их замена на «высокоскоростные» альтернативы может позволить увеличить поток воздуха и снизить статическое давление.
Другой способ уменьшить шум воздушного потока: перейти на вентилятор с регулируемой скоростью
Если пришло время заменить вашу систему HVAC, вам повезло! Предполагая, что вы выберете новую систему с вентилятором с регулируемой скоростью, она почти наверняка будет тише, чем стандартный вентилятор, который вы заменяете.
Это потому, что нагнетательные или печные вентиляторы с регулируемой скоростью обычно работают на низкой скорости, обеспечивая более равномерную циркуляцию воздуха по всему дому, чем старые школьные системы включения / выключения, к которым вы, вероятно, привыкли.Скорость вентилятора зависит от нагрузки на охлаждение или обогрев, но большую часть времени вентилятор работает на более низких скоростях.
А поскольку через ваши воздуховоды проходит меньше воздуха, уровень шума ниже, а иногда и значительно.
Вы по-прежнему будете знать, что ваша система работает. В конце концов, довольно очевидно, комфортно вам или нет! Но вы можете не услышать, как он работает, если не встанете под регистр снабжения и не послушаете. В некоторых системах воздуходувки с регулируемой скоростью действительно такие тихие!
Несколько слов о hard pipe vs.гибкий воздуховод
При прочих равных, жесткие воздуховоды шумнее гибких. Воздух, движущийся по металлу, просто… громче. По сравнению с гибкими воздуховодами, не имеющими препятствий, перегибов или изгибов, вы, вероятно, услышите больше шума в жестких воздуховодах.
Жесткие воздуховоды менее подвержены перегибам и перегибам, поэтому обычно лучше для воздушного потока. Гибкий воздуховод склонен к перегибам и перегибам, поэтому он представляет собой больше точек отказа для воздушного потока.
По сути, гибкие воздуховоды = меньше шума и возможных проблем с воздушным потоком, тогда как жесткие воздуховоды = больше шума и меньше проблем с воздушным потоком.Это компромисс.
Нельзя сказать, что в жестких трубах всегда шумно. Предполагая, что они подходят по размеру для вашего дома и вашей системы, вы, вероятно, услышите минимальный шум от массивных воздуховодов. Если у вас есть воздуходувка с регулируемой скоростью, это определенно .
Просто имейте в виду, что воздуховоды из жестких труб имеют тенденцию быть более шумными, чем их гибкие аналоги. Не всегда, но обычно.
Тогда есть центральная «проблема» возврата.
Вот еще одна ситуация, когда системная инфраструктура затрудняет снижение уровня шума: дома с одним центральным возвратом.Вы видите это в домах меньшего размера, например, в кондоминиумах.
В этих домах строители иногда устанавливают печь или воздухообрабатывающий агрегат прямо на вытяжной вентиляционной камере, которая соединяется с центральной вытяжкой или, иногда, с отверстием в стене с решеткой на другой стороне. Даже с оборудованием с регулируемой скоростью может быть трудно заглушить эти системы, так как двигатель нагнетателя прямо там , а места для дополнительных воздуховодов минимально.
Проблема связана с пространством и дизайном. Если есть достаточно места для добавления воздуховодов или перестановки компонентов системы, это может помочь с шумом.Другие проблемы с пространством / дизайном включают кондиционер, установленный сразу за стеной спальни, или печь, которая не была установлена на резиновых подушках.
Иногда эти проблемы можно исправить. Но не всегда.
Шум в каналах почти всегда является признаком более серьезной проблемы
Мы просто заняли много места, обсуждая статическое давление, размеры оборудования HVAC и качество монтажа воздуховодов — и все это в статье о шуме, создаваемом воздушным потоком! Это потому, что обычно проблема не в самом шуме. Вам нужно исправить то, что вызывает шум.
После проверки закрытых вентиляционных отверстий и исправления изогнутого или провисшего гибкого воздуховода лучше всего обратиться к специалисту по HVAC для измерения статического давления в вашей системе. Если вы слышите много шума, вероятно, высокое статическое давление. После проверки подрядчик, вероятно, предложит одно или несколько решений, которые мы только что обсудили.
Устраните более серьезную проблему, и шум обычно исчезнет. Тогда вы, наконец, сможете насладиться этими мелодиями, погрузиться в книгу и расслабиться.Вы также можете забыть об этих надоедливых проблемах с HVAC и воздуховодами.
У вас их больше не будет.
Как заменить медную трубу на PEX
Крупные проекты реконструкции часто включают вскрытие стен, полов и потолков, и это хорошее время, чтобы осмотреть старые водопроводные трубы и при необходимости заменить их. Трубы водоснабжения особенно важны для проверки, так как они переносят воду под давлением, и последствия крупной утечки в водопроводе могут быть разрушительными.Замена старых водопроводных труб — очень распространенный проект, и рано или поздно это потребуется сделать во всех домах.
В свое время замена водопроводных труб обычно означала установку новых медных труб, соединенных паяными потом фитингами, для сборки которых требовался факел и значительные навыки. Медь была предпочтительной водопроводной трубой с 1950-х по 2000 год и широко использовалась как в новом строительстве, так и для замены оцинкованных стальных водопроводных труб, которые были стандартом до 1950-х годов.Но использование меди постепенно сократилось из-за появления сантехнических труб из полиэтиленгликоля. PEX изготовлен из сшитого полиэтилена, формы гибких пластиковых трубок со сшитыми молекулами, которые обеспечивают большую долговечность и прочность.
Хотя медные трубы и фитинги по-прежнему распространены, многие профессиональные сантехники теперь используют гибкий PEX для всех новых конструкций, а также для большинства ремонтов и расширений существующих медных систем. PEX особенно удобен для домашних мастеров, которые считают, что различные методы выполнения соединений намного проще, чем пайка медных фитингов с помощью горелки.
Трубки PEX обычно соединяются либо с помощью соединителей с обжимным кольцом, для которых требуется недорогой специальный инструмент, известного как обжим, либо с соединителями с плотной посадкой, такими как популярные фитинги SharkBite. Оба метода можно использовать для присоединения новых трубок из полиэтиленгликоля к существующим трубам, но, поскольку для вставных соединителей не требуются специальные инструменты, они являются фаворитом среди домашних мастеров.
Смотреть сейчас: Как заменить медную трубу на PEX
Уровни замены труб
Если во время ремонта вы столкнетесь с корродированными или протекающими медными трубами, у вас есть несколько вариантов самостоятельного ремонта.
- Точечное исправление. Когда вы обнаружите протекающие медные трубы, вы можете воспользоваться минимальным подходом, вырезав плохой участок и заменив его полиэтиленом. Часто можно обойтись установкой только одного разъема с плотной посадкой в этой области.
- Заменить видимые пробеги. В качестве компромисса между полной заменой труб во всем доме и небольшими участками, вы можете заменить большие участки (10 футов или более) открытой медной трубы на полиэтилен PEX, разветвляясь там, где это необходимо.
- Повторная трубка. Помимо затрат, лучшее долгосрочное решение — это перепрофилировать весь дом, заменив медные трубы на полиэтиленовый. Это включает в себя отключение и обход всей вашей существующей меди и запуск новых линий PEX по всему дому. Вы можете либо следовать текущему шаблону, либо начать заново с системой коллекторно-разветвлений PEX.
Замена видимых участков — это решение, которое выбирают многие домашние мастера, потому что этот метод не так амбициозен и не так дорог, как переналадка всего дома.Хотя это может показаться сложным, на самом деле этот вариант не намного сложнее, чем вариант точечного исправления.
Прежде чем начать
Правильно проложенные медные трубы имеют очень долгий срок службы (50 лет и более), но в конечном итоге они выходят из строя. Срок службы оригинальных медных труб приближается к концу, но не всегда легко распознать, когда они просят о замене. Когда медные трубы только начинают разъедать, утечки не всегда возникают и становятся очевидными, но есть первые признаки, которые вы можете найти.
- Вы чувствуете запах. Со временем вы начинаете замечать несвежий, затхлый запах, который вы не можете точно определить. Еще больше сбивает с толку, если запах находится в прачечной, ванной или детской комнате, потому что вы, естественно, думаете, что запах имеет отношение к комнате. Но запах больше похож на застойную воду из пруда, и он сохраняется.
- Вы видите доказательства. На потолке или стенах могут образовываться широкие выпуклости. Это происходит из-за точечных протечек в меди, которые медленно капают на гипсокартон, вызывая его расширение.
- Вы видите это : Если вы откроете стену или потолок с какой-либо целью, например, для добавления изоляции, вы можете заметить, что медные трубы в стене или полости пола стали зелеными, покрытыми коркой и корродированными. Такие трубы могут даже иметь протечки через мелкие отверстия, из которых начинает сочиться вода, но настолько медленно, что капание еще не заметно.
Любой или все эти признаки означают, что ваша медная труба выходит из строя.
Ли Валлендер .