Чертеж буронабивная свая: , , , — , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Буронабивные сваи, сопряжение сваи с ростверком

Буронабивная свая – пространственный стержень, который располагается вертикально в грунте, являясь при этом связующим элементом между расположенным выше зданием и основанием. Он удерживается в равновесии за счёт сил трения между поверхностью сваи и грунтом.

Когда применяются буронабивные сваи

Буронабивные сваи целесообразно применять в следующих случаях:

  • При внутренней плотной застройке между существующими зданиями, когда отсутствует возможность вести какие-либо работы при устройстве котлована, ввиду обрушения соседствующих зданий. Такая необходимость, например, возникает при техническом перевооружении предприятия, когда существующий цех демонтируется, а на его месте устраивается новый. А также в случаях, когда невозможно использовать забивные и вдавливаемые сваи. См. Рисунок №1.
  • При повышенном расположении уровня зеркала воды, когда отсутствует возможность вести земляные работы из-за постоянного затапливания котлована водой. При этом в устройстве искусственного водопонижения нет необходимости, ввиду отсутствия в проектируемом здании технического подполья, цокольного этажа или подвала. Пример см. на Рисунке №2 и Рисунке №3.
  • При наличии слабых грунтов. См. Рисунок №4. На нём видно, что верхние слои грунта с ИГЭ №1 по ИГЭ №4, составляют слабые слои грунта, а далее идут грунты с хорошей несущей способностью. Поэтому в этом месте необходимо сваей разрезать верхние слои и закрепиться в нижних слоях грунта. В противном случае, здание может «поскользнуться» на суглинках, так как они просто лопнут под нагрузкой и фундамент, вместе с вышележащими этажами просядет вниз, пока не упрётся в плотные слои песка.
Рисунок №1 – Строительство нового «Смесительного цеха» внутри завода по производству силикатного кирпича.Рисунок №2 – Объект: «Очистные сооружения производственных сточных вод» в Ярославской области, Рыбинский район. Инженерно-геологический разрез.Рисунок №3 – Объект: «Очистные сооружения производственных сточных вод» в Ярославской области, Рыбинский район. Сводная ведомость лабораторных испытаний грунтов.Рисунок №4 – Инженерно-геологические характеристики грунта.

Недостатки фундамента из буронабивных свай
  • Невозможность устройства под зданием техподполья, подвала или цокольного этажа.
  • Минимальная глубина сваи по СНиП в 3000 мм выставляет рамки грамотного планирования вышележащих этажей с перераспределением усилий. В противном случае, выгоднее использовать фундамент ленточный мелкого заложения ввиду его экономичности.

В каких нормативных документах регламентируется качество таких свай

— СП 24.13330–2011 (СHиП 2.02.03–85) «Проектирование фундаментов из разных типов свай»

Как выбирать материалы для буронабивных свай

Минимальную марку бетона следует назначать не менее B15 для таких свай. Но чем ниже марка бетона, тем ниже долговечность конструкции при работе под нагрузкой.

Минимальный класс вертикальной арматуры расположенной вдоль длины сваи следует принимать не ниже А300, но следует помнить о том, что он зависит от прочности бетона, так как речь идёт о совместной работе железобетонной конструкции. Чем ниже прочность бетона, тем выше диаметр продольно арматуры. Арматура стоит дороже, чем бетон, поэтому есть смысл поиграть с комбинированием данных материалов между собой. Поперечную арматуру можно изготавливать из любого класса, но «правило свариваемости» их между собой и «конструкторские требования» должны соблюдаться.

Марка морозостойкости бетона напрямую зависит от проектируемого срока службы бетона. В России 4 времени года (лето, зима, осень, весна), а дома люди строят на века, т.е. 80-100 лет. Значит, марка морозостойкости бетона в этом случае будет равна: 80х4 = F320.

Марка по водонепроницаемости зависит от давления грунтовых вод на поверхность бетона. Чем выше значение, тем большее давление воды выдержит структура бетона, и при этом не пропустит влагу через себя. Чтобы определиться с этим показателем, нужно знать подпор воды на строительной площадке.

На сульфатостойкие добавки следует обращать внимание, если строительство ведётся вблизи или на территории с агрессивной средой.

Как сконструировать буронабивную сваю

Буронабивные армированные сваи для промышленного и гражданского строительства конструируют с поперечным сечением в виде окружности. Диаметр окружности взаимосвязан с длиной сваи расчётом на проектирование сваи с типом работы «висячий стержень в грунте». Конструктивная длина сваи – это вертикальный отрезок, который равен разнице между нижней отметкой ж/б ростверка и проектируемой отметкой обреза сваи по низу. Марка бетона, заглубление сваи в ж/б ростверк, класс рабочей продольной арматуры и поперечной арматуры определяется по расчёту.

Пример конструктивного определения диаметра сваи: допустим, что наружная кирпичная стена здания толщиной 510мм, значит ж/б ростверк следует принимать кратно 100мм, т.е. 600мм шириной. Из полученного значения вычитаем минимальное значение анкеровки конструкции сваи с конструкцией ростверка с обеих сторон по 100мм и получаем: 600мм-100мм-100мм=400мм. Значит, минимальный диаметр сваи для начала расчёта равен D=400мм.

Ж/б свая имеет вид пространственного вертикального цилиндра. Если мысленно сделать сечение вдоль длины ж/б ростверка, который имеет вид многопролётной балки, то получим разрез в виде прямоугольника «в плоскости действия усилий», внутри которого присутствуют напряжения от изгибающего расчётного момента и поперечной расчётной силы.

Если мысленно сделать сечение поперёк длины ж/б ростверка, т.е. поперёк наружной стены здания, то мы тоже получим прямоугольный разрез, но уже «из плоскости действия усилий», в сечении которого уже будут отсутствовать напряжения от изгибающих моментов и поперечных усилий.

Все пространственные ж/б конструкции собираются из пространственных каркасов, и буронабивная свая не исключение. Рабочая арматура внутри которой располагается как «в плоскости действия усилий», так и «из плоскости действия усилий», где расчётное статическое напряжение при проектировании отсутствуют.

У сваи с поперечным сечением в виде окружности – ядро сечения тоже будет представлено в виде окружности, размеры которого находятся по расчёту. Внутри ядра сечения действуют напряжения только одного значения, по отношению к свае – это сжатие, по тому, что она расположена в грунте, а наружная стена давит на сваю от верха к низу через ж/б ростверк, поэтому внутри сваи будут усилия сжатия, а сама эпюра напряжений будет трапециевидной.

Арматурный каркас сваи.

Следовательно, каркас из арматуры будет в виде окружности. А продольные стержни каркаса будут находиться в промежутке между внешней гранью круглого ядра сечения, и внешней гранью ж/б сваи, т.е. в той зоне бетона, где преобладают растягивающие напряжения. Это связано с тем, что бетон является искусственным камнем, который слабо работает на растягивающие усилия, а арматурная сталь компенсирует на себя все эти издержки.

Распределение рабочего армирования в изгибаемой зоне бетона требует её равномерного распределения по площади всего поперечного сечения. Защитный слой в данной комплектации обеспечивает высокий срок службы ж/б элемента, но при этом съедает часть растянутой зоны. Более подробно об армировании бетона и расчёте арматуры Вы можете прочитать в специальной статье: расчёт армирования бетона.

После сборки каркаса, он как самостоятельный элемент ставится в проектное положение внутри пробуренной полости в грунте, затем приводится в вертикальное положение и крепится фиксирующими элементами с последующей заливкой бетонным мелкозернистым раствором.

Как сконструировать стык сваи с ростверком

Буронабивная свая — это независимая отдельностоящая конструкция, которая является самостоятельным элементом в совокупности с другими частями здания. Примыкающим элементом, с которым она напрямую стыкуется – это монолитный армированный ростверк. С другими элементами здания она связана поэтажно через стыковку отдельных конструкций здания друг с другом, через передачу нагрузки от самого верха сверху к низу при вертикальной сборке, где свая располагается внизу этой схемы, образуя с ростверком жёсткий неподвижный диск с грунтом основания.

Каркас ростверка.

Для создания жёсткого сопряжения собирают жёсткий стык узла обреза сваи с монолитным телом ростверка. Жёсткость и равно устойчивость стыка сваи с ж/б ростверком зависит от глубины анкеровки рабочей арматуры, в составе пространственного единого каркаса сваи, внутрь тела ростверка. Длина анкеруемого стержня определяется расчётом от внешних усилий здания от самого неблагоприятного сочетания комбинаций при разных типах загружений. Анкеруют арматуру стержней в виде прямого участка или при помощи отгибов по определённому радиусу, опираясь на положения СП 52–101–2003. Анкеруемый стержень + защитный арматурный слой бетона = проектируемая, конструируемая высота ж/б ростверка, которая, в свою очередь, будет единой как «в расчётной плоскости» направления усилий, так и «из расчётной плоскости» направления усилий.

Но этого недостаточно для того, чтобы конструкция работала устойчиво. Теперь необходимо зафиксировать (собрать) сваю в ж/б ростверк как один конструктивный элемент с другим конструктивным элементом. Для этого необходимо наращивание ростверка по ширине «из расчётной плоскости» направления усилий в противоположные стороны от ж/б сваи с отступом минимальным в 100 мм, опираясь на указания по конструированию свайного фундамента.

Не выполнение данного условия приведёт к выпучиванию сваи из ж/б ростверка из-за бокового неравномерного давления грунта, с образованием вертикальных трещин в месте их пересечения. А так мы имеем компенсатор, который препятствует свае работать в этом случае как самостоятельный элемент в плоскости наименьшей жёсткости, и обеспечивает совместную работу поперечного сечения ж/б ростверка с оголовком сваи. В этом случае внутренние напряжения перераспределяются. Исходное положение этих конструкций относительно друг друга не изменяется. А также сохраняется единый принцип их совместной работы между собой. Наличие малых и больших эксцентриситетов тем самым нивелируется, что ведёт к сохранности соосности привязок центров осей симметрии ж/б свай с центральной осью симметрии сечения монолитного ростверка.

Армирование продольными стержнями ростверка включает в себя огибание вертикальных выпусков из ж/б сваи, как по наружному, так и по внутреннему обмеру стыкуемого узла. Горизонтальная арматура ростверка закрепляется с выпусками из сваи при помощи специальной вязательной проволоки по ГОСТу 3282–74. При этом получается надстройка в виде многоэтажной сборки, где один элемент является основанием для другого, с расцентровкой арматурных продольных пространственных элементов в виде каркасов в теле ж/б элемента.

Продольные стрежни огибают ростверк по контуру, располагаясь между наружной гранью ядра сечения в виде ромба и защитным слоем бетона, внутри растянутой зоны поперечного сечения ростверка. При детальной прорисовке видно, что ядро сечения обжато равномерным армированием со всех сторон.

Для обеспечения долговечности фундамента желательно покрыть его гидроизоляцией. О том как это делают можно узнать подробнее в статье: гидроизоляция элементов фундамента, её виды, технологии нанесения.

Буронабивные сваи своими руками: технология возведения.

30 Сентябрь 2016      Стройэксперт      Главная страница » Фундамент » Монтаж      Просмотров:   4460

Буронабивной свайный фундамент

При строительстве частного дома при наличии хотя бы одного из факторов: высокого уровня грунтовых вод, слабой несущей способности грунта, незначительного уклона на участке застройки, большой глубины промерзания грунта, большого веса возводимого здания – более 350т – становится невозможным устройство обычного ленточного монолитного железобетонного фундамента. Также, если на участке очень тяжелые грунты и устройство ленточного фундамента связано с большой трудоемкостью земляных работ, становится предпочтительным устройство свайных фундаментов. Единственным минусом устройства свайных фундаментов под дом является отсутствие подвального помещения.

Расчет свайного фундамента

При проектировании свайного фундамента обязательно выполняется его расчет на предполагаемые нагрузки. Для этого необходимо знать вес всего здания, почвенный состав основания и его несущую способность на глубину хотя бы до 4 метров. Если основание состоит из слабого грунта, то желательно пройти его до более прочного слоя грунта. В случае, если сваи не достигают прочного слоя, они называются висячими, если доходят до него, – сваями-стойками. По принятому диаметру сваи, и ее длине определяется ее несущая способность в данном грунте.

При проектировании свайного фундамента обязательно выполняется расчет на предполагаемые нагрузки.

Далее, зная общую нагрузку на грунт и несущую способность одной сваи, можно найти количество свай для данного дома. Сваи устанавливаются под несущими стенами с шагом не менее 2 м. Сверху свай устраивается железобетонный ростверк, который может быть как малозаглубленным, так и полностью возвышающимся над землей.

к оглавлению ↑

Виды свайных фундаментов

На данный момент существует большое разнообразие свайных фундаментов. По способу устройства они подразделяются на следующие основные виды:

  • забивные;
  • винтовые;
  • буронабивные.

Забивные сваи могут быть металлическими, деревянными и железобетонными. Они монтируются специальными ударно-забивочными механизмами, молотами. Наиболее распространенные сваи этого типа – железобетонные квадратного или многогранного сечения, конец у таких свай имеет заостренный вид. Сваи этого типа обычно используются в промышленном строительстве, а также при возведении крупных зданий культурно-бытового назначения.

Винтовые сваи обычно представляют собой стальные трубы с винтовыми лопастями на конце. Они покрыты прочной антикоррозионной защитой, которая обеспечивает их долговечность. Такие сваи применяются во многих видах строительства, также они приобрели большую популярность при возведении частных домов и других не очень больших сооружений. Отличительной чертой этого типа свай является то, что их можно смонтировать самостоятельно, не прибегая к сложной строительной технике.

Забивные и буронабивные сваи для свайного фундамента

Буронабивные сваи – это название буровых свай, которые выполняются путем бурения скважин и заполнения их монолитным бетоном с уплотнением при предварительно установленных арматурных каркасах. Привлекательность данного вида свай заключается в возможности их устройства своими силами и с небольшими затратами. Современные буронабивные сваи для частного дома могут быть установлены двумя работниками в течение нескольких дней.

к оглавлению ↑

Инструмент, применяемый для устройства свай

Чтобы сделать буронабивной фундамент своими руками, понадобится определенный инструмент:

  • лазерный уровень;
  • рулетка 10 и 50 м;
  • ручной бур ТИСЭ-Ф или бензобур;
  • растворомешалка;
  • глубинный вибратор-булава;
  • ящик для приготовленного бетона;
  • тачка;
  • лопаты и ведра;
  • шнур каменщика;
  • болгарка и сварочный аппарат;
  • вязальная проволока;
  • деревянная опалубка для устройства ростверка;
  • циркулярная пила или лобзик для устройства опалубки;
  • молоток, топор, ломик, нож для рубероида.

Помимо этого инструмента для каждого конкретного случая может дополнительно понадобиться еще что-нибудь. Обычно при строительстве частного дома большая часть подобного набора инструментов есть у каждого домашнего мастера.

к оглавлению ↑

Технология устройства фундамента из буронабивных свай

Разметка свайного фундамента

Практически всегда работа по устройству фундаментов любой постройки, в том числе и частного дома, начинается с перенесения размеров с чертежа на участок застройки. Для этого необходимо иметь определенные навыки работы с чертежами и измерительными приспособлениями. В самом простом случае, если здание в плане имеет прямоугольную форму, нужно сначала найти угловые крайние точки и закрепить их на местности деревянными колышками. Очень важно, помимо размеров сторон в метрах, которые отмеряются рулеткой, чтобы все углы, образуемые сторонами дома на плане, были прямыми, т. е. 90 градусов. В геодезии это выполняется с помощью теодолита, а на строительстве частного дома пользуются замером диагоналей нашего прямоугольника. Они должны быть одинаковыми с высокой точностью, тогда все углы будут 90 градусов. Это очень простой и эффективный способ разбивки здания в плане без использования теодолита.

Как проходит разметка свайного фундамента

После закрепления на местности четырех углов прямоугольного здания, натягивают между ними шнур, – это можно сделать с помощью толстой лески или тонкой нержавеющей проволоки. Затем с помощью рулетки определяют места расположения каждой сваи, согласно строительного чертежа плана свайного поля, который входит в общий проект частного дома.

Перед началом строительства проект на все возводимое здание должен быть на руках. После определения точек под все сваи, выполняется жесткое закрепление осей здания в двух взаимоперпендикулярных направлениях. Это делается с помощью так называемой обноски, которая располагается на 1,5–2 м дальше от отмеченных точек для свай. Приспособление для обноски – это п-образная конструкция, две ноги которой закапываются в землю, на них крепится горизонтальная поперечина. На ней закрепляется гвоздем или штырем расположение оси здания. Такая обноска выполняется со всех четырех сторон здания напротив каждой разбивочной оси. Натянув осевые шнуры между штырями на обносках, получим расположение на местности всех свай, которые необходимо установить.

к оглавлению ↑

Бурение скважин под сваи вручную

Перед началом бурения должны быть определены диаметр свай, глубина погружения в грунт и способ бурения. В частном домостроении используют как ручные буры, так и механические, которые установлены на специализированных машинах. Помимо этого есть также бензобуры, которые намного ускоряют процесс бурения, используя бензиновые двигатели. Однако самый простой вариант – это ручной бур ТИСЭ, дающий возможность пробурить скважину под сваю диаметром 280 мм и длиной до 2 м. Для строительства обычного двухэтажного дома этого бура вполне достаточно. В этом ручном буре, который изобрел конструктор из Москвы, есть дополнительное приспособление, называемое плугом и позволяющее сделать расширение в нижней части сваи – пятку – до 500 мм диаметром.

Бурение скважин под сваи вручную

Конечно, вручную процесс бурения идет довольно медленно, что также зависит от прочности грунта. За одну смену можно пробурить от 2 до 6 скважин глубиной до 2 м. Однако этот вид фундамента намного легче выполнить, и в том числе с экономической точки зрения, чем традиционный ленточный глубокого заложения.

к оглавлению ↑

Установка опалубки

После выполнения земляных работ – пробуривания скважин под все сваи – приступают к изготовлению и установке опалубки под сваи. Обычно используют самый экономный вариант – это рубероид, свернутый в трубку и закрепленный скотчем. Такие трубы делаются для всех скважин. Для участков свай, расположенных над землей на высоту 300–400 мм, используют рубероид, обвязанный снаружи вязальной проволокой или штукатурной сеткой, а также могут использоваться пластиковые трубы соответствующего диаметра. На всем промежутке времени от бурения скважин до установки опалубки строго контролируют с помощью осей точность расположения свай согласно разметке. Чтобы в процессе бетонирования верхняя часть сваи, которая расположена над землей, не ушла в сторону, используют две направляющие из деревянных брусков, которые по концам закреплены к обноскам гвоздями и являются направляющими для верхних частей опалубки свай. Перед бетонированием можно подготовить опалубку для одного ряда свай. После их бетонирования переходить с следующему ряду.

к оглавлению ↑

Армирование свай

Все буронабивные сваи являются монолитными железобетонными конструкциями, которые изготавливаются непосредственно на строительной площадке. Каждая свая армируется каркасом из стальной арматуры класса АIII, обычно продольная арматура имеет диаметр от 10 до 14 мм, а поперечная распределительная от 5 до 6 мм. Поперечная арматура может выполняться из гладкой проволоки в виде хомутов. Каркасы обычно варятся и изготавливаются параллельно с бурением скважин, чтобы после установки опалубки быстро установить арматуру и приготовиться к бетонированию. Каркасы изготавливаются таким образом, чтобы был выпуск арматуры примерно 350-400 мм поверх поверхности бетона после бетонирования. Это необходимо для связи каркасов ростверка и свай.

Армирование и опалубка свай фундамента

к оглавлению ↑

Заливка бетона

Для бетонирования фундамента на площадке в бетономешалке готовится бетонная смесь из песка, щебня и цемента с водой в пропорции для получения бетона М300. Пропорции легко найти в справочниках или интернете. Тачкой подвозят готовый бетон к сваям и с помощью ковшика или мастерка забрасывают бетон в опалубку, при этом вибрируют с помощью глубинного игольчатого вибратора, – это касается той части сваи, которая расположена в земле. Часть сваи над землей бетонируют без вибрирования. Чтобы процесс бетонирования прошел успешно, устройство свай лучше выполнять весной, летом или осенью при положительной наружной температуре.

к оглавлению ↑

Устройство ростверка

Все свайные фундаменты при строительстве дома завершаются устройством ростверка по верхней части свай. При этом арматурный каркас ростверка соединяется сваркой с рабочей арматурой свай. Опалубка ростверка выполняется из деревянных щитов. Ширина и высота берется из проекта. При этом ширина равняется 400- 500 мм, чтобы по верхнему срезу ростверка можно было выполнять кирпичную кладку несущих стен дома. Такой фундамент по расходу бетона и арматуры более экономичный, чем обычный ленточный фундамент с заложением ниже уровня промерзания грунта. Если ростверк делается малозаглубленный, опалубка устанавливается с двух сторон – внутренней и наружной. Если ростверк по проекту должен располагаться выше поверхности земли, тогда опалубка ставится и на нижнюю часть ростверка. После установки опалубки производится монтаж арматурных каркасов с привязкой к каркасам свай. После всех работ по установке опалубки и каркаса производится отбивка верхнего уровня бетона. После этого приготавливается бетонная смесь М300 и производится заливка с вибрированием. После выдержки бетона хотя бы неделю, производится разборка опалубки и выполняется обмазочная гидроизоляция ростверка битумной мастикой. Теперь практически все готово для возведения стен и устройства полов первого этажа. Таким образом выполняется буронабивной фундамент своими руками.

к оглавлению ↑

Заключение

Из всех видов фундаментов для частного дома, фундамент с применением буронабивных свай является оптимальным с экономической точки зрения и довольно простым, чтобы его можно было выполнить своими руками. Наряду с фундаментами домов, с помощью свай можно выполнить устройство заборов, ворот, веранд, различных пристроек. Производство работ при этом заключается в разработке минимального количества грунта и не будет причиной подтопления близлежащих построек в случае продолжительного дождя.

    Метки: Буронабивные сваи     

проектирование, расчёт и технология усиления

Начиная строительство и подготовив проект будущей постройки в первую очередь необходимо определиться, какое основание наилучшим образом обеспечит надёжность и долговечность строения. Одним из вариантов устройства основания здания может быть фундамент на буронабивных сваях, который сочетает в себе не только высокие характеристики по прочности, но и технологические преимущества его обустройства.
Пример устройства фундамента на буронабивных сваях



Простота его строительства и привлекательная цена позволяют использовать данный тип основы для построек в частном строительстве.

Вернуться к оглавлению

Содержание материала

Особенности буронабивных фундаментов

Основной особенностью данной технологии является усиление мелкозаглубленного или монолитного фундамента буронабивными сваями, расположенными в точках распределения общей несущей нагрузки.
Технологически устройство буронабивных фундаментов предполагает монтаж следующих основных элементов.
Схема устройства фундамента на буронабивных сваях

Сваи

Для их устройства применяют:

  • металлические или асбестоцементные трубы различных диаметров;
  • армированный каркас с применением металлической сетки и рубероида.

Бурить отверстия под буронабивные сваи целесообразно ручным инструментом, оборудованным специальной насадкой, позволяющей выполнять в нижней части скважины отверстия более широкого диаметра. Расширение нижней части необходимо для лучшего закрепления опоры.

Ростверк

Так называют верхнюю часть фундамента, которая связывает буронабивные опоры и предусматривает единое с опорной арматурой армирование.
Ростверк может быть трёх типов:

  • мелкозаглубленный ленточный;
  • подвешенный;
  • монолитный.

В зависимости от вида будущей постройки и местности её расположения выбирается оптимальный вариант строительства связующей конструкции.
Пример конструкции ростверка буронабивного фундамента
Единство этих основных элементов обеспечивает надёжное основание для здания любого назначения.

Вернуться к оглавлению

Основные преимущества фундаментов на буронабивных сваях

Технологическое устройство фундамента на буронабивных сваях имеет ряд неоспоримых преимуществ, которые делают возможным его использование практически для любых построек и в любой местности. Ограничением является лишь то, что сделать буронабивной фундамент невозможно на скалистой территории, в прочих условиях его обустройство возможно выполнить даже без привлечения дополнительной техники.


Среди основных достоинств данного решения вопроса строительства, основы здания можно выделить следующие.

  1. Технология буронабивных фундаментов позволяет легко устроить качественное основание под здание практически на любых грунтовых поверхностях, исключения составляет лишь скалистая местность.
  2. Неровность участка или его близость к водоёму также не является препятствием для фундамента на сваях, поскольку уровень строения задаётся непосредственно расположением несущих опорных элементов.
  3. Фундаменты, устроенные с помощью свай, обладают повышенной устойчивостью к вертикальному движению грунтом, поскольку их основание располагается ниже точки промерзания. Готовые залитые сваи под фундамент
  4. Поскольку бурение отверстий выполняется, как правило, ручным буровым инструментом без использования сложной техники, то при новом строительстве существующие постройки не пострадают от механических и вибрационных воздействий.
  5. Свайный фундамент не требует масштабных земляных работ, поэтому сокращается время и снижается цена работ по его устройству, а также исключается излишнее повреждение окружающего ландшафтного дизайна.



Данные преимущества позволяют использовать данную технологию при строительстве разнообразных построек промышленного и частного назначения. Простота устройства и невысокая общая стоимость делают его особенно привлекательным для хозяина, который планирует выполнять работы своими руками.

Вернуться к оглавлению

Расчёт плана буронабивного свайного фундамента

Для того чтобы фундамент на сваях был надёжным и долговечным необходимо рассчитать количество устанавливаемых опор, поскольку именно они будут принимать на себя всю несущую нагрузку будущего здания.
Чертёж с размерами и план расчета буронабивного фундамента
Чтобы выполнить корректный расчёт буронабивного фундамента необходимо учитывать и использовать следующие данные.

  1. Общий вес будущего строения или суммарную массу всех элементов, в том числе:
    • стен, перегородок, пола, перекрытий;
    • покрытия кровли, стропильная система, утепления;
    • максимальную снеговую нагрузку;
    • временные полезные нагрузки.

    Данный показатель рассчитываем, пользуясь проектом здания, справочной информацией об удельном весе материалов, а также коэффициентами надёжности согласно действующим строительным нормативам. План и чертёж фундамента на буронабивных сваях

  2. Несущая способность сваи, которая зависит:
    • типа грунта, в частности, от показателя его воздействия на боковую поверхность опоры и её основание;
    • планируемого диаметра;
    • величины заглубления основания;
    • материалов для изготовления, в том числе:
      • конструкции самой сваи;
      • марки цемента;
      • толщины армирующих элементов.

    Для вычисления данного показателя необходимо произвести исследование грунта на месте застройки, а также использовать строительные нормативы и коэффициенты сопротивления из справочной литературы. Каркас для армирования столбов фундамента

  3. Общая длина стен строения, которые должны располагаться на ленточном фундаменте.
    Исходя из полученных показателей, высчитаем нагрузку на один погонный метр фундамента и максимально допустимое расстояние между опорами данного диаметра.
    В некоторых случаях после проведения предварительных расчётов количества точек нагрузки, целесообразно произвести оптимизацию, чтобы получить расстояние между опорами кратное длине стен дома или сократить их общее количество.
    Это возможно выполнить путём увеличения диаметра сваи либо использования при строительстве более прочный цемент.

Надо отметить, что расчёт фундамента требует максимальной точности и внимательности, поскольку от этого зависит надёжность и долговечность будущей постройки, поэтому оптимальным вариантом будет обращение к соответствующим специалистам.

Вернуться к оглавлению

Технология строительства фундамента на буронабивных сваях


Сделать буронабивной фундамент своими руками для дома, бани или других хозяйственных построек на личном земельном участке не представляет особых сложностей, поскольку технология его устройства достаточно проста.
Все строительство основания разделяется на три основные части:

  • разметка фундамента на местности;
  • устройство опор; Схема устройства опор фундамента
  • организация связующего ростверка.

Зная пошаговый план работ, время на постройку основания займёт не более чем 7-10 дней.

Разметка фундамента

Для разметки ни местности потребуются колышки и строительный шпагат.

Начиная от одного угла, колышки последовательно устанавливаются на заданном расстоянии по остальным углам будущего здания, с обязательной проверкой при этом равенства диагоналей полученного прямоугольника.

По вбитым кольям натягивается разметочный шпагат, который служит для разметки остальных кольев.


Исходя из рассчитанных расстояний по линии шпагата, выставляются внутренние точки, которые также отмечаются кольями, а по линиям стен-перегородок натягивается шпагат.
Инструкция для разметки фундамента


Площадка под основание здания равняется с учётом общего его устройства, в некоторых случаях снимается верхний слой дёрна или прокладывается траншея для ростверка.

Установка свай

Устройство буронабивного фундамента выполняется в следующем порядке.

  1. Бурение отверстий под буронабивные сваи. Диаметр отверстия делается на 5-10 см больше, чем планируемый диаметр опоры, а нижняя часть расширяется в пределах 2-х диаметров на высоту 30-40 см. Общее заглубление должно быть ниже точки промерзания грунта не менее чем на 30 см. оптимальным считается величина в 50 см.
  2. Подготовка скважин. Необходимо хорошо утрамбовать основание скважины, а также боковые поверхности и выполнить отсыпку песчаной подушки на высоту 10-15 см. Для лучшего контакта с цементным раствором песчаную отсыпку нужно пролить водой и ещё раз утрамбовать.
  3. Подготовка свай.
    • Если в качестве свай используются металлические трубы, то необходимо их обработать антикоррозийным составом;
    • Асбестоцементные трубы желательно обработать гидроизолирующим составом;
    • При устройстве каркасных свай необходимо:
      • из металлической сетки изготовить цилиндр, длина которого равна длине сваи, края цилиндра зафиксировать вязальной проволокой;
      • уложить в полученную трубу двойной слой рубероида.

    Длина опор должна быть такой, чтобы их края выступали над уровнем грунта не более чем на 10-15 см. Готовые сваи расставляют в подготовленные отверстия.

  4. Изготовление армирующих элементов выполняется из рифлёных металлических прутов диаметра 10-12 мм, при этом на одну скважину рекомендуется использовать 4 вертикальных прута с горизонтальной связкой не реже 30 см. Длина вертикальных прутов должна быть больше длины опоры на 10-15 см. Процесс армирования столбов фундамента
    Все элементы надёжно скрепляются между собой вязальной проволокой либо привариваются друг к другу. Готовая конструкция устанавливается по центру каждой сваи, исключая соприкосновение с её стенками. Процесс закладки арматуры в отверстия
  5. Заливка цементным раствором выполняется единовременно с контролем уровня по вертикали. После заливки первых 30 см сваю необходимо приподнять и осадить обратно для лучшей фиксации основания. Дальнейшее заполнение производится с промежуточной утрамбовкой. После схватывания раствора внешняя сторона опор засыпается пеком и грунтом и также трамбуется.

Дальнейшее строительство можно производить не ранее чем через 3-4 дня после заливки, когда цементный раствор приобретёт прочность.
В видео показано как заливать фундамент на буронабивных сваях своими руками.

Устройство связующего ростверка

Порядок проведения работ по устройству ростверка напрямую зависит от типа его устройства, однако общие правила сохраняются для всех типов. Рассмотрим основные технологические этапы на мелкозаглубленном ленточном ростверке.

  1. Подготовка траншеи. По всему периметру будущего здания, а также по линиям промежуточных несущих стен необходимо прокопать траншею шириной 30-40 см на глубину 40-50 см, основание и боковые поверхности которой хорошо трамбуются.
    По всей длине выполняется отсыпка песчаной подушки высотой 30-40 см, которая проливается водой и ещё раз утрамбовывается.
  2. Далее по краям траншеи необходимо установить опалубку, высота которой должна составлять не менее 20-40 см в самой высокой точке своего расположения. Материалом для изготовления опалубки, как правило, служат скреплённые между собой дощатые щиты.
    Чтобы исключить смещение и изменение конфигурации опалубки в процессе заливки с внешней стороны выставляются распоры, а параллельные составляющие фиксируются между собой брусками. Пример устройства опалубки для фундамента
  3. При укреплении ростверка также используют сваренный или связанный арматурный каркас из металлических рифлёных прутов диаметра 8-10 мм, при этом края горизонтальных прутов прочно связывают с арматурой опорных элементов в единую конструкцию. Размер вертикальных прутов должен соответствовать высоте планируемого фундамента.
  4. Заливка бетонным раствором должна быть выполнена единовременно, чтобы исключить горизонтальное расслоение. В процессе заполнения раствор трамбуется либо вручную, либо специальным миксером.
    При заливке больших объёмов целесообразно использовать бетон заводского производства или для его изготовления применять бетономешалку, чтобы сократить время и трудоемкость процесса.
    По факту завершения заполнения необходимо проконтролировать горизонтальный уровень поверхности. Процесс заливки опалубки фундамента бетонным раствором

После того как бетон застынет, свайный фундамент готов для дальнейшего строительства, но не ранее, чем через 7-10 дней после окончания работ.
При обустройстве ростверка другого типа отличия будут лишь в способе строительства опалубки и укладки армирующих элементов.


Выполняя пошагово все действия, обустройство основания под новое здание можно выполнить самостоятельно в кратчайшие сроки.


Таким образом, фундамент на буронабивных сваях является практически идеальным решением для строительства частного дома или хозяйственных построек. Его несложная технология позволяет выполнить все работы своими руками, обеспечив при этом сочетание надёжности и экономичности.

Арматурные каркасы буронабивных свай, чертежи,  схемы 

Практически для всех типов фундаментов требуется арматурный каркас. Это соединение стержней, в котором может использоваться сварочный аппарат или специальная проволока. Каркас может быть собран прямо на строительной площадки или в специализированном цеху. Иногда для основания требуется каркас из неметаллической арматуры. В этом материале мы подробно рассмотрим виды этой конструкции, ознакомимся с положительными моментами, а также разберем расчет. Обычно арматурный каркас является обязательным требованием при строительстве фундамента из буронабивных свай.

Подробная схема изготовления конструкции. На изображении присутствуют сборный и монолитный столбчатый фундамент.

 

Главная задача арматурного каркаса заключается в обеспечении прочности будущей постройки. Также конструкция повышает сопротивление к механическим воздействиям.

Виды каркасов

Сегодня используется два вида конструкции из арматуры:

  1. Пространственные (также в строительстве их называют объемными).
  2. Плоские.
Схема для фундамента из буронабивных свай.

 

Выбор арматурного каркаса зависит от типа будущего сооружения. Определить подходящую конструкцию можно только после завершения расчетов. Ниже подробно расписаны оба вида.

Пространственные (объемные) конструкции

Назначений у этого типа достаточно много, он применяется для создания конструкций из металла клеточного типа, для сооружения промышленных объектов, где требуется заливка большого количества цементного раствора. Также арматурный объемный каркас применяется при строительстве фундамента из буронабивных свай, который вы можете подробно изучить на схеме.

Обычно для создания пространственных конструкции используются металлические стержни с толщиной 8 и 12 миллиметров. За счет использования этих размеров, можно получить различные сваи. При необходимости диаметр можно регулировать. Каркасы для буронабивных свай изготавливаются при помощи специального оборудования, в работе участвуют автоматизированные линии сварки.

Плоские каркасы

Изготовление этой конструкции требует два или более слоев стержней. Соединение здесь выполняется при помощи прутков. Продольные арматурные стержни каркаса необходимо скреплять поперечными, наклонными или непрерывными прутьями. Чтобы узнать, какой тип прутьев нужен для конкретной конструкции, необходимо выполнить расчет арматурного каркаса.

Схема для основания из буронабивных свай. Обычно конструкция из арматуры применяется именно с этим типом фундамента.

 

Плоский тип применяется в линейных конструкциях, где необходимо увеличить прочность. Также плоские арматурные каркасы используются в разных типах основания (плита, столбчатое, ленточное). Эта конструкция способствует увеличению прочности будущей постройки.

Преимущества

Арматурные конструкции имеют множество плюсов, которые не только укрепляют будущую конструкцию, но и упрощают строительство. Основные преимущества у арматурного каркаса следующие:

  • фундамент, укрепленный арматурой, можно возводить на любой почве;
  • существенно сокращается цикл строительных работ – требуется меньше рабочих;
  • повышается рентабельность производства;
  • повышение скорости установки сооружений из железобетона.

 

Как проводится расчет

Чтобы выполнить расчет арматурного каркаса, необходимо заранее знать параметры будущей постройки. Главным моментом является тип основания. Если он уже определен, то можно проводить расчет количества прутья. Далее определяется диаметр и класс прутьев.

Совет! Для плитного основания используется только прутья с ребристой поверхностью. Что касается диаметра, то он должен быть не менее 10 миллиметров.

Диаметр влияет на прочность всего каркаса, чем толще будут прутья, тем прочнее будет конструкция. Чтобы определить толщину, необходимо знать тип почвы, на которой будет стоять сооружение, а также вес будущей постройки. Если грунт плотный, то здесь можно использовать разные типы фундаментов, так как почва практически не будет деформироваться при нагрузках от постройки.

На этом изображении показан процесс изготовления обсадных труб для строительства промышленного объекта.

 

Расчет проволоки для соединения арматуры проводится только тогда, когда известно, сколько требуется прутьев для каркаса. В месте, где пересекаются вертикальный пруток и два горизонтальных, требуется два проволочных соединения. К примеру, в нижнем и верхнем поясах каркаса присутствует по 960 мест соединения. Для одного соединения необходимо 15 сантиметров проволоки, которая сгибается пополам. В итоге расчет будет следующим: 0,3x960x2=576.

 

В любом случае, расчетом должен заниматься профессионал, даже если речь идет о частном строительстве буронабивных свай, где изготовление берет на себя хозяин будущего дома. Если расчет будет выполнен неверно, то будущая конструкция не будет прочной, в итоге дом быстро разрушится.

Как проходит армирование

После проведения расчетов количества прутьев и буронабивных свай, можно приступать к армированию Изготовление проходит следующим образом:

  1. Устанавливать каркас необходимо только после монтажа опалубки фундамента. Внутреннюю поверхность следует обложить специальным материалом, препятствующем загрязнению. Обычно строители выбирают для этих целей пергамин, который следует крепить специальным строительным степлером. Процесс проходит одинаково и для ленточного фундамента, и для конструкции из буронабивных свай.
  2. Далее по всей длине траншеи под фундамент необходимо сформировать арматурный каркас, который выглядит как прямоугольники из металла. Крайние прутья необходимо устанавливать минимум на 5 сантиметров от краев траншеи. Вертикальные прутья необходимо вбивать таким образом, чтобы расстояние между ними было примерно 25-30 сантиметров. Далее к ним крепятся перемычки, в результате образуется решетка из арматурных прутьев.

    На фото показан готовый каркас для фундамента из буронабивных свай. Изготовление может проходить в цеху или на строительной площадке.

  3. Для скрепления прутков между собой используется проволока или сварка, в зависимости от типа основания. К примеру, для буронабивных свай понадобится сварка. Определить правильное расстояние до наружной стороны основания бывает довольно сложно, поэтому мастера рекомендуют использовать кирпичи, на которые потом необходимо установить прутья. В итоге получается ровная решетка.
  4. Во время создания конструкции из прутьев стоит помнить и о вентиляционных отверстиях. Также одновременно с каркасом изготавливаются коммуникационных отводов. Основной этап завершен, теперь можно переходить к заливке бетона. Здесь понадобится цементная смесь M300 или M200. В любом случае, это определяется во время составления плана фундамента.
Как видно на фото, конструкция для ленточного фундамента является более простой для строительства своими руками.

 

Чтобы лучше освоить материал, рекомендуем ознакомиться с видеоматериалами и схемами, на которых подробно показан процесс изготовления арматурного каркаса. Если есть желание заниматься строительством своими руками, то расчеты стоить доверить профессионалам из строительных бюро. От правильных расчетов зависит прочность дома, а значит и безопасности его жильцов.

Буронабивной фундамент своими руками

Фундамент это основа, на которой находится здание или сооружение и которая сможет принимать всю нагрузку от вышележащих конструкций, а применяя буронабивные сваи, вы сможете передать общую нагрузку своей постройки на грунт. Рекомендуется использовать этот вариант фундамента на участках со слабым грунтом или болотистой местностью. А при постройке каркасных домов или строений на крутых склонах, применение такого вида фундамента является рациональным решением. 

схема буронабивнонго фундамента

Для того чтобы возвести буронабивной фундамент своими руками вам потребуется тщательно разметить расположение свай. Скважину для сваи нужно сделать, используя специальную технику или с помощью ручного бура. Диаметры скважин зависят от тяжести здания и могут варьироваться от 15 см до 45 см. На данный момент хорошо распространился метод бурения скважин с технологией ТИСЭ, благодаря которой вы бурите скважину диаметром 20 см, а ближе к самому дну диаметр расширяется до 40 см. Этот эффект получается за счет использования плуга в фундаментном буре ТИСЭ-Ф. Подобная техника позволяет увеличить несущую способность сваи в несколько раз. Глубина скважины зависит от уровня промерзания грунта, но в любом случае она не должна быть меньше 2 ментров. В этом виде фундамента возможна заливка с опалубкой, а также без ее использования. Материал, который можно использовать для опалубки, это: асбестовая труба, тес, а так же трубка из рубероида связанная между собой скрепками. Также используется метод с асбестовой трубой, которую наполняют на 1/3 бетонным раствором, затем приподнимают ее вверх, что дает дополнительную опору для вашей сваи. Этот метод используется в основном вместе с технологией ТИСЭ. Обязательное использование опалубки требуется при рыхлом грунте.  Если в дальнейшем, по проекту, вы собираетесь делать оголовок сваи, то вам потребуется опалубка, которая представляет собой деревянный короб, с размерами 60x60x60 см.

буронабивной фундамент под дом

Выполняя буронабивной фундамент своими руками помните что на них будет воздействовать сила сжатия, но если они находятся на глубине ниже промерзания грунта, то они свободно выдержат подобную нагрузку. С пучинистым грунтом дело обстоит иначе – нагрузка подается на разрыв сваи, из-за чего появляется необходимость вертикального армирования. Для этого используют ребристую арматуру, с помощью которой создается прочная конструкция и опускается в скважину в момент заливки фундамента под баню. Если в дальнейшем вы собираетесь делать заливной ростверк, то в верхней части сваи требуется выпускать концы арматуры, которые позволят привязаться к столбам фундамента ростверк.

Буронабивной свайный фундамент с монолитным ростверком по технологии ТИСЭ своими руками:

что это такое, плюсы и минусы+видео

В ряде случаев ленточный, монолитный и другие варианты фундаментов соорудить невозможно. Буронабивное основание является единственным верным решением в таких ситуациях. Перед его монтажом нужно освоить технологию строительства этого вида фундаментов.

Устройство буронабивных свай

Для строительства многоэтажных или частных домов могут использоваться буронабивные сваи. Они представляют собой вариант фундаментной опоры в виде монолитных конструкций, имеющих цилиндрическую форму и арматурный каркас. С помощью этих элементов создают свайно-ленточные основания для домов различного типа.

Свайно-ленточное основание состоит из определённого количества заглублённых опорных столбов, на которые сверху заливается бетонная лента

Фундамент на буронабивных сваях сооружают в ряде случаев, когда строительство иного основания отличается сложностью или просто невозможно. К таким ситуациям относятся следующие:

  • высокий уровень грунтовых вод, то есть их залегание на глубине 2 м и менее;
  • слабая несущая способность грунта на участке;
  • вес возводимого здания более 350 т;
  • незначительный уклон участка для застройки;
  • большая глубина промерзания грунта.

В таких ситуациях устройство буронабивных свай для фундамента является оптимальным решением, ведь они обеспечивают повышенную устойчивость сооружения. При этом основание имеет и серьёзный недостаток, выраженный в отсутствии возможности устроить подвальное помещение.

Если правильно подобрать параметры свай, фундамент выдержит даже очень тяжёлые строения

В промышленном строительстве сваи устанавливают с помощью специального оборудования. При частных домах большинство работ проводится вручную. Важно учитывать свойства грунта. Например, если почва легко осыпается, то потребуется опалубка для заливки свай.

Фундамент на сваях буронабивного вида

Строительство любого фундамента предполагает проведение разметки участка, во время которой все проектные размеры переносят с чертежа на местность. Это очень просто сделать если строение имеет прямоугольную или квадратную форму. В углах будущего здания устанавливают колышки и натягивают между ними верёвку, проверяя угол и ровность каждой стороны. Затем надо определить расположение каждой сваи, расстояние между которыми должно составлять 1–1,5 м. Эти точки также отмечают колышками. После этого проводится обноска, необходимая для жёсткого закрепления осей здания в перпендикулярных направлениях. Крепление обноски размещается на 2 м дальше, чем места для свай.

Обноска участка обозначает его границы и производится при помощи деревянных конструкций, закрепляемых на расстоянии 2 м от линий расположения свай

Для установки обноски следует использовать П-образные конструкции, опоры которых закапывают в землю, а на поперечинах фиксируются шнуры, обозначающие оси здания. Обноска осуществляется со всех четырёх сторон параллельно каждой разбивочной оси.

Буронабивное основание с ростверком

Одним из вариантов буронабивного фундамента является основание, имеющее ростверк из монолита или бруса. Основа подходит для строительства лёгких зданий из дерева или кирпича. Фундамент возможно сделать своими руками без применения спецтехники, что делает его востребованным для строительства частных домов.

Монолитный ростверк связывает все сваи в единое целое и обеспечивает надежность сооружения

Устройство свайно-ростверкового фундамента производят в следующей последовательности:

  1. Разметка и обноска участка.
  2. Бурение скважин в отмеченных местах. Для свай диаметром менее 350 мм можно использовать садовый бур.
  3. Укрепление стенок скважины опалубкой. Для этого можно использовать лист рубероида, свёрнутый цилиндром.

    Чтобы стенки скважины не осыпались в процессе заливки, в неё устанавливают свёрнутые листы рубероида

  4. Армирование. Для свайного фундамента используют продольный каркас, состоящий из прутьев с сечением 12–16 мм. Их количество зависит от диаметра сваи, но наиболее универсальным вариантом является применение 4–6 прутьев на одну сваю.

    Для армирования используют каркас из четырёх или шести продольных прутов в зависимости от диаметра скважины

  5. Заливка бетоном. Если количество свай не очень велико, бетон можно приготовить вручную. В противном случае лучше воспользоваться услугами миксера с насосом. Если сваи заливаются вместе с ростверком, то без привозного раствора не обойтись. Прежде чем выполнять следующие операции, сваям надо дать схватиться в течение 5–7 дней.
  6. Создание опалубки под ростверк. Поскольку ростверк будет находиться на определённом расстоянии от земли, опалубка должна выполняться в виде короба, закреплённого на проектной высоте.

    Опалубку необходимо прочно закрепить, чтобы она смогла выдержать вес бетона

  7. Укладка армирующего каркаса. Каркас делается по той же схеме, что и для свай. В местах заложения опор он должен связываться с каркасами свай.

    Армирующий каркас укладывается по всей длине опалубки и перевязывается с каркасом каждой сваи

  8. Заливка ростверка. Заполнение опалубки раствором необходимо выполнить за один день, иначе бетон схватится слоями и не достигнет расчётной плотности. Поэтому использование бетонного насоса на этом этапе неизбежно.

    Для заливки ростверка требуется большой объём бетона, поэтому необходимо вызвать миксер со специальным насосом

  9. После заливки бетон необходимо проштыковать для удаления пузырьков воздуха. Это можно сделать глубинным вибратором или обычным арматурным прутом. Далее поверхность ростверка надо выровнять и закрыть гидроизолирующей плёнкой или рубероидом.
  10. Через 28–30 дней ростверк полностью застынет, и можно будет приступать к дальнейшему строительству.

    Ростверк из монолитного ленточного каркаса приобретает окончательную прочность примерно через месяц после заливки

Ростверк также может быть выполнен из бруса, размеры которого зависят от веса здания. Крепление деревянных элементов осуществляется на оголовки, зафиксированные на торцах свай.

Видео: ростверк на буронабивных сваях

Ленточный буронабивной фундамент

Для небольшого строения, дачи или частного дома подходит ленточное основание на буронабивных сваях. Конструкция представляет собой опорные сваи, укреплённые в почве и соединённые монолитным ростверком из бетона. Для создания такого фундамента нет необходимости в тщательном выравнивании участка, а основание закладывается ниже уровня промерзания грунта. Строительство отличается небольшим объёмом трудозатрат. Ленточный буронабивной фундамент также не требует многочисленных расчётов, ведь для определения параметров основания достаточно рассчитать диаметр свай, подобрать уровень их заглубления и количество опор.

В ленточном варианте фундамента бетонный ростверк опирается не только на сваи, но и на поверхность грунта

Строительство ленточного буронабивного фундамента предполагает следующие основные действия:

  1. Проведение разметки и обноски, в процессе которых отмечаются места расположения всех свай.
  2. Выкапывание траншеи, ширина которой зависит от диаметра свай и толщины стен.
  3. Бурение скважин для установки свай. Глубина скважин может достигать 2 м.

    Если сваи имеют небольшой диаметр, их можно сделать при помощи обычного садового бура

  4. По стенкам скважин укрепляют гильзу из рубероида, а на дно засыпают небольшой слой песка.
  5. В скважину устанавливают арматурный каркас.

    Перед заливкой в скважину помещают опалубку из рубероида, а затем устанавливают арматурный каркас

  6. По окончании всех подготовительных работ сваю заливают бетоном.

    Заливать каждую сваю нужно за один приём, иначе она не будет иметь нужной прочности

Для высыхания конструкции потребуется 4–5 недель. После этого можно продолжать строительство здания согласно проекту.

Видео: свайно-ленточный фундамент

Особенности бурения скважин

Бурение скважины является одним из основных этапов возведения буронабивного фундамента. Необходимо определить диаметр свай, уровень их заглубления, а также предусмотреть после бурения гидроизоляцию. Основные параметры свай, часто использующиеся в строительстве, предполагают диаметр 280 мм и глубину до 2 м. Сваи с такими параметрами оптимальны для строительства двухэтажного здания.

В большинстве случаев для строительства двухэтажного дома достаточно залить сваи диаметром 280 мм и глубиной ниже уровня промерзания почвы

При строительстве частного дома бурение может осуществляться вручную с помощью ручного мотобура. Это приспособление позволяет создать аккуратные скважины для оперативного монтажа свай.

Использование мотобура существенно сократит затраты времени и сил на устройство скважин под сваи

Этот инструмент имеет специальное приспособление, с помощью которого легко сделать расширение в области основания опор. Диаметр этой части может составлять до 500 мм, что оптимально для строительства массивных конструкций.

Видео: буронабивные сваи, очистка и заливка своими руками

Преимущества и недостатки бурозаливного фундамента

Каждый вариант основания для здания обладает своими преимуществами и недостатками. Бурозаливной фундамент востребован в строительстве на участках со сложным грунтом, но перед сооружением этой основы следует знать её основные особенности:

  • высокий уровень надёжности;
  • защита здания от грунтовых вод;
  • пригодность для строительства на мягком грунте;
  • невысокие затраты на строительные материалы;
  • непродолжительный период возведения.

Основной минус бурозаливного основания заключается в том, что такой фундамент подходит лишь для малоэтажного строительства нетяжелых зданий. Именно поэтому его часто используют при возведении частных домов до трёх этажей в высоту.

Видео: особенности, плюсы и минусы свайного фундамента

Строительство буронабивного фундамента проводится при сооружении лёгких зданий на разных типах грунта. Такое основание обеспечивает надёжность, долговечность и устойчивость жилому дому.

Оцените статью: Поделитесь с друзьями!

Определение буронабивных свай | ИНФОПГС

Буронабивные - сваи железобетонные, устраиваемые в грунте путем заполнения пробуренных скважин бетонной смесью или установки в них железобетонных элементов.
                                     
Область применения


Буронабивные сваи различных видов рекомендуется применять для фундаментов зданий и сооружений любого назначения в таких случаях:

  • при больших сосредоточенных вертикальных и горизонтальных нагрузках;
  • на площадках со сложными условиями строительства, затрудняющими или делающими невозможным применение забивных свай, в том числе когда в пределах строительной площадки залегают плотные грунты (несущий слой под нижними концами свай), что резко меняет отметки погружения свай.
  • когда необходима прорезка сваями насыпей с твердыми включениями или прорезка слоев грунта природного сложения с часто встречающимися валунами и другими твердыми включениями, не позволяющими производить забивку;
  • на стесненных площадках, где сложно транспортировать и устанавливать забивные сваи;
  • вблизи существующих зданий и сооружений, в которых могут возникнуть недопустимые деформации элементов несущих конструкций или оборудования при забивке или вибропогружении свай

К недостаткам буронабивных свай относятся:

  • трудности в контроле качества выполняемых работ в условиях массового изготовления свай;
  • малое удельное сопротивление буронабивных свай на 1 м3 тела сваи;
  • высокая удельная стоимость свай на 1 кН несущей способности;
  • сложности, связанные с необходимостью бетонирования и прогрева бетонной смеси в полевых условиях в зимнее время;
  • трудности в изготовлении свай при наличии песчано-глинистых грунтов, залегающих ниже уровня подземных вод.

Буронабивные сваи рекомендуется применять преимущественно длиной более 10 м.



При устройстве буронабивной сваи последовательно выполняются следующие строительные процессы:

  • бурение скважины
  • очистка забоя от шлама или его уплотнение
  • установка патрубка для образования головы сваи
  • опускание в скважину арматурного каркаса и бетонолитной трубы
  • бетонирование скважины методом вертикального перемещения трубы (ВПТ)
  • удаление верхнего слоя бетона.

Расстояние в свету между стволами буронабивных свай должно быть не менее 1,0 м (п.7.9 СНиП 2.02.03-85)



В зависимости от грунтовых условий буронабивные сваи устраивают одним из следующих трех способов:

В маловлажных структурно устойчивых глинистых грунтах бурение скважин можно производить без устройства обсадных труб, т.к. вследствие структурной прочности грунта, стенки скважины определенное время могут находится в устойчивом состоянии
В водонасыщенных глинистых грунтах бурение скважин осуществляется под защитой глинистого раствора или с использованием обсадных труб.

 

Буронабивные сваи должны выполняться из бетона класса не ниже В15 по прочности на сжатие (на плотных заполнителях) и марки по водонепроницаемости W6. Бетонная смесь должна удовлетворять требованиям ГОСТ 7473 и приготовляться на щебне фракции 5 - 30 мм (п.15.3.25 СП 50-102-2003)

Чертеж буронабивной сваи
 

[PDF] ПИЕР \ "1 \" ДЕТАЛИ СКВАЖИВАЮЩЕЙ СВАИ

1 0,131 P2001 СПИРАЛЬНАЯ СТРЕЛКА 0,075M. O .. I 46-P3601 PIER OLUMN PIER OLUMN ORE PILE RERS 36-P3601 VERTIL RS SPE EQULLYE P ...

0,131

AP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C. I

0,150

46-AP3601

КОЛОНКА ПИЕРА

PP2501 РАСПОРКА AP2501 РАСПОРКА

J

PP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛ @ 0,075M. O.C.

0,100

КОЛОНКА ПИЕРА

0.200

2-AP2502 ОГРАНИЧИТЕЛЬНОЕ КОЛЬЦО K

72-PP2001 ВЕРТИКАЛЬНЫЕ ШИНЫ, РАВНО РАЗМЕЩЕННЫЕ

0,100

УПЛОТНИТЕЛЬНОЕ КОЛЬЦО с отверстиями

2-PX2502 УПЛОТНИТЕЛЬНОЕ КОЛЬЦО

0,01 0,02 D PITCH @ 0,075 М. O.C.

A

A

0,075 1,800

ВРЕМЕННОЕ ОКНО НА СТАЛЬНОМ КОРПУСЕ ДЛЯ ПОТОКА ГРЯЗНОГО БЕТОНА

A

ДЕТАЛЬ ДЕТАЛЬ ВЕСА

PP2001 ПЕРСОНАЖНАЯ СТРЕЛКА.075M. O.C.

PP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C.

PP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C.

72-PP2001 РАВНО РАЗМЕЩЕННЫЕ ВЕРТИКАЛЬНЫЕ ШИРИНЫ

72-PP2001 РАВНОМЕРНЫЕ ШИНЫ

2-PX2502 ЗАЖИМНОЕ КОЛЬЦО

2-PX2502 ОГРАНИЧИТЕЛЬНОЕ КОЛЬЦО

ПЕРЕДНЕЕ КОЛЬЦО PC2001 ПРИСОЕДИНИТЕЛЬНОЕ КОЛЬЦО O.C.

0,075

0,075

0,075

0,075

1,800

РАЗДЕЛ

B

1: 40M

МАСШТАБ

1.800

РАЗРЕЗ

1: 40M

МАСШТАБ

C

РАЗДЕЛ

1: 40M

РАЗДЕЛ

1: 10M

ДЛИНА СВАЯННОГО СВАЯ = 12.00 CE

SP

0L

70

72-PP3601 ДЛИНА ОТВЕРСТИЯ СВАИ = 12.00 М.

PP2501 РАСПОРКА

36-PC3601 ВЕРТИКАЛЬНЫЕ СТЕРЖНИ, РАВНО РАЗМЕЩЕННЫЕ

0,150

ШИНЫ PPRUPS @. O.C.

PP2501 РАСПОРКА

СВАРНАЯ ЧАСТЬ

S = 1/2 БАР ДИАМЕТР E = 8 мм

PP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0.075M. O.C.

B

B

- УПЛОТНИТЕЛЬНОЕ КОЛЬЦО И РАСПОРНЫЕ КОЛЬЦА КАЖДЫЕ 2,00 М - ДЛИНА ОТРЕЗА: 1,20 М - СОЕДИНЕНИЕ ПЕРЕКРЕПЛЕНИЯ ДЛЯ СПИРАЛЬНОЙ МИН. 700 мм - РАСПОРНЫЕ КОЛЬЦА И СОЕДИНИТЕЛЬНЫЕ КОЛЬЦА, ПОДЛЕЖАЩИЕ СВАРКЕ

ДЕТАЛЬ СПИРАЛЬНОГО СОЕДИНИТЕЛЯ

РАЗДЕЛ

E

УКАЗАНИЯ НА РЕЗИНУ:

СПИРАЛЬНЫЕ КОЛЬЦА ДОЛЖНЫ БЫТЬ ДИАМЕТРОМ 12 X ПОЛНАЯ ПРОЧНОСТЬ

Н.

S

СВАРНАЯ ЧАСТЬ ДИАМЕТР 12 Х

ПОСЛЕДОВАТЕЛЬНОСТЬ КОНСТРУКЦИИ:

ЭТАП 1: ЗАЛИВКА ПРОФИЛЬНОЙ СВАИ ДО УРОВНЯ

Сварка 8 мм

ПЕРЕСЕЧЕНИЕ НИЖНЕГО КОЛЕСА УПЛОТНИТЕЛЬНОЙ КОЛОНКИ СТАКАНАЭТО ДЕЛАЕТСЯ ПРЕДОСТАВЛЕНИЕМ ВРЕМЕННОГО ОТКРЫТИЯ КОРПУСА ДЛЯ СВОБОДНОГО ПОТОКА ГРЯЗНОГО БЕТОНА. ПРЕДУСМОТРЕТЬ СТРОИТЕЛЬНЫЙ СТЫК НА ЭТОМ УРОВНЕ.

ELEVATION PP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C.

C

C РАЗМЕРЫ ПОЛУПОКАЗАТЕЛЯ

МАСШТАБ ВЫСОТА

1: 50M

ЭТАП 2: УСТАНОВИТЕ АРМАТУРА И ОПАЛУБКУ, КРЫВАЮЩИЕ

ПОЛОВИНА ПИЛЬТОВ РЕИНФОРМЕНТ

"ПРОФИЛЬ

"

"ПРОФИЛЬ

"

" РАСПОЛОЖЕНИЕ:

1: 50M

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНЫ

УПРАВЛЕНИЕ ОБЩЕСТВЕННЫХ РАБОТ И МАГАЗИНОВ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОФИС

МЕЖДУ ВЕРХНЕЙ ПЛОЩАДЬЮ КРЫЛАЗАЛИВНЫЙ БЕТОН ВЕРХНЕЙ ЧАСТИ РАБОЧЕЙ СВАИ И КОЛОННЫ ДО ДНА КОПИНГА.

РАЗРАБОТАНО:

ПРЕДСТАВЛЕНО:

ПЕРЕСМОТРЕНО В ПРЕДСТАВЛЕНИИ:

РЕКОМЕНДАЦИЯ УТВЕРЖДЕНИЯ:

КОМПЛЕКТ №

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

ПИЕР "1" ДЕТАЛИ СКВАЖИНЫ

ПРОВЕРИЛ:

NENETTE K.IGNA

JULIETA A. DESEO ENGINEER V ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ASST. DISTRICT ENGINEER

TRECE MARTIRES CITY

ROMUALDO E. BERNARDO ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ДИЗАЙНА

ДАТА:

ДАТА:

SAMSON L. ДИРЕКТОР

ИНЖЕНЕР РАЙОНА

ДАТА:

ДАТА:

12 22

КОПИРОВАНИЯ 5.110

0.660

0,995

3-PB1201 B

0,660

1,800

PB3601 X 2000 @ 300A DOWELS 4-PB1202 B

1,800

3-PB1203 B 5-PB3000

2000 PB3000

003 300 DOWELS A 4-PB1202 B

0,940

0,425

3-PB1205 B

1,750

0,050

0,805

3-PB1201 B 20-PB3201 TOP BAR B

02 18-PB2001 A

PB1601 СТРЕЛКИ @ 0.150М. O. C. C

1,800

1,800

7-PB1206 B

18-PB2001 A 20-PB3202 НИЖНЯЯ СТАНЦИЯ B 20-PB3202 НИЖНЯЯ СТРЕЛКА B PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛ @ 0,075M. O.C.

A 1.500

A

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИРИКИ, РАВНО РАЗМЕЩЕННЫЕ

1.500

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0,075M. O.C. D

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0,075M. O.C.

B

B

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИРИКИ, РАВНО РАЗМЕЩЕННЫЕ

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИРИНЫ, РАВНО РАЗМЕЩЕННЫЕ E

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛ @ 0.075M. O.C.

B

B

0,075

1,300

0,075

1,300 1,300

РАЗМЕРЫ СЕКЦИИ

1,300

РАЗМЕР РАЗРЕЗА

000

000

000

000

000 РАЗМЕР

000

000 ПРОДАЖА : 40M

2-PD2001 B

1,300

PD1201 @ 0,30M. O.C. F 2-PD2003 A

1.300

2-PD2004 A CONST. СОЕДИНИТЕЛЬ

56-PC3601 ВЕРТИКАЛЬНЫЕ ПРУСЫ, РАВНО РАЗМЕЩЕННЫЕ B

56-PC3601 ВЕРТИКАЛЬНЫЕ ПРУСЫ, РАВНО РАЗМЕЩЕННЫЕ B

2-PC2502 УПОРНОЕ КОЛЬЦО D

2-PC2502 УПОРНОЕ КОЛЬЦО PC2502

УПОРНОЕ КОЛЬЦО D

.075M. O.C. D

2-PD2002 A

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C. D

PC2501 РАСПОРКА J

A

7-PD2005 X 1000 ДОПОЛНИТЕЛЬНЫХ УСТАНОВОК НА КАЖДОМ ЛИЦЕ

PB3601 X 2000 @ 300 КАНАЛОВ 0,250

0,300

0,075

0,075

20 мм. ПРЕДВАРИТЕЛЬНАЯ ЗАПОЛНЕНИЕ СОЕДИНЕНИЙ

МАСШТАБ

1: 25M

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

РАЗДЕЛ AA

КОЛОННА «2»

РАЗДЕЛ ДИАФРАГМЫ

СОДЕРЖАНИЕ СОДЕРЖАНИЕ СОДЕРЖАНИЕ

СОДЕРЖАНИЕ СОДЕРЖАНИЯ

0.075

0,250

0,800

ОТДЕЛ ОБЩЕСТВЕННЫХ РАБОТ И МАГИСТРАЛЬНЫХ ДОРОГ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОТДЕЛ

0,075

PC2501 SPACER J

РАЗРАБОТАНО:

МАСШТАБ

РАССМОТРЕНИЕ КАК ПРЕДСТАВЛЕННОЕ:

1: 25M

РЕКОМЕНДАЦИЯ УТВЕРЖДЕНИЯ:

НАБОР №

УТВЕРЖДЕНО:

SHT NO.

РЕЙНАНТЕ Б. САЛАЗАР, старшийПРОГРАММА РАСШИРЕНИЯ ПРОГРАММЫ МЕСТНОЙ ИНФРАСТРУКТУРЫ КАДИВСКОГО МОСТА ПО ПРАВИТЕЛЬСТВУ. МАНГУБАТСКАЯ ДОРОГА,

ENGINEER II

PIER "2" ДЕТАЛИ КОЛОННЫ, КОПИРОВКИ И ДИАФРАГМЫ

ПРОВЕРИЛ:

NENETTE K. IGNA

JULIETA A. DESEO DESEO ENGINEER 9000 DESEO DESIGN CHIEF. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л. ХЕБРА, CESO IV

OSCAR U.ДЕЛА КРУЗ

ДИРЕКТОР III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ИНЖЕНЕР ПО РАЙОНУ

ДАТА:

ДАТА:

11 22

КОПИНГ 5.110

0.660

0,995

0,660

0,995

PB3601 X 2000 @ 300 А ШТАНГИ ​​4-PB1202 B

1,800

3-PB1203 B 5-PB1204 B

0,300

PB3601 X 2000 @ 300 DOWELS A 4-PB1202 B

0,940

0,940

-PB1205 B

1.750

0,050

0,805

3-PB1201 B 20-PB3201 TOP BAR B

20-PB3201 TOP BAR B

18-PB2001 A

PB1601 СТРЕЛКИ @ 0,150M. O. C. C

1,800

1,800

7-PB1206 B

18-PB2001 A 20-PB3202 НИЖНЯЯ СТАНЦИЯ B 20-PB3202 НИЖНЯЯ СТРЕЛКА B PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛ @ 0,075M. O.C.

A 1.500

A

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИРИКИ, РАВНО РАЗМЕЩЕННЫЕ

1.500

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0.075M. O.C. D

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0,075M. O.C.

B

B

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИРИКИ, РАВНО РАЗМЕЩЕННЫЕ

36-PC3601 ВЕРТИКАЛЬНЫЕ ШИНЫ, РАВНО РАЗМЕЩЕННЫЕ РАВНО E

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛ @ 0,075M. O.C.

B

B

0,075

1,300

0,075

1,300 1,300

РАЗМЕРЫ СЕКЦИИ

1,300

РАЗМЕР РАЗРЕЗА

000

000

000

000

000 РАЗМЕР

000

000 ПРОДАЖА : 40M

2-PD2001 B

1.300

PD1201 @ 0,30 М. O.C. F 2-PD2003 A

1.300

2-PD2004 A CONST. СОЕДИНИТЕЛЬ

56-PC3601 ВЕРТИКАЛЬНЫЕ ШИНЫ, РАВНО РАЗМЕЩЕННЫЕ B

56-PC3601 ВЕРТИКАЛЬНЫЕ ШИНЫ, РАВНО РАЗМЕЩЕННЫЕ B

2-PC2502 УПОРНОЕ КОЛЬЦО D

2-PC2502 УПОРНОЕ КОЛЬЦО PC2502

УПОРНОЕ КОЛЬЦО, D

O.C. D

2-PD2002 A

PC2001 ШАГ СПИРАЛЬНЫХ СТРЕЛК @ 0,075M. O.C. D

PC2501 РАСПОРКА J

A

7-PD2005 X 1000 ДЕТАЛЕЙ НА КАЖДОМ ЛИЦЕ

PB3601 X 2000 @ 300 ДУБЕЛЕЙ 0.250

0,300

0,075

0,075

ТОЛЩ. ПРЕДВАРИТЕЛЬНАЯ ЗАПОЛНЕНИЕ СОЕДИНЕНИЙ

МАСШТАБ

1: 25M

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

РАЗДЕЛ AA

ЧАСТЬ "1" КОЛОННА

РАЗДЕЛ ДИАФРАГМЫ

СОДЕРЖАНИЕ СОДЕРЖАНИЯ

СОДЕРЖАНИЕ СОДЕРЖАНИЯ

0,075

0,250

0,800

УПРАВЛЕНИЕ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ КАВИТЕ I РАЙОННОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ

0.075

PC2501 SPACER J

РАЗРАБОТАНО:

МАСШТАБ

ПРЕДСТАВЛЕН:

РАЗДЕЛ BB

1: 25M

МАСШТАБ

ПЕРЕСМОТРЕНО В КАЧЕСТВЕ

ПРЕДНАЗНАЧЕНО

:

ПРЕДНАЗНАЧЕНО

:

НЕТ.

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

ПИЕР "1" ДЕТАЛИ КОЛОННЫ, КОЛОНКИ И ДИАФРАГМЫ

ПРОВЕРИЛ:

NENETTE K.IGNA

JULIETA A. DESEO ENGINEER V ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ASST. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л. ХЕБРА, CESO IV

OSCAR U.

ДАТА:

ДАТА:

10 22

ГРАФИК УСИЛЕНИЯ И ОЦЕНКА КОЛИЧЕСТВА ДИАГРАММА ИЗГИБА СТРУКТУРА РАЗМЕРЫ КОМПОНЕНТОВ НЕ ИСПОЛЬЗУЮТСЯ РЕШКАМИ КОПИРОВАНИЕ (ПОДЪЕМ

)

МАРКА

мм

AB2801

КОЛИЧЕСТВО

28

AB2802

a

20

28

20

b

B b

УСИЛЕНИЕ AS2000

b

b КОНФИГУРАЦИЯ ASN

b

C

КАК ПОКАЗАНО

C

РАЗМЕРЫ ПАНЕЛЯ (М) a

b

c

d

e

f

ДЛИНА P ER BAR (M)

6.02

1.00

-

-

-

-

8.02

6.02

1.00

-

-

-

-

TH ВЕС УСТАНОВКИ (кг / м)

ОБЩАЯ ВЕС (кг)

4,833

160,40

ОБЪЕМ БЕТОНА (куб. М.)

775,21

4,833

СХЕМА ИЗГИБА РАСЧЕТНАЯ ЧАСТЬ РАЗМЕР КОНСТРУКЦИИ

РАЗМЕР (мм)

КОЛИЧЕСТВО

a D

-

-

-

-

6.02

96,32

4,833

465,51

W1601

16

52

0,20

C

3,31

0,30

-

0003

000

000

0003

000

0003

000

000

1,578

320,84

AB1601

16

82

.015

D

0,95

1.4000

0,20

-

-

-

10

418,20

1,578

659,92

W1602

16

16

КАК ПОКАЗАНО

A

2,85

-

-

000

000

000

0003

000

0003

000

0003

000

1,578

71,96

AB1201

12

12

КАК ПОКАЗАНО

C

0,89

0,5000

-

-

-

-

-

-

89

22,68

0,888

20,14

W1603

16

4

КАК ПОКАЗАНО

F

2,80

0,25

1,35 -

000

0003

000

000

000

000

1,578

27,77

W1604

16

22

0,25

C

0,20

1,50

-

-

-

.

-

.20

70,40

1,578

111,09

W1605

16

24

0,25

H

0,30

0,17

0,97 0,20 9,602000 0,31

0,97 0,20 9000 0,31

0,97 0,20 9000 0,31

W1201

12

240

КАК ПОКАЗАНО

G

0,17

0,38

0,17

-

-

-

0,72 172

.80

0,888

153,45

W1202

12

12

КАК ПОКАЗАНО

A

2,85

-

-

-

0003

0002 -

-

0002 -

30,37

W1203

12

6

КАК ПОКАЗАНО

F

2,35

0,79

0,51

-

-

-

-

-

90

0,888

19,45

W3201

32

28

0,26

B

3,25

0.60

-

-

0003

-

000

-

000

-

000

-

-

000

-

000

-

000

680,54

W3202

32

28

0,26

B

3,25

0,62

-

-

-

-

-

36

6,313

684,08

W3203

32

28

0,26

B

2,05

0,62

-

-

-

000

-

-

000

-

000

-

-

000

-

000

471,96

AB1202

12

10

КАК ПОКАЗАНО

C

0,89

0,50

-

-

-

-

.

.90

0,888

16,78

AB1203

12

12

КАК ПОКАЗАНО

C

0,89

0,50

-

-

0002 -

-

-60002 -

20,14

12

10

I

ba

WINGWALL

КАК ПОКАЗАНО

C

0,89

0,50

-

-

-

.89

18,90

0,888

16,78

AB1205

12

9

КАК ПОКАЗАНО

C

0,70

0.60

-

000

0003

000

0003

000

0003

000

0003

000

000

0,888

15,18

AB1206

12

12

КАК ПОКАЗАНО

C

0,65

0.60

-

-

-

-

-

-

-

-

-

-

-

-

85

22,20

0,888

19,71

36

B3602

d e

a H

36

ПРОМЕЖУТОЧНЫЙ ИТОГ = 2784,58 кг.

6

КАК ПОКАЗАНО

2

КАК ПОКАЗАНО

C

C

0,66

0,6

000

000

000

000

000

b

b

f

-

B3601

c

e

6.02

Gr 60 = 2,014,69 кг. Gr 40 = 769,76 кг.

G

d

ОБЩАЯ МАССА (кг)

A

a

c

c

ВЕС УСТРОЙСТВА (кг / м)

КАК ПОКАЗАНО

c

F

F

b ДЛИНА (М)

16

a

E

a

ДЛИНА НА ПАНЕЛЬ (М)

28

AB1204

b

РАЗМЕРЫ ПАНЕЛИ (М)

РАЗМЕРЫ

b

b

a

MARK

ac

c

ОБЪЕМ БЕТОНА (CU.М.)

775,21

a

b

УСИЛЕНИЯ

C

6,02

6,02

0,50

0,50

-

-

000

000 -

000

000 -

000

000

000

000

000 -

-

7,02

42,12

7,02

7,989

14,04

7,989

ИТОГО = 7355,55 кг. ABUT "A" 7 355,55 кг. ABUT "B"

112,17

B3201 a

32

12

КАК ПОКАЗАНО

B3201 b

32

12

КАК ПОКАЗАНО

C

C

45

0,60

-

-

-

-

2,65

31,80

6,313

200,75

B3202

32

3

32

3

32

3

-

-

-

-

7,02

21,06

6,313

132,95

B1601 B1602

16 16

84 22

84 22

CA6 0,80

3,10 -

-

-

-

-

6,80 0,80

571,20 17,60

1,578 1,578

901,35 27,77

901,35 27,77

4,00

-

-

-

-

-

4,00

8,00

1,578

12,62

B1604

16

20

E

0.90

0.10

0.60

-

-

-

1.60

33.60

1.578

53.02

OF60003

OF60002 УСИЛЕНИЕ, ПОКАЗАННОЕ В ЭТОЙ ТАБЛИЦЕ, ИСПОЛЬЗУЕТСЯ ТОЛЬКО ДЛЯ СПРАВКИ. П РИ МЕЧА Н И Е: ПОДРЯДЧИК ДОЛЖЕН ПРОВЕРИТЬ ВСЕ РАЗМЕРЫ И КОЛИЧЕСТВА ВО ВРЕМЯ СТРОИТЕЛЬСТВА.

НАЗАД

b

a I

b

Gr 60 = 923.11 кг. Gr 40 = 996,04 кг.

1,271

ПРОМЕЖУТОЧНЫЙ ИТОГ = 1 918,04 кг.

0,304

0.200 0,250

0,304

1,271

0,080

0,423 @ 0,19M.

6 РАВНЫХ ПРОСТРАНСТВ

№ АРТ.

ОПИСАНИЕ

УСТАНОВКА

400 (23) b

СВАЙНЫЕ СВАИ @ 1,20м. ДИАМЕТР

404

АРМИРУЮЩАЯ СТАЛЬ КОНКРЕТНЫЙ БЕТОН КЛАССА «А» БЕЗОПАСНЫЙ БЕТОН @ 0,05M. ТОЛЩИНА

0,350

1.371

0,600

0,226

@ 0,26M.

405

0,174

4 РАВНЫХ ПРОСТРАНСТВА

0,400 (AT PIER)

0,100

1,371

ОЦЕНКА КОЛИЧЕСТВА

0,418

ПРИ ОМ. КОНЦЫ ИЗГОТОВЛЯЮТСЯ НА 150 мм

407 (1) ШПИЛЬКИ С КАЖДОЙ ЛИЦЫ

КОЛИЧЕСТВО "A"

"B"

L.M.

24,00

24,00

кг.

7355,55

7355,55

Cu.М.

38,81

38,81

Cu. M.

1.00

1.00

(ТОЛЬКО НА АБАТМЕНТЕ)

ДЕТАЛИ НА КОНЕЧНОМ БЛОКЕ

ДЕТАЛИ НА КОНЕЧНОМ БЛОКЕ

1: 30M

МАСШТАБ

ПРОЕКТ И

СОДЕРЖАНИЕ

И МЕСТОПОЛОЖЕНИЕ

:

СОДЕРЖАНИЕ ПРОЕКТА

. ФИЛИППИНЫ

ДЕПАРТАМЕНТ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОФИС TRECE MARTIRES CITY

РАЗРАБОТАН:

ПРЕДСТАВЛЕН:

ПРЕДСТАВЛЕН:

ПРЕДНАЗНАЧЕН В КАЧЕСТВЕ

ПРЕДНАЗНАЧЕН

ПРЕДЛАГАЕМЫЙ:

.

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

ГРАФИК УСИЛЕНИЯ АБАТМЕНТОВ И ОЦЕНКА КОЛИЧЕСТВА

ПРОВЕРИЛ:

NENETTE K. IGNA

JULIETA A. DESEO000 ENGINEER V CHIEF. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

ДИРЕКТОР III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР

ДАТА:

ДАТА:

9 22

1.500

1.500

1.500

46-AP3601 B

A

AP2001 @ 0,075M OC СПИРАЛ I

A

A

A

AP2001 @ 0,075M O.C. SPIRAL I

AP2001 @ 0,075M O.C. СПИРАЛ I

46-AP3601 B

B

AP2501 SPACER

1.200

J

AP2501 SPACER

J

AP2001 @ 0,075 м. РАСПОЛОЖЕНИЕ O.C. I

AP2001 @ 0,075 м. РАСПОЛОЖЕНИЕ O.C. I

AP2001 @ 0,075 м. РАСПОЛОЖЕНИЕ O.C. I

46-AP3601

46-AP3601

46-AP3601

B

2-AP2502 ЗАПОРНОЕ КОЛЬЦО

K

0,070

B

000 0,070

000

000 RING

000

000

000

000 3 0,070

B

0,070

K

0.070

AP2001 @ 0,075M O.C. СПИРАЛ I

46-AP3601 B

B

A

B

B

СЕКЦИЯ

МАСШТАБ

1: 40M

C

СЕКЦИЯ

000

9000

МАСШТАБ

1: 40M

0 70 P

E

C LI

LA

SP

ДЛИНА СВАИ = 12.00 M.

B

1.200

J

J

J

0.070

ДЛИНА ОТВЕРСТИЯ СВАИ = 12,00 М.

AP2501 РАСПОРКА

СВАРНАЯ ЧАСТЬ

46-AP3601 B

ПОЛУПРИВОДНЫЕ РАЗМЕРЫ

ВЫСОТА

B 9000.C. СПИРАЛЬНЫЙ I

C

1.200

СПИРАЛЬНЫЕ КРАСКИ ДОЛЖНЫ БЫТЬ ДИАМЕТРОМ 12 X ПОЛНАЯ ПРОЧНОСТЬ

46-AP3601

C

AP2001 @ 0,075M O.C. СПИРАЛЬ I

C

1.200

ПОЛОВИННЫЕ РАЗМЕРЫ

АБАТМЕНТ «А» ВЕРСИЯ СЕЧЕНИЯ НАБОР

ДЕТАЛЬ СПИРАЛЬНОГО РАЗЪЁМА

1.200

2,400

ПОЛУПОКАЗЫВАЮЩИЕ УСИЛЕНИЯ

C

МАСШТАБ

N.T.S.

ПОЛУПОКАЗЫВАЮЩИЕ УСИЛЕНИЯ

АБАТМЕНТ "B"

0,131

1: 50M

AP2001 ШАГ СПИРАЛЬНЫХ СТРЕЛЕЙ @ 0,075M. O.C. I

ЗАПИСИ НА РЕЗИНЕ:

0,150

46-AP3601

J

0,100

СВАРНАЯ ЧАСТЬ

AP2501 РАСПОРКА

S = 1/2 ШИРИНА

ДИАМЕТР

0020003 ДИАМЕТР 9502 E = 8 мм 0.150

0,100

0.200

ДИАМЕТР ШИРИНЫ 12 X

8 мм СВАРКА

ВЫСОТА

- УПЛОТНИТЕЛЬНОЕ КОЛЬЦО И ДИАГРАММЫ НА КАЖДЫЕ 2,00 М - ДЛИНА ОТРЕЗА: МИН. 700 мм - РАСПОРНЫЕ И СОЕДИНИТЕЛЬНЫЕ КОЛЬЦА, ПОДЛЕЖАЩИЕ СВАРКЕ

E

ДЕТАЛИ АБАТМЕНТОВ "A" и "B" С ОТВЕРСТИЯМИ

S

СЕЧЕНИЕ

ДЕТАЛИ РАСПРЕДЕЛИТЕЛЬНЫХ КОЛЬЦЕВ СОДЕРЖАНИЕ

СОДЕРЖАНИЕ ПРОЕКТА

И

ПРОЕКТ

ПРОЕКТ

И МЕСТОПОЛОЖЕНИЕ

OF THE PHILIPPINES

ДЕПАРТАМЕНТ ОБЩЕСТВЕННЫХ РАБОТ И МАГАЗИНОВ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОФИС TRECE MARTIRES CITY

РАЗРАБОТАН:

ПРЕДСТАВЛЕН:

000:

000 ПРЕДНАЗНАЧЕН:

000 1: 10M

ED

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

ДЕТАЛИ АБАТМЕНТОВ "А" И "В" ПРОЧИНЫ ПРОБКИ

ПРОВЕРИЛ:

НЕНЕТТЕ К. ИГНА

ДЖУЛЬЕТА А. DESEO ENGINEER V ГЛАВНЫЙ ДИЗАЙН, ПРОЕКТИРОВАНИЕ И ПРОЕКТ

. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

DIRECTOR III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР ИНЖЕНЕР

ДАТА:

ДАТА:

8 22

1.110.

2,500

0,400 0,050

0,050

0,300

2-W1603 F 8-W1602 A

11-W1604 при 0,25 C

2 - B3602 C

12-W160270 3

12-W1605 H B3202 C

8-W1602 A

A 6-W1202

W1202 A

B1601 @ 0.15M O.C. C

C 11-W1604

0,270

2,500

F 3-W1203

11-W1604 C @ 0,25

0,250

0,900

H 6-W1202

2-W1202

2-W1202

2-W1202

F 2-W1603

12-W1605 @ 0,25 H

3-W1203 F

1,697

1,447

C 12-AB2801

W1601 при 0,20 MOC С КАЖДОЙ ЛИЦО 14-W3201 @ 0,26 B ВНУТРЕННЯЯ ЛИЦА 3,197

3,197

1,500

B14-W3202 @ 0.26 НАРУЖНАЯ ПАНЕЛЬ

14-W3203 @ 0,26 B ВНУТРЕННЯЯ ПАНЕЛЬ

1.030

W1201 TIES G

0.100

OF ROADWAY

ELEVATION OF WINGWALL

0.660

0,660

0,660

1: 40M

2-B3602 C 3-B3202 C

12 мм PEJ НАПОЛНИТЕЛЬ A B1602 X 0,80 м при 0,30 м OC

E

B1604 @ 0,20M. O.C.

ФИКСИРОВАННЫЙ КОНЕЦ

0.200

C 6-B3601 C

B1601 @ 0.15М. O.C. (2 набора)

A 16- AB2803

0,050

D

1,500

A 16- AB2803

1,500

C 20-AB2801

1,500

C 20-AB2801 (2 НАБОРА)

0,050

0,050

B1601 C @ 0,15 М. O.C. (2 НАБОРА)

0,025

C 6-B3601

C 20-AB2801 A 16-AB2803

0,300

ФИКСИРОВАННЫЙ КОНЕЦ

D

C 20-AB2802

0.025

C B1601 @ 0,15M (2 НАБОРА)

1,289

B1604 @ 0,20M. O.C.

0.200

0.200

0,250

E

A 2-B1603

1.697

1.697

A 2-B1603

2-B3602 C 3-BJ3202 X 9802 C 3-B3202 X @ 0,30M OC

1,373

МАСШТАБ

1,50% НАКЛОН

0,630

1: 40M

МАСШТАБ

0,250

0,900

1: 40M

МАСШТАБ

DET.УПРУГОЙ ПОДШИПНИКОВОЙ КОЛОДКИ

2-B3602 C

6-AB1203 C 5-AB1202 C

0,175 0,275

СЕКЦИЯ

0,025

6-B3601 C 2-B1603 C 4-AB10006 9-AB10006

0,100

0,300

(ПОЛОВИНА CLR. RDWY.)

6-AB1201 C 5-AB1204 C

0,100

0,100

1,500

C 6-B3201a (СТОРОНА BET320) GIRDERS)

0,050

(ПОЛОВИНА CLR. RDWY.)

0.760

ВАРИАНТЫ 0,30 МИН.

0.200

2.000

БЕЗОПАСНЫЙ БЕТОН

14-W3203 @ 0,26 ВНУТРЕННЯЯ ПЛИТА B

0.200

2.000

14-W320220 ВНУТРЕННЯЯ ПАНЕЛЬ @ 0,26 ВНУТРЕННЯЯ ПАНЕЛЬ НА 0,26 В

0,050

1,110

1,697

4.000

0,050

1,980

1,110

0,760

1,500

0,050

D AB1601 @ 0,15M

0,300

0.250

2-B1603 A

AB1601 @ 0,15M O.C. (2 НАБОРА)

C 20-AB2802

C 20-AB2802

ТОЛЩ. БЕЗОПАСНЫЙ БЕТОН

1.500

Бережливый бетон

1.500

Бережливый бетон

1.200

1.200

1.500

1.500

РАЗДЕЛ

000

000

000

000

000 1: 40M

1.200

МАСШТАБ ВЫСОТЫ

1: 40M

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНЫ

ДЕПАРТАМЕНТ ДЕПАРТАМЕНТА ДВИГАТЕЛЯ 9000 ГОРОДСКОЙ ДВИГАТЕЛЕЙ И ЦЕНТРАЛЬНОГО ДВИГАТЕЛЯ РАЗРАБОТАНО:

ПРЕДСТАВЛЕНО:

ПРЕДСТАВЛЕНО:

РЕКОМЕНДУЕМЫЕ УТВЕРЖДЕНИЯ:

НАБОР №

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ТИПОВЫЙ ПЛАН АБАТМЕНТА, ВЫСОТЫ И РАЗРЕЗЫ И ДЕТАЛИ УПРУГОЙ ПОДШИПНИКОВОЙ КОЛОДКИ

ENGINEER II

ПРОВЕРИЛ:

NENETTE ENGINE K. IGNA

ДИЗАЙН ПЛАСТИНЫ ИГНА

ИЛИ ДИЗАЙН ПЛАСТИНЫ

JULI ASST. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

ДИРЕКТОР III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР ИНЖЕНЕРА

ДАТА:

ДАТА:

7 22

КРАТКОЕ ОПИСАНИЕ ПРИЛОЖЕНИЕ ПЛИТЫ ПУНКТ №

ОПИСАНИЕ

PIER

УСТАНОВКА

НАДСТРОЙКА

"A"

"B"

"A"

"B"

101.00

101.00

"

" ИТОГО НА МОСТ

ЗАПРОГРАММИРОВАННЫЕ КОЛИЧЕСТВА (МОСТ "A" + МОСТ "B")

202.00

404,00

48,00

96,00

48,00

96,00

102 (2)

ЭККАВАЦИЯ СТРУКТУРЫ

CU. M.

400 (17) a

ЗАЛИВКА БЕТОННЫХ СВАЙ В СВЕРЛЕННЫХ ОТВЕРСТИЯХ (диаметр 1,80 м)

LM

400 (17) b

ЗАЛИВКА БЕТОННЫХ СВАЙ В СВЕРЛЕННЫХ ОТВЕРСТИЯХ (диаметр 1,20 м)

LM

24,00

24,00

400 (22) a

ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ ВЫСОКОГО НАПРЯЖЕНИЯ (КПК)

LM

1,00

1,00

1,00

1,00

4,00

8,00

400 (22) a

ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ НИЗКОГО НАПРЯЖЕНИЯ (PIT)

0003000

00

000

000

000

000

000

000

000 2

8.00

16.00

401

АРМИРОВАННЫЕ БЕТОННЫЕ РЕЙКИ (ДВОЙНЫЕ)

LM

53.6

107.20

214.40

404

GRADE90

372,90

2,579,76

2,579,76

924,45

924,45

3,436,95

11,191,17

22,382,34

404

1,078,99

1078,99

4,775,79

4,775,79

9,696,39

9,696,39

22,085,26

53,187,60

106,375.20

UR

106,375.20

URМ.

6,55

6,55

38,81

38,81

34,48

34,48

116,27

272,93

551,86

406 (

)

551,86

406 (1) 9000 G0003

6,00

406 (1)

PSCG (15,00 м)

КАЖДЫЙ

6,00

12,00

412

УПРУГОЙ ПОДШИПНИК (0,05X0,66X0,66)

0003

EACH00

18.00

36.00

505 (5)

Заливанная RIPRAP КЛАСС A

CU.M.

37.00

37.00

74.00

148.00

24.00

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНГОВ

ДЕПАРТАМЕНТ ДЕПАРТАМЕНТА ДВИГАТЕЛЯ

ДВИГАТЕЛЯ ДВИГАТЕЛЯ

ДВИГАТЕЛЯ МЕСТОПОЛОЖЕНИЯ

6.00

24.00

6.00

РАЗРАБОТАНО:

ПРЕДСТАВЛЕНО:

ПРОСМОТРЕНО, КАК ПРЕДСТАВЛЕНО:

ЖУРНАЛ СКВАЖИНЫ -2

РЕКОМЕНДАЦИЯ УТВЕРЖДЕНИЯ:

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ENGINEER II

ОБЗОР КОЛИЧЕСТВА ДЕТАЛИ СКВАЖИНЫ

ПРОВЕРИЛ:

NENETTE K. IGNA

JULIETA A. DESEO ENGINEER V CHIEF, ПЛАНИРОВАНИЕ И ДИЗАЙН

. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

ДИРЕКТОР III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР

ДАТА:

ДАТА:

6 22

GATE.0002

6 22

GATE.0003

ПОТОК РЕКИ

ПОДВЕСНОЙ МОСТ СУЩЕСТВУЮЩИЙ УПРАВЛЕНИЕ

RIV F ER

ПОТОК

ПОТОК

W LO

РАСШИРЕНИЕ МОСТА 4 0003

GE DIRB00 M. CARRIAGEWAY

PCCP

"A"

PCCP 1.00 M. ПРОЗРАЧНОСТЬ

ДО ШОССЕ AGUINALDO

СУЩЕСТВУЮЩИЙ R.C. МОСТ

"

" BEG ID

ДО КАДИВА

BR

1.00 М. ЗАЗОР

PCCP

PCCP ПОТОК

ПОТОК ПЕРЕДАЧИ

0002 ПРОЕЗДА МОСТ

00030002 ПРОЕЗД

000 РАЗВЕРТЫВАЮЩИЙ МОСТ

СУЩЕСТВУЮЩИЙ ОТКРЫТИЕ

OW

СУЩЕСТВУЮЩИЙ ОТКРЫТИЕ

ПЛАН РАСШИРЕНИЯ МОСТА

1: 400М

1: 200М

МАСШТАБ

РЕКА

ПОТОК

МАСШТАБ ПРИБЛ.12)

G GIN HAN G TIN E EXIS BRIDG

E IDG

BR

NG

STI EXI

B

ПРЕДЛАГАЕМАЯ ПОДХОДНАЯ ДОРОГА (L = 86,12)

"

"

"

"

EXISTING SID A ADIW KOT

E

DG BRI

GE RID

9.000

1,50% СКЛОН

1,50% СКЛОН

"A" ПОРТЛАНД ЦЕМЕНТ БЕТОННАЯ ПЛОЩАДКА (НАТУРАЛЬНАЯ ТОЛЩИНА) 150 МАТЕРИАЛОВ

GATE 3 (MAGDIWANG GATE) G HAN GN STI IDGE EXI BR

ING

РАЗДЕЛ ПОДХОДЯЩИХ ДОРОГ

AY

LDO INA

СУЩЕСТВУЮЩИЙ ДОРОГ

9.000

HW HIG

1: 100M

МАСШТАБ

R

IV E

R

FL O

W

AGU TO

ПЛАН ПОДХОДА ДОРОГИ

9000 9000 РАСШИРЕНИЕ

9000 РАЗМЕР

1: 200M

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНЫ

ДЕПАРТАМЕНТ ОБЩЕСТВЕННЫХ РАБОТ И МАГАЗИНОВ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОФИС TRECE MARTIRES CITY

МЕСТНАЯ ИНФРАСТРУКТУРА КАВИТА-ИНФРАСТРУКТУРА КАВИТА.МАНГУБАТСКАЯ ДОРОГА,

СУЩЕСТВУЮЩИЙ ПЛАН РАСШИРЕНИЯ ОТВЕДЕНИЯ ОТВЕРСТИЯ МОСТ ПЛАН ПОДХОДА ДОРОЖНЫЙ РАЗДЕЛ

РАЗРАБОТАН:

ПРЕДСТАВЛЕН:

ПЕРЕСМОТРЕН В КАЧЕСТВЕ ПРЕДСТАВЛЕННОГО:

РЕКОМЕНДАЦИЯ:

.

УТВЕРЖДЕНО:

SHT NO.

РЕЙНАНТЕ Б. САЛАЗАР, старший ИНЖЕНЕР II

ПРОВЕРИЛ:

НЕНЕТТ К. ИГНА

ДЖУЛЬЕТА А. ДЕСЕО ИНЖЕНЕР V ГЛАВНЫЙ, ОТДЕЛ ПЛАНИРОВАНИЯ И ДИЗАЙНА

ASST.ДИРЕКТОРНЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л. ХЕБРА, CESO IV

OSCAR U.

ДАТА:

ДАТА:

5 22

4.1

89

25

2,4

D TE OU P GR IPRA R

15.000

24.400

15.000 2000 9.590

3,238

1,300 (ДРЕНАЖ)

ОБЩАЯ ДЛИНА МОСТА = 54,40 ЛМ (ЗАДНЯЯ СТЕНКА)

GR ORI UT E PR AP D

1,300 (ДРЕНАЖ)

(ДРЕНАЖ2

(ДРЕНАЖ2) )

5.000 (ДРЕНАЖ)

2.500 (ДРЕНАЖ)

2.200 (ДРЕНАЖ)

5.000 (ДРЕНАЖ)

5.000 (ДРЕНАЖ)

5.000 (ДРЕНАЖ)

5.000 (ДРЕНАЖ) 9.2003

2.500 (СЛИВ)

5.000 (СЛИВ)

5.000 (СЛИВ)

2.500 (СЛИВ)

6.500

4.000

ЛИНИЯ ПЛЕЧО

К КАДИВА

ПИЕР "2"

2

0003 TO AGUINALDO HIGHWAY

3.

14

ПЛАН

3.100

МАСШТАБ

1: 100M

ОБЩАЯ ДЛИНА МОСТА = 54,40 LM (ЗА ЗАДНЮЮ СТЕНУ) 15,000 ВЕРХНЯЯ СТЕНА. (СЛЕДУЙТЕ СУЩЕСТВУЮЩИМ)

4 РАВНЫХ [email protected] 1.725M. O.C.

24,400

4 РАВНЫХ SPCS. @ 1.725M. O.C.

6 РАВНЫХ SPCS. @ 1.283M. O.C.

15,000

6 РАВНЫХ SPCS @ 1,29M. O.C.

6 РАВНЫХ SPCS. @ 1.283M. O.C.

4 РАВНЫХ SPCS. @ 1.725M. O.C.

TOP OF RDWY. (СЛЕДУЙТЕ СУЩЕСТВУЮЩИМ)

4 РАВНЫХ SPCS. @ 1.725M. O.C.

0,250

0,250

0,250

0,250

0,250

0,250

0,250

0,250

0.250

0,250

0,250

0,250

0,250

0,250

0,02

0,010

0,010

0,010

0,010

0,010

9000 0,02 0,010

0,010

03 9000 0,02 0,010

0,010

03 9000 0,02 0,010

0,010

03 9000 0,02 0,09

0,010

0,010

0,02

EL. 99.20 EL. 99,00

ДО ШОССЕ АГИНАЛДО

ДО КАДИВА

1,800 1,800

ДЛИНА = 12.00 M. 12.000

СУЩЕСТВУЮЩИЙ ВЫПЛАТ

12.000

1.800

3.300

3.300

1.200

1.800

EL. 92.203 EL. 92.00 ЗАПОЛНИТЬ

СУЩЕСТВУЮЩИЙ ВЫПЛАТ

12.000

M.F.L.

12.000

EL. 88.213

АБУТ "А"

УЛ. 86.303

PIER "1"

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНЫ

PIER "2"

ELEVATION

РАЗРАБОТАНО:

ABUT "B"

O.W.L.

1: 100M

МАСШТАБ

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

1.500

GR RI OU PR TE AP D

1.800

1.800

3.000 ROI

2.200

9000

1.500 RED

2.200

9000 AP2

EL. 95,503

0,640

ДЛИНА = 12,00 м.

ОТДЕЛ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОТДЕЛ

ЭЛ. 97.378

3.000

ПРЕДОСТАВЛЕНО:

ПРЕСМОТРЕТЬ ПРЕДСТАВЛЕННОЕ:

РЕКОМЕНДУЕМОЕ УТВЕРЖДЕНИЕ:

SET NO.

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

ОБЩИЙ ПЛАН И ПОДЪЕМ

ПРОВЕРИЛ:

НЕНЕТТ К. ИГНА

ДЖУЛЬЕТА А. ДЕСЕО ИНЖЕНЕР, ВЕРХНИЙ ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ДИЗАЙНА ASST2

. РАЙОННЫЙ ИНЖЕНЕР

TRECE MARTIRES CITY

ROMUALDO E. BERNARDO ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

ДИРЕКТОР III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР

ДАТА:

ДАТА:

4 22

ОБЩИЕ ЗАМЕЧАНИЯ ) ПРИ ТОЛКОВАНИИ ЧЕРТЕЖЕЙ УКАЗАННЫЕ РАЗМЕРЫ УПРАВЛЯЮТСЯ. ВСЕ a. БЕТОННАЯ СМЕСЬ И РАЗМЕЩЕНИЕ (1) КОНСТРУКЦИЯ БЕТОННОЙ СМЕСИ ДОЛЖНА СООТВЕТСТВОВАТЬ ПРОЕКТУ. РАЗМЕРЫ ПРОЧНОСТИ БЕТОНА, РАССТОЯНИЯ И РАЗМЕРЫ НЕ ДОЛЖНЫ БЫТЬ МАСШТАБНЫМИ ДЛЯ КОНСТРУКЦИЙ, ПРЕДНАЗНАЧЕННЫХ ПОД ПУНКТ 1 МАТЕРИАЛОВ НАЗНАЧЕНИЕ МАТЕРИАЛОВ ДОЛЖНО БЫТЬ РАЗЛОЖЕНО (НЕ ДОПУСКАЕТСЯ В ИБРИЗОВАННОМ СОСТОЯНИИ) УКАЗАНО, ВСЕ РАЗМЕРЫ И РАЗМЕРЫ УЧАСТНИКОВ УКАЗАНЫ В МЕТРАХ (2) БЕТОН В ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИКАХ.

КРИТЕРИИ ПРОЕКТИРОВАНИЯ

1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКТА 1.1 СТАНДАРТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЛЯ АВТОМОБИЛЬНЫХ МОСТОВ АМЕРИКАНСКОЙ АССОЦИАЦИИ ГОСУДАРСТВЕННЫХ ДОРОГ И ТРАНСПОРТА (AASHTO), 17-е ИЗДАНИЕ, 2002 г. 1.3 СТАНДАРТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ DPWH ДЛЯ АВТОМОБИЛЕЙ, МОСТОВ И АЭРОПОРТА (2004 г.) 2. МЕТОДИКА ПРОЕКТИРОВАНИЯ МЕТОД РАСЧЕТА НАГРУЗОЧНОГО ФАКТОРА, ИНАЧЕ ИЗВЕСТНЫЙ КАК МЕТОД РАСЧЕТА ПРЕДЕЛЬНОЙ ПРОЧНОСТИ. 3. РАСЧЕТНАЯ НАГРУЗКА ЖИВАЯ НАГРУЗКА НА ДОРОГУ: 125% (КОЭФФИЦИЕНТ ПЕРЕГРУЗКИ) MS-18 (HS 20-44) НАГРУЗКА НА БАКУ: 4.08 кН / кв. м. МЕРТВЫЕ НАГРУЗКИ: БУДУЩАЯ ИЗНОСНАЯ ПОВЕРХНОСТЬ ... 1,05 кН / кв. м. ЖЕЛЕЗОБЕТОН ....................... 24.00 кН / куб. м. КОНСТРУКЦИОННАЯ СТАЛЬ ................................ 77.00 кН / куб. м. ЗАПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ ........................... 19.00 кН / куб. м. СЕЙСМИЧЕСКАЯ НАГРУЗКА: СООТВЕТСТВУЕТ СПЕЦИФИКАЦИИ КАТЕГОРИИ СЕЙСМИЧЕСКИХ ХАРАКТЕРИСТИК 2002 ГОДА ........................... D КОЭФФИЦИЕНТ УСКОРЕНИЯ, А ......... .0,50 (БЕЗОПАСНОСТЬ) ДРУГАЯ НАГРУЗКА: В СООТВЕТСТВИИ С СПЕЦИФИКАЦИЕЙ AASHTO 2010.

МАТЕРИАЛЫ

1.БЕТОН, ЕСЛИ НЕ УКАЗАНО ИНОЕ, УКАЗАННОЕ НА ПЛАНАХ ИЛИ УКАЗАННОЕ В ОСОБЕННОМ ЛИСТЕ, МИНИМАЛЬНАЯ ПРОЧНОСТЬ ЦИЛИНДРА НА 28 ДНЕЙ СОСТАВЛЯЕТСЯ СЛЕДУЮЩИМ. КЛАСС

A

КОНСТРУКЦИЯ

ПЛИТА МОСТОВОЙ ДЕКИ, АБАТМЕНТЫ, КОЛОННЫ И ФУНТЫ

МАКСИМАЛЬНАЯ ПРОЧНОСТЬ ЦИЛИНДРА НА 28 ДНЕЙ МПа

PSI

21

РАЗМЕР ГРОМКОГО ЗАПОЛНИТЕЛЯ, мм

37,50

B

РЕЗИНОВЫЙ БЕТОН

16,50

2400

50

C

СТОЛБИ И РЕЛЬСЫ

3000

000

000

000

10

1500

50

(2) ПРУТЫ ДОЛЖНЫ БЫТЬ ИЗГИБНЫ В ХОЛОДНОМ РЕЖИМЕ, ПРУТЫ, ЧАСТИЧНО ВНУТРЕННИЕ В БЕТОН, НЕ ДОЛЖНЫ ИЗГИБАТЬСЯ, ЕСЛИ НЕ ПОКАЗАНО НА ЧЕРТЕЖЕ ИЛИ РАЗРЕШЕНО ИНЖЕНЕРОМ.(3) СОЕДИНЕНИЕ БРУСКА ДОЛЖНО БЫТЬ УКАЗАНО НА ЧЕРТЕЖАХ. ДОЛЖНО БЫТЬ УТВЕРЖДЕНО ИНЖЕНЕРОМ. (4) ЗАПРЕЩАЕТСЯ ЗАПРЕЩАЕТСЯ СОЕДИНЕНИЕ БАЛКОВ И ФЕРМ, ГДЕ ИМЕЮТСЯ КРИТИЧЕСКИЕ МОМЕНТЫ ИЗГИБА. СТЕГЕРНЫЕ РАЗЪЕМЫ МЕЖДУ СЛЕДУЮЩИМИ БРУСКАМИ. МИНИМАЛЬНОЕ РАССТОЯНИЕ ДИАМЕТРА 40 БАР ДЛЯ РАЗЪЕМОВ НА НАПРЯЖЕНИЕ И 20 БАР ДЛЯ РАЗЪЕМОВ НА СЖАТИЕ, НО НЕ МЕНЕЕ 300 мм. (5) СВАРОЧНЫЕ СОЕДИНЕНИЯ, УТВЕРЖДАЕМЫЕ ИНЖЕНЕРОМ, РАЗВИВАЮТ НАПРЯЖЕНИЕ (1) НЕ МЕНЕЕ 125% ОТ УКАЗАННОЙ ДОЛЖНОСТИ ПРУТА. (6) НