Источник электричества – Альтернативные источники энергии в быту для загородных домов: дополнительное электроснабжение, популярные источники | Блог о строительстве и ремонте

Содержание

Электрический ток. Источники электрического тока (Гребенюк Ю.В.)

На этом уроке мы поговорим об одном из важнейших понятий в жизни современного человека – электрическом токе. Без него невозможно представить себе нашу жизнь: мы заряжаем мобильные телефоны, смотрим телевизор, разогреваем еду в микроволновке – и всё это невозможно себе представить без направленного упорядоченного движения заряженных частиц, которые мы не можем разглядеть даже под микроскопом. Об электрическом токе, условиях его существования, классификации веществ по их способности проводить электрический ток, а также об источниках тока и пойдёт речь на уроке.

На предыдущих уроках мы поговорили об электрических зарядах, электрическом поле и взаимодействии заряженных частиц. Однако прежде мы не говорили о движении заряженных частиц. Наш сегодняшний урок восполнит этот пробел. Наверное, многие из вас на вопрос «Что бы вы взяли с собой на необитаемый остров?» сразу ответили бы: «Мобильный телефон, планшет, ноутбук…», однако, подумав, спохватились бы: «Ой, там же нет электричества!..» Трудно себе представить, что всего сто с небольшим лет назад большая часть нашей страны представляла собой такой вот остров, ведь электричеством могли пользоваться лишь немногие. Сегодня каждый из вас назовёт не менее десятка электрических приборов, без которых трудно представить свою жизнь: телевизор, компьютер, стиральная машина, микроволновка, электрический чайник, холодильник… Эти устройства называются электрическими, так как для их работы необходим электрический ток.

С этим понятием мы сталкиваемся практически каждый день. Наверное, каждый из вас слышал фразы «удар током», «линия под током» и т.п. Это слово настолько прочно вошло в нашу жизнь, что мы используем его, практически не задумываясь. Действительно, мы точно знаем, что если вставить вилку в розетку, то прибор начнёт работать. Но что происходит внутри розетки? Почему штепсель имеет именно такой вид? Чем опасно засовывание пальцев в розетку? Сейчас мы уже обладаем достаточными знаниями для того, чтобы разобраться в этих вещах.

Проведём простой опыт. Поставим на столе два электрометра (А и Б) и зарядим один из них, например, электрометр А (см. рис. 1). Стрелка электрометра А отклонится. Соединим кондукторы электрометров металлическим стержнем, закрепленным на пластмассовой ручке. По отклонению стрелок видно, что заряд электрометра Ауменьшился, а незаряженный электрометр Бполучил заряд (см. рис. 2)

. Это значит, что в результате перемещения частиц, имеющих электрический заряд, часть электрического заряда перешла по стержню от одного прибора к другому. В этом случае говорят, что по стержню прошел электрический ток.

Зарядим электрометр А

Рис.1. Зарядим электрометр А

Соединение кондукторов металлическим стержнем

Рис. 2. Соединение кондукторов металлическим стержнем

Электрический ток – это направленное упорядоченное движение заряженных частиц. Исходя из определения электрического тока, можно сформулировать одно из двух необходимых условий его возникновения и существования в любой среде. Очевидно, что всреде должны иметься свободные заряженные частицы, то есть такие частицы, которые могут перемещаться по всей среде (их еще называют носителями тока). Однако этого условия недостаточно, чтобы в среде возник и в течение длительного промежутка времени существовал электрический ток. Для создания и поддержания направленного движения свободных заряженных частиц также необходимо наличие электрического поля.Под действием этого поля движение свободных заряженных частиц приобретает упорядоченный (направленный) характер, что и означает появление в данной среде электрического тока.

Зная условия возникновения и существования электрического тока, нетрудно догадаться, что способность проводить электрический ток (или, как говорят физики, электрическая проводимость) у различных веществ неодинакова. В зависимости от этой способности все вещества и материалы принято делить на проводники, диэлектрики и полупроводники. Проводники – это вещества и материалы, которые хорошо проводят электрический ток. Проводниками являются металлы, водные растворы солей (например, поваренной соли), кислот и щелочей. Хорошая электрическая проводимость проводников объясняется наличием в них большого количества свободных заряженных частиц. Так, в металлическом проводнике часть электронов, покинув атомы, свободно перемещается по всему его объему (см. рис .3), и количество таких электронов достигает Соединение кондукторов металлическим стержнем

 в см3. Влажная земля, тела людей и животных хорошо проводят электрический ток, так как содержат вещества, являющиеся проводниками.

Покинувшие атом электроны

Рис. 3. Покинувшие атом электроны

Диэлектрики – это вещества, которые плохо проводят электрический ток. Диэлектриками являются некоторые твердые вещества (эбонит, фарфор, резина, стекло и др.), некоторые жидкости (дистиллированная вода, керосин и др.) и некоторые газы (водород, азот и др.). В диэлектриках почти отсутствуют свободные заряженные частицы, поэтому диэлектрики практически не проводят электрический ток. Проводники и диэлектрики широко используют в промышленности, быту, технике. Так, провода, по которым подводят электрический ток от электростанций к потребителям, изготавливают из металлов – хороших проводников. При этом на опорах провода располагают на изоляторах – это предупреждает стекание электрического заряда в землю. Для этого же слоями диэлектрика покрывают провода, прокладываемые в земле.

Существует также множество веществ, которые называют полупроводниками. В обычных условиях они плохо проводят электрический ток, и их можно отнести к диэлектрикам. Однако, если, например, повысить температуру или увеличить освещенность полупроводников, в них появляется достаточное количество свободных заряженных частиц – и полупроводники становятся проводниками. К полупроводникам относятся такие вещества, как германий, кремний, мышьяк и др.; их широко используют для изготовления радиоэлектронной аппаратуры, солнечных батарей и т.д.

Многим знакома ситуация: необходимо срочно позвонить, вы берете мобильный телефон и с огорчением обнаруживаете, что батарея аккумуляторов разрядилась, а телефон из чуда технической мысли превратился в кусок пластика. То же самое может произойти и с аккумуляторами фотоаппарата, плейера, фонарика, часов. Как же работает этот загадочный аккумулятор? Чем-то он напоминает наш организм, не правда ли? Ведь мы способны выполнять большой объём работы после еды, однако со временем начинаем ощущать усталость, слабость, наша энергия начинает иссякать. И нам необходимо отдохнуть, подкрепиться, чтобы с новыми силами приступить к работе. Естественно, что любое исправное электротехническое устройство будет работать только в том случае, если выполнены условия возникновения и существования электрического тока: наличие свободных заряженных частиц и наличие электрического поля. За создание электрического поля отвечают источники тока

. В источниках тока электрическое поле создается и поддерживается благодаря разделению разноименных электрических зарядов. В результате на одном полюсе источника накапливаются частицы, имеющие положительный заряд, а на втором – частицы, имеющие отрицательный заряд. Между полюсами возникает электрическое поле. Под действием этого поля в проводнике, соединяющем полюса источника, свободные заряженные частицы начинают направленное движение, то есть возникает электрический ток. Однако разделить разноименные заряды не так просто, ведь между ними существуют силы притяжения. Для разделения разноименных зарядов, а следовательно, для создания электрического поля, необходимо выполнить работу. И выполнить ее можно за счет механической, химической, тепловой и других видов энергии.

Источники электрического тока устройства, которые превращают различные виды энергии в электрическую энергию. Все источники электрического тока можно условно разделить на физические и химические. К физическим источникам электрического токапринято относить устройства, в которых разделение зарядов происходит за счет механической, световой или тепловой энергии. Примерами таких источников тока могут быть электрофорная машина, турбогенераторы электростанций, фото- и термоэлементы и др. Несмотря на все разнообразие физических источников электрического тока, в повседневной жизни мы чаще имеем дело с химическими источниками электрического тока – гальваническими элементами и аккумуляторами. Химическими источниками электрического тока называют устройства, в которых разделение зарядов происходит за счет энергии, выделяющейся в процессе химических реакций. Возьмём медную и цинковую пластины и очистим их поверхности. Между пластинами поместим ткань, смоченную в слабом растворе сульфатной кислоты (см. рис. 4).

Простейший химический источник

Рис. 4. Простейший химический источник

Полученное устройство и есть простейший химический источник электрического тока – гальванический элемент. Если соединить пластины через гальванометр(чувствительный электроизмерительный прибор, часто используемый в качестве индикатора слабого электрического тока), то прибор зафиксирует наличие тока (см. рис. 5).

Наличие тока в цепи

Рис. 5. Наличие тока в цепи

Гальванический элемент впервые создал итальянский ученый А.Вольта; он назвал его в честь своего соотечественника Л. Гальвани. Любой гальванический элемент состоит из двух электродов и электролита.Часто используют один металлический электрод, а второй – угольный или содержащий оксиды металлов. Электролитом служит твердое или жидкое вещество, которое проводит электрический ток благодаря наличию в нем большого количества свободных заряженных частиц – ионов. В описанном нами гальваническом элементе, электродами выступают цинковая и медная пластины, а электролитом – раствор сульфатной кислоты. Между электродами и электролитом происходят химические реакции, в результате которых один из электродов (анод)приобретает положительный заряд, а второй (катод)– отрицательный (см. рис. 6).

Гальванический элемент

Рис. 6. Гальванический элемент

Когда запас веществ, принимающих участие в реакциях, истощается, гальванический элемент прекращает работать. Для обеспечения электропитания фотоаппаратов, плейеров, настенных часов, карманных фонариков и т.п. широко используется марганцево-цинковый элемент – один из видов гальванических элементов. Со временем гальванические элементы становятся непригодными к работе, и их нельзя использовать повторно. А вот другой вид химических источников электрического тока – электрические аккумуляторы– можно использовать многократно.

Аккумуляторы, как и гальванические элементы, состоят из двух электродов, помещенных в электролит. Однако их можно снова зарядить. При зарядке аккумулятора химические реакции идут в обратном направлении и концентрация сульфатной кислоты восстанавливается. Следует отметить, что и аккумуляторы, и гальванические элементы обычно объединяют и получают, соответственно, аккумуляторнуюбатарею и батарею гальванических элементов.По принципу действия современные химические источники тока почти не отличаются от созданных более двух столетий назад. При этом сейчас существует множество разнообразных видов гальванических элементов и аккумуляторов и продолжается активная разработка новых. Друг от друга они отличаются размерами, массой, энергоемкостью, сроком службы, надежностью, безопасностью, стоимостью и т.д. Выбор того или иного химического источника тока продиктован сферой его применения. Так, в автомобилях целесообразно использовать относительно дешевые кислотные аккумуляторные батареи, и то, что они довольно тяжелые, не является существенным. А вот источники тока для мобильных телефонов должны быть легкими и безопасными, поэтому в данном случае целесообразно использовать так называемые литий-ионные батареи, хотя они сравнительно недешевы.

Электрический ток в природе

Если вас попросят привести пример электричества в природе, то почти наверняка речь пойдёт о молнии. Действительно, молния является, наверное, одной из самых грандиозных демонстраций мощи электричества. Однако использует ли природа электричество так же повсеместно, как и человек? Оказывается, да. Практически все живые существа функционируют благодаря электричеству. Например, нервный импульс человека – это электрический сигнал. Любая клетка обладает электрическим полем. И таких примеров можно привести массу. Мы же поговорим о существах, которые используют электричество в наиболее неожиданных и полезных для себя вариантах – о рыбах. Рыбы используют разряды:

– для освещения себе пути,

– для защиты, нападения и оглушения жертвы,

– для передачи сигнала друг другу и заблаговременного обнаружения препятствий.

Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшие напряжения, возникающие в обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи (см. рис. 7).

Органы электрических рыб

Рис. 7. Органы электрических рыб

Среди других электрических рыб особенно выделяется скат торпедо (см. рис. 8), который встречается в Атлантическом, Индийском и Тихом океанах.

Скат торпедо

Рис. 8. Скат торпедо

Размеры торпедо достигают двух метров. Каждый орган состоит из множества колодцев, вертикальных по отношению к поверхности тела и сгруппированных подобно пчелиным сотам. В каждом колодце, заполненном студенистым веществом, помещается столбик из 350–400 лежащих друг на друге дисков. Диски играют роль электродов в электрической батарее. Вся система приводится в действие особой электрической долей мозга (см. рис. 9).

Орган торпедо

Рис. 9. Орган торпедо

Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Он может произвести удар более чем в 500 вольт (для сравнения в обычной сети квартиры 220 вольт)! Угорь создает особенно сильное напряжение тока, когда изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо.

Характерная особенность рыб, имеющих электрические органы, их малая восприимчивость к действию электрического тока. Так, например, электрический угорь без вреда для себя переносит напряжение 220 В. Племена, живущие по отдаленным притокам южноамериканских рек Амазонки, Ориноко и др., в местах брода у каждого берега держат на привязи лошадей. Когда кто-то хочет переправиться на противоположный берег, то он вначале гонит перед собой лошадь (но не едет на ней!), а сам идет следом за лошадью. Обратный путь он проделывает таким же образом. Чем объясняется этот весьма своеобразный способ переправы? В реках северо-восточной части Южной Америки обитает самая мощная из всех известных электрических рыб – электрический угорь. По этой причине племена, живущие по притокам этих рек, в местах брода, там, где водится много электрических угрей, устраивают переправу с помощью лошадей. Электрические угри разряжают свои батареи о ноги лошадей и не успевают, так сказать, перезарядить это оружие, так что люди переходят реку невредимыми

Решение задач

Рассмотрим примеры решения нескольких важных задач, связанных с понятием электрического тока.

Задача1. Можно ли утверждать, что в источниках тока возникают положительные и отрицательные заряды?

Решение

Для ответа на поставленный вопрос необходимо вспомнить, что происходит в источнике тока? В источнике тока происходит разделение разноимённых электрических зарядов под действием неэлектрических сил, что приводит к тому, что на разных полюсах источника тока накапливаются частицы с зарядами разных знаков (см. рис. 10). Вследствие этого и возникает электрическое поле между полюсами источника. Таким образом, в источнике происходит только разделение зарядов, а не их возникновение.

Разделение разноименных зарядов

Рис. 10. Разделение разноименных зарядов

Задача 2. Каким требованиям должен соответствовать материал для изготовления корпусов розеток и выключателей?

Решение

Как мы знаем из повседневного опыта, корпуса розетки и выключателя служат посредниками между человеком и электрической сетью. При этом человек сам является неплохим проводником электрического тока, поэтому, если бы не было защитных корпусов, случайное прикосновение человека к контактам могло бы привести к замыканию им электрической цепи и прохождению тока через тело человека. Именно поэтому корпуса розеток и выключателей делают обычно из пластмассы (и аналогичных материалов), то есть из веществ, которые не проводят электрический ток (диэлектриков).

Задача 3. Железный гвоздь и отрезок медного провода воткнули в лимон. Потечёт ли ток через провод, которым соединяют гвоздь и провод (см. рис. 11)?

Иллюстрация к задаче

Рис. 11. Иллюстрация к задаче

Решение

Фактически перед нами находится гальванический элемент. Кислота, содержащаяся в лимоне, будет играть роль электролита. Так как материалы, из которых изготовлены гвоздь и провод, разные, то и взаимодействовать с кислотой они будут по-разному, а значит, будет происходить разделение зарядов и данное устройство будет выполнять функции источника тока. В этом можно наглядно убедиться (см. рис. 12).

Источник тока

Рис. 12. Источник тока

Давайте посмотрим, как отреагирует гальванометр, если мы соединим его с медным проводом (см. рис. 13).

Гальванометр соединили с медным проводом

Рис. 13. Гальванометр соединили с медным проводом

Видим, что стрелка гальванометра отклоняется. Если мы соединим несколько лимонов, т.е. сделаем батарею из лимонов, то сможем получить достаточно существенный ток – такая батарея называется багдадской

Что такое батарейка?

Мы часто употребляем в обиходе слово «батарейка». Однако теперь, когда мы познакомились с источниками тока, можно определиться с тем, к какому же виду источников относится батарейка. Оказывается, что батарейки относятся к химическим источникам тока и могут быть как гальваническими элементами, так и аккумуляторами.

Батарейка – обиходное название источника электричества для автономного питания разнообразных устройств. Может представлять собой одиночный гальванический элемент, аккумулятор или их соединение в батарею. Часто мы слышим и такие понятия, как пальчиковая батарейка, «крона»… Что же они означают? Оказывается, батарейки принято классифицировать по различным критериям (размеры, характеристики, форма).

Основные виды батареек – минипальчиковая (или мизинчиковая – ААА), пальчиковая (АА), средняя (С), большая (D) и крона (см. рис. 14).

ИСТОЧНИКИ ЭЛЕКТРИЧЕСТВА - это... Что такое ИСТОЧНИКИ ЭЛЕКТРИЧЕСТВА?


ИСТОЧНИКИ ЭЛЕКТРИЧЕСТВА
ИСТОЧНИКИ ЭЛЕКТРИЧЕСТВА, устройства, которые преобразуют различные формы энергии в электричество. В настоящее время большая часть электричества создается на электростанциях за счет сжигания ископаемых топлив. Тепло от сгорания угля, нефти или природного газа превращает воду в пар. Пар приводит в движение ТУРБИНУ, соединенную с электрическим ГЕНЕРАТОРОМ. На атомных электростанциях тепло получают за счет РАСЩЕПЛЕНИЯ ядер в ЯДЕРНОМ РЕАКТОРЕ. В аккумуляторах (БАТАРЕЯХ) и ТОПЛИВНЫХ ЭЛЕМЕНТАХ химическая энергия непосредственно преобразуется в электричество. СОЛНЕЧНЫЕ БАТАРЕИ получают электричество благодаря СОЛНЕЧНОЙ ЭНЕРГИИ. Ветродвигатели и гидротурбины вырабатывают электричество за счет движения ветра и воды. см. также ИСТОЧНИКИ ЭНЕРГИИ, ГИДРОЭЛЕКТРОСТАНЦИЯ, ВОССТАНАВЛИВАЕМАЯ ЭНЕРГИЯ.

Цикл работы электростанции включает несколько этапов Для выработки электричества сжигают природный газ. Этот способ намного более эффективен, чем традиционные способы с использованием ископаемых твердых топлив. Воздух нагнетается (1)в первую турбину, где он сжимается (2), затем смешивается с горючим (3) и смесь сжигается (4). Выхлопные газы используются для вращения второй турбины, которая подсоединена к генератору (5). Энергия газов используется для приведения в действие второй турбины(6)с другим генератором (7). Газ, служащий для пе-рефева воды (8), направляется через особый канал (9). Для того, чтобы обеспечить максимальную выработку энергии, перегретый пар (10) вращает турбину высокого давления (11), а затем поступает (при несколько меньшей температуре) в турбину низкого давления (12). Пар поступает в турбину непосредственно из теплообменника (13), а затем охлаждается (14) и возвращается вновь к началу цикла.

Научно-технический энциклопедический словарь.

  • ИСТОЧНИКИ РАДИОШУМА
  • ИСТОЧНИКИ ЭНЕРГИИ

Смотреть что такое "ИСТОЧНИКИ ЭЛЕКТРИЧЕСТВА" в других словарях:

  • ИСТОЧНИКИ ЭНЕРГИИ — ИСТОЧНИКИ ЭНЕРГИИ, встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию. Энергия, которую дают почти все эти источники, поступает целиком от Солнца. Ископаемые топлива уголь, нефть …   Научно-технический энциклопедический словарь

  • Источники света — Искусственные источники света технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения (как видимого, так и с различной длиной волны,… …   Википедия

  • Случаи отключения электричества в России из-за аварий на подстанциях — Это не первый с начала года случай отключения электроэнергии в России. 17 февраля произошла аварии на ЛЭП 110 кВт в Барнауле в 18.13 (15.13 мск). Были отключены электроподстанции АТИ , РТИ , Пресс и Юго Западная , в результате чего без… …   Энциклопедия ньюсмейкеров

  • Искусственные источники света — Искусственные источники света  технические устройства различной конструкции и различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны,… …   Википедия

  • Музей электричества — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Музей электричества (порт. Museu da Electricidade)  это культурный центр индустриально …   Википедия

  • Музей Электричества (Лиссабон) — Музей электричества (порт. Museu da Electricidade)  это культурный центр индустриальной археологии, который представляет собой прошлое, настоящее и будущее энергии, делая науку доступной для всех. Где существуют бок о бок тематические и… …   Википедия

  • Министерство электричества и энергетики Египта — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • ГОСТ 15596-82: Источники тока химические. Термины и определения — Терминология ГОСТ 15596 82: Источники тока химические. Термины и определения оригинал документа: 8. Аккумулятор Akkumulator Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда… …   Словарь-справочник терминов нормативно-технической документации

  • Промышленное производство — (Industrial production Index) Определение промышленного производства, тенденции развития производства Информация об определении промышленного производства, тенденции развития производства Содержание Содержание Обозначение и качество окружающей… …   Энциклопедия инвестора

  • ЯДЕРНЫЙ РЕАКТОР — ЯДЕРНЫЙ РЕАКТОР, устройство, в котором реакция ДЕЛЕНИЯ АТОМНОГО ЯДРА (а иногда ЯДЕРНЫЙ СИНТЕЗ см. ТОКАМАК) используется для выработки энергии или для производства радиоактивных веществ. Топливом в ядерном реакторе служат тяжелые радиоактивные… …   Научно-технический энциклопедический словарь


Электричество — Википедия

Электри́чество (от лат. electricus, далее из др.-греч. ἤλεκτρον) — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гильбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества[1].

Одним из первых, чьё внимание привлекло электричество, был греческий философ финикийского происхождения Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы[2]. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания[3]. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой[1]. В 1802 году Василий Петров обнаружил вольтову дугу.

С этого открытия русского ученого началась история электрической лампочки или лампы накаливания. В дальнейшем основной вклад в создание электрической лампочки внесли русские инженеры Павел Николаевич Яблочков и Александр Николаевич Лодыгин.

Лодыгин после долгих экспериментов создал «Товарищество электрического освещения Лодыгин и компания» и в 1873 году продемонстрировал лампы накаливания своей системы. Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям». Тогда же собственную конструкцию лампы параллельно разрабатывал Павел Яблочков. В 1876 году он получил патент за лампочку своей системы, которая получила название «свеча Яблочкова». После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 года, которую посетило много русских, ею заинтересовались в России. Лодыгину, наоборот, не удалось наладить в России широкое производство своих ламп. Он уехал в Америку, и там узнал, что изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения[7].

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка британским (шотландским) физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[8]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и, таким образом, имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон и антипротон имеют отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряжённостью 100 В/м.

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передаётся без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия[9].

Многие рыбы используют электричество для защиты и поиска добычи под водой. Южноамериканский электрический угорь способен генерировать электрические разряды напряжением до 500 вольт. Мощность разрядов электрического ската может достигать 500 Вт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создаёт напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде[10].

Производство и практическое использование[править | править код]

Генерирование и передача[править | править код]

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать лёгкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в 1800 году, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея даёт возможность получить электричество в случае необходимости, является многофункциональным и широко распространённым источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако её запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем её объёме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретённая Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретён трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям[13][14].

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идёт модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счёт энергии ветра и воды[19].

Применение[править | править код]

Получение электричества путём преобразования кинетической энергии ветра набирает популярность во многих странах мира Лампа накаливания

Использование электричества обеспечивает довольно удобный[источник не указан 1553 дня] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин[21]. Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.[22]. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве[23].

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[24], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[25] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащённые электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определённую степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нём электричества уже потребовало производства тепла на электростанции[26]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[27]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[28][29].

По данным Всемирного банка, на сегодняшний день (2015) более миллиарда человек в мире живут без использования электричества в быту. Около 3 млрд человек используют для приготовления пищи и отопления керосин, дрова, древесный уголь и навоз.[30].

Хронология основных открытий и изобретений[править | править код]

  1. 1 2 Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72
  2. ↑ Электричество до Франклина
  3. ↑ Электростатическая машина Герике
  4. ↑ Первые опыты по передаче электричества на расстояние
  5. ↑ История электричества
  6. ↑ Открытие электричества
  7. ↑ Первая в мире электрическая лампочка : П.Н. Яблочков и А.Н. Лодыгин // www.drive2.ru.
  8. ↑ Это не единственное свойство заряженных тел; например, заряженные тела при движении способны создавать ещё и магнитное поле, а также подвергаются воздействию последнего (также в случае своего движения).
  9. ↑ Электричество в живых организмах, 1988, с. 66.
  10. ↑ Богданов К. Ю. Физик в гостях у биолога. — М.: «Наука», Гл. ред. физ.-мат. лит., 1986, 144 с. (Б-чка «Квант», Вып. 49) тир. 135000 экз., ББК 22.3 + 28 Гл. 1. Живое электричество.
  11. ↑ Dell, Ronald & Rand, David (2001), "Understanding Batteries", Unknown (Royal Society of Chemistry) . — Т. 86: 2–4, ISBN 0-85404-605-4 
  12. ↑ McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, с. 182–183, ISBN 0-85312-269-5 
  13. ↑ Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, с. 44–48, ISBN 1-85383-341-X 
  14. ↑ Edison Electric Institute, History of the Electric Power Industry, <http://www.eei.org/industry_issues/industry_overview_and_statistics/history>. Проверено 8 декабря 2007.  Архивная копия от 13 ноября 2007 на Wayback Machine
  15. ↑ Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991, <http://www.eia.doe.gov/cneaf/electricity/chg_stru_update/appa.html>. Проверено 8 декабря 2007. 
  16. ↑ Carbon Sequestration Leadership Forum, An Energy Summary of India, <http://www.cslforum.org/india.htm>. Проверено 8 декабря 2007.  Архивная копия от 5 декабря 2007 на Wayback Machine
  17. ↑ IndexMundi, China Electricity - consumption, <http://www.indexmundi.com/china/electricity_consumption.html>. Проверено 8 декабря 2007. 
  18. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 16, ISBN 0-309-03677-1 
  19. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 89, ISBN 0-309-03677-1 
  20. ↑ Wald, Matthew (21 March 1990), "Growing Use of Electricity Raises Questions on Supply", New York Times, <http://query.nytimes.com/gst/fullpage.html?res=9C0CE6DD1F3AF932A15750C0A966958260>. Проверено 9 декабря 2007. 
  21. ↑ Один из первых коммерчески успешных вариантов электрической лампы накаливания был разработан Т. Эдисоном.
  22. ↑ Большая советская энциклопедия
  23. ↑ d'Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, с. 211 
  24. ↑ Жителям Подмосковья электричество не светит
  25. ↑ Из-за отключения электричества в Санкт-Петербурге встал электротранспорт
  26. ↑ ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, с. 298, ISBN 0-86720-321-8 
  27. ↑ Danish Ministry of Environment and Energy, F.2 The Heat Supply Act, <http://glwww.mst.dk/udgiv/Publications/1997/87-7810-983-3/html/annexf.htm>. Проверено 9 декабря 2007.  Архивная копия от 8 января 2008 на Wayback Machine
  28. ↑ Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5 
  29. ↑ Hojjati, B. & Battles, S., The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions, <http://www.eia.doe.gov/emeu/efficiency/2005_USAEE.pdf>. Проверено 9 декабря 2007. 
  30. ↑ Более миллиарда людей в мире живут без электричества - ИА "Финмаркет"
  • Калашников С. Г. Электричество. — М., Наука, 1985. — 576 с.
  • Эйхенвальд А. А. Электричество. — М., Государственное технико-теоретическое издательство, 1933
  • Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. — М.: Наука, 1988. — 288 с.
  • Фейнман Р. Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. — М.: Едиториал УРСС, 2004. — 304 с.

Кратко об источниках электрической энергии

Электрическая энергия производится из многих различных источников электрической энергии. Некоторые из этих источников  возобновляемые, а другие невозобновляемые.

Электростанции

Большая часть электричества, используемого в мире производится от электростанций, которые сжигают ископаемое топливо для создания пара. Основным видом топлива для электростанций является уголь, потому что он позволяет большое количество электроэнергии производить в одном месте.

С помощью угля в настоящее время вырабатывается свыше 50 процентов электричества. Оно вырабатывается через угольные электростанции. Уголь является невозобновляемым источником, что означает, что он будет в конечном итоге сгорать. Важно сохранить ресурсы угля и искать более экологически чистые способы производства электроэнергии.

Кратко о сути возобновляемых источников электроэнергии

Есть другие способы генерации электричества с использованием природных ресурсов, которые могут быть заменены или возобновлены без ущерба окружающей среды или способствовать парниковому эффекту.

В настоящее время 70 процентов электричества создается на основе сжигания ископаемых видов топлива: 50 процентов от угля и 20 процентов из природного газа.

Возобновляемые источники энергии используются для создания 30 процентов электричества.

Из этих источников возобновляемой энергии гидроэнергетика является крупным донором, обеспечивая около 10 процентов общего объема электроэнергии.

15% обеспечивают атомные электростанции.

При этом доля атомных электростанций в мире различна от 77 % во Франции до 2,5 % в Китае.

В России доля атомной энергетики порядка 18%.

5 % приходит на смесь источников, включая ветер, биоэнергию и солнечные батареи на крыше.

Конечно большинство людей хотели бы видеть экологическое сочетание превращающееся в электрические ресурсы, но в настоящее время источники ископаемого топлива являются основой электроэнергии в мире. Сочетание и доля источников электрической силы с течением времени видоизменяются и появляются необычные источники энергии.

Гидро

Электричество из воды накапливается в огромных плотинах. Сила, созданная водой из этих плотин превращается в электричество гидро электрическими турбинами и генераторами. Самые известные источники гидроэлектрической энергии находятся на крупных реках. Это дешевле, чем добыча ископаемого топлива и не способствует парниковому эффекту.Источники электрической энергииИсточники электрической энергии

Солнце

При генерации электроэнергии с помощью солнца предотвращает выброс в атмосферу парниковых газов.

Ветер

Перемещение воздуха, который создается, когда солнце нагревает и охлаждение воздуха движет его. Это вызывает ветер. Через века люди научились использовать силу ветра. Как солнце она может также использоваться для создания электроэнергии. Ветер генерирует менее 1% электроэнергии в мире, но больше ветровых электростанций строятся каждый год.ветроэнергетикаветроэнергетика

Биомасса

Энергия, которая поступает из свалки – или мусорные свалки. Она включает в себя образование горючего газа и тепла от материи животных и растений. Свалочный газ создается, когда выбрасываются отходы и начинается загнивание (или разложение) в земле. Этот газ, как правило, просто будет просачиваться через землю в атмосферу, способствуя экологическим проблемам, как парниковый эффект. Однако может быть захвачен и обрабатываться для создания электроэнергии. Газ собирается, сушится (чтобы избавиться от воды) а затем фильтруется (чтобы избавиться от любых отходов и частиц). Затем подается через трубы к газовому генератору, который сжигает газ для создания электроэнергии.биоэнергиябиоэнергия

Геотермальная энергия

Ресурсы от тепла земли. Она была использована тысяч лет в некоторых странах для горячей воды, отопления и приготовления пищи. Она также может генерировать электричество с помощью пара производимого из тепла, найденного под поверхностью земли. Это не распространено во многих странах, но хотя экспериментально геотермальная электроэнергия изучается в малонаселенных районах и используется в некоторых частях Новой Зеландии, Европе, Камчатке (Россия), а Исландия получает более 50 % своих энергетических ресурсов из геотемальных видов.геотермальнаягеотермальная

Источники электрической энергии в настоящее время являются неотъемлемой частью нашей жизни. Многие вещи работают только с помощью электричества и значение которой мы резко не изменим. Эти изменения не будут восприниматься как положительные большинством людей. Для поддержки технологии, лежащей в производстве электричества с использованием возобновляемых и невозобновляемых ресурсов работают ученые из многих областей исследования, в том числе химии, геологии, физики и биологии.

Аргументы в пользу более возобновляемых источников электрической энергии включают в себя:

  • Необходимость сохранения энергетических ресурсов для будущего
  • Угроза повышения парникового газа индуцированного изменением климата.

Противоположные аргументы для использования невозобновляемых ресурсов включают:

  • Для использования этих ресурсов уже существует хорошо развитая технология
  • Неспособность альтернатив для обеспечения базовой нагрузки мощности для бытового и промышленного использования
  • Стоимость является относительно низкой для выработки электричества с невозобновляемых ресурсов.

2. Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрический ток — направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.


 

Обрати внимание!

Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.
Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.


 

Существуют различные виды источников тока:

  

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.


 

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

 

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.

 

  termopar.gif

 

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

 

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.


 

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

 

• Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.
К нему относится, например, гальванический элемент. 

 

 

В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в полотняный мешочек, наполненный смесью оксида марганца с углём С. Пространство между цинковым корпусом и смесью оксида марганца с углём заполнено желеобразным раствором соли Р. В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

 

baters.gifpreview_flachbatterie.png

 

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

 

image0011.jpgNiCd_various.jpg 

 

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна — из спрессованного железного порошка, а вторая — из пероксида никеля.   
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие. Чтобы электроэнергию доставить от источника до потребителя, необходимы соединительные проводники, а чтобы её поступлением можно было управлять, нужны рубильники, выключатели, кнопки и т.д.

 

Обрати внимание!

Источник электроэнергии, потребители электроэнергии, замыкающие устройства, соединённые между собой проводами, называют электрической цепью.

Чтобы в цепи существовал электрический ток, она должна быть замкнутой, т.е. состоять из проводников электричества. Если в каком-либо месте провод разорвётся, то ток в цепи прекратится. На этом основано действие выключателей.  

 

Обрати внимание!

Чертежи, на которых изображаются способы соединения электрических приборов в цепь, называют схемами.

 

6.jpg

 

Приборы на схемах обозначают условными знаками. Вот некоторые из них:


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Источники:

 

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://www.fizika.ru/kniga/index.php?mode=paragraf&theme=09&id=9010
http://files.school-collection.edu.ru/dlrstore/669ba06a-e921-11dc-95ff-0800200c9a66/3_8.swf

Источники электричества – раздел, категория сайта

Cайт для заказа готовых печатных плат из Китая на NEXTPCB

NEXTPCB заказ изготовления печатных плат на заводе в Китае

Источники Электричества

NEXTPCB заказ изготовления печатных плат на заводе в КитаеКатегория Источники электричества содержит в себе статьи и материалы, которые прямым или косвенным образом связаны с темой производство и выработка электроэнергии. В ней будут рассмотрены  различные разновидности электроисточников, их типы и виды, принцип действия, положительные и отрицательные стороны, характеристики, существующие  альтернативы, новые разработки, и многое другое.

 

P.S. — Приятного времяпровождения на сайте Электро Хобби

 

как улучшить качество электроэнергии powerbank, фильтруя искажения питанияВ этой статье предлагаю вам ознакомится со схемой, которая по своей сути является повербанком, но рассчитана на питание не телефонов и планшетов, а таких устройств как, например, микрофонный, предварительный усилитель, радио передатчики и приемники и т.д. То есть, схемы, что чувствительны к качеству источника своего питания. А разве обычная схема PowerBank, которую можно встретить на просторах интернета, не годится ...

Подробнее...

как протестировать источник постоянного питания на реальную силу токаБлоки питания обычно имеют на своем корпусе свои электрические характеристики. Основными из них являются номинальный и максимальный ток, который БП может выдавать при питании нагрузки, его номинальное входное (переменное) и выходное (постоянное) напряжение, электрическая мощность, которая обычно не указывается, но ее легко вычислить если номинальный выходной ток (в амперах) умножить на выходное постоянное ...

Подробнее...

из за чего происходит нагревание источников электрического питанияБлоки питания применяются повсюду. Они различны по мощности, назначению, величине напряжения, а также своему качеству и надёжности. Хорошим источником питания можно назвать тот блок питания, который может стабильно выдавать свои номинальные характеристики, а в случае перегрузок и коротких замыканий не выйдет из строя. Нагреваться может даже достаточно качественный БП, если его нагрузить достаточно сильно ...

Подробнее...

Какой ток у блока питания должен бытьБольшая часть различной электротехники имеет в своей схеме (внутри своего устройства) или в своём комплекте блоки питания. Данный блок является источником электрического питания, задача которого сводится к обеспечению нужного напряжения и силы тока той электросхемы, что запитывается от него. Основная часть электротехники запитывается от городской сети. В обычной электросети (бытовой розетки) имеется переменное (синусоидальное)...

Подробнее...

какой мощности покупать, делать источник питания, как нужно подбиратьИсточники питания имеют повсеместное применение. Из задача заключается в преобразовании электрической энергии в тот вид (те параметры), который используется конкретным электротехническим устройством. Известно, что в обычной городской сети применяется переменный ток с величиной напряжения в 220 вольт (с небольшим отклонением), частотой 50 герц. Причина этому простая. Этот ...

Подробнее...

как правильно нужно пользоваться аккумуляторными батареями li ionШирокую популярность сейчас приобрели литиевые аккумуляторы. Они работают в такой электронике как мобильные телефоны, планшеты, ноутбуки, цифровые плееры, фотоаппараты, видеокамеры, фонарики и т.д. Такой тип аккумуляторов имеет очень весомое преимущество, у него большая энергоемкость. То есть, данный вид аккумуляторных ...

Подробнее...

Альтернативные источники энергииЖелание перейти на альтернативные источники электрического питания объясняется несколькими причинами. Во-первых, приобретая загородный дом хозяин сталкивается с проблемами электроснабжения, которые влияют на комфортность жизни в этом самом доме. Ведь перебои в подачи электричества и периодические перепады напряжения в сети не оставляют ...

Подробнее...

Рекомендуемый материал

 

Куда далее перейти на этом сайте ⇙

 

обозначение, характеристики, виды источников таблицей

Есть несколько видов источников тока, отличаемые по тому, как именно вырабатывается энергия. Каждый вариант имеет свой тип устройства. Различным является и принцип выработки электрической энергии, а также ее преобразование. Определить, какой тип элемента применяется, можно с помощью графического обозначения.

Что это такое

Источники тока — это элемент электрической цепи, который поддерживает ток с заданными параметрами. При этом поддерживание цепи не зависит от параметров входящих в нее элементов, а именно сопротивления.

Прибор для выработки тока

Различают идеальные и реальные источники тока. Идеальные определяются только воображением. Существует определенный диапазон действия, которое имеет максимальные значения, приближенные к идеалу. То есть осуществляется имитирование идеального источника.

Реальные варианты поддерживает заданные параметры выходного тока и напряжения. Приспособление удерживает такую работу, пока это позволяют делать его заданные характеристики.

Получается, что максимальное значение тока и напряжение дают возможность определять, какой именно вариант источника будет использоваться в цепи — идеальный или реальный.

Виды

Есть несколько видов источников тока. Каждый вариант имеет свои основные показатели, характеристики и особенности. Определяемые показатели:

 

Вид источника

 

Характеристики

 

МеханическийСпециальное устройство (генератор) производит переработку механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников тока.
ТепловойПринцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. Сейчас разработаны источники тока, в которых тепловая энергия вырабатывается благодаря распаду радиоактивных элементов.
ХимическийХимические можно условно поделить на 3 группы — гальванические, аккумуляторы и тепловые.
  • Гальванический вариант работает посредством взаимодействия 2-х разных металлов, помещенных в электролит.

  • Аккумуляторы — устройства, которые можно несколько раз заряжать и разряжать. Есть несколько видов аккумуляторов различными типами составляющих.

  • Химически-тепловые используются только для кратковременной работы. Применяются в основном в ракетной сфере.

СветовойВ конце XX века достаточно популярными стали солнечные батареи, которые «собирают» световые частицы, которые потом преобразуются в электрическую энергию. Это происходит за счет выдачи напряжения благодаря воздействию на световые частицы.

Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии.

Механические

Механические источники тока являются самыми простыми в плане использования и обустройства. Характеристика таких генераторов вполне простая для понимания. В специальных устройствах вырабатывается энергия, а потом преобразуется в нужный вид (электричество). Такие приспособления используются на тепловых электростанциях и гидроэлектростанциях.

Механический

Тепловые источники

Тепловые варианты источников имеют уникальный принцип работы. В результате разности температур, которая возникает между парами контактирующих металлических проводников. В результате возникает термопар.

Обратите внимание! Радиоактивные термопары используют в космической сфере. Эффективность такого использования возможна благодаря долгому сроку службы и огромных показателях вырабатываемой мощности.

В результате такого движения заряженных частиц от горячей части к холодной и возникает электроток. При этом, чем больше температурные разница, тем больше показатель результативной энергии. Термопары используют для измерительных приборов.

Тепловой

Световые источники

Световые источники электроэнергии считаются самыми экологичными, эффективными и дешевыми. Специальная панель из полупроводников поглощает световые частички, которые при таком взаимодействии выдают определенное напряжение.

Световой

При этом световые панели имеют небольшой показатель КПД — 15 %. Панели такого типа используются в бытовых условиях, а в последнее время в космической отрасли. Дополнительным нюансом является высокая стоимость литиевых панелей и дополнительное обустройство мини-станции по преобразованию и выработке электроэнергии.

Химические источники

Основные 3-и группы химических источников имеют и подгруппы. Особенности и принцип работы:

  • Гальванический вид устройства — это одноразовый вариант выработки электроэнергии, то есть после полной зарядки вторичной подзарядке они не поддаются. Обычно это батарейки, которые можно поделить на такие группы: солевые, литиевые, щелочные. Солевые батарейки — самый дешевый тип продукции, но не эффективный. Литиевые — продолжительное время не разряжаются и вырабатывают напряжение в пределах 1,5-3,7 В. Эффективность щелочных такая же, как и у солевых, но сроки работы в 1,5 раза больше.
  • Аккумуляторы бывают нескольких типов: свинцово-кислотные, литий-ионные, никель-кадмиевые.
  • Тепловые используются в ракетной сфере, чтобы производить кратковременный, но плотный ток. Обычно это резервные варианты питания.

Дополнительная информация! Химико-тепловые устройства требуют первоначального нагрева до 500-600 °С, чтобы активизировать твердый электролит.

В определенной сфере используется свой вариант источника. В бытовых условиях применяются в основном батарейки; в производственной — аккумуляторы; а вот более технические сферы требуют наличия тепловых типов.

Химический

Обозначение источников тока

Чтобы при выборе не возникало вопрос относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике есть точные графические изображения, которые помогут определиться с типом используемого источника:

Обозначения

Пояснения к указанным обозначениям:

  • а) общее обозначение источника тока и движущей силы ЭДС;
  • б) графическое изображение без ЭДС;
  • в) химический тип;
  • г) батарея химического источника;
  • д) вариант выработки постоянного напряжения;
  • е) переменное напряжение;
  • ж) генератор, который производит энергию.

Благодаря графическим определителям даже глядя на схему электрической цепи можно понять, какой именно тип используется в данной ситуации. Есть и международные обозначения, которые встречаются немного реже, обычно в проектах международного значения.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В каждой ситуации выработка энергии производится посредством взаимодействия составляющих частей.

  • Механический тип. В результате взаимодействия частей механизма возникает трение. Благодаря такому действию возникает статическое электричество. Благодаря специальному преобразователю образовывается постоянный электрический ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частичек. Это возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частички выбиваются из металла, которые низменно присутствует в конструкции таких приспособлений.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы благодаря действию светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Обычно это 2 последовательно соединенных металлических оснований. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Любое изменение в строении может привести к необратимым последствиям, которые проявятся в принципе действия приспособления.

Конструкция

Кроме внешнего вида конструкции еще и по-разному работают. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

  • Самый простой аккумулятор имеет такое строение. Металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины. Дополнительно присутствует анод и катод.

Аккумулятор

  • Строение батарейки с наличием сухого элемента, которая относится к типу химических источников. В металлический корпус помещен стержень, который играет роль катода. Остальное пространство заполнено солевым электролитом.

Батарейка

  • Механический тип строения источника тока, а именно генератора переменного тока. Это устройство, состоящее из трещоток или металлической рамки. В действие эти элементы могут приводить магниты или внешние факторы.

Механический принцип устройства

  • Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно конструкция подключена к измерительному прибору, типа Амперметра. Источник тепла — это огонь или внешний электрический импульс.

Тепловое устройство

Подробная конструкция помогает точно понять, как образуется энергия, а потом преобразуется именно в электрическую. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала.

Условия работы источников тока

Каждый источник тока работает при определенных условиях. В химических элементах не смогут образовываться заряженные частицы, а также их движение, если будет отсутствовать главная химическая реакция. Если будет отсутствовать анод и катод, то движение частиц даже при химической реакции возникать не будет.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является именно замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно нужно иметь в наличие приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если буде использовать всего 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Источники

Для выработки электрической энергии нужно выбрать соответствующий потребностям источник тока. Есть несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и особенности в плане технических показателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *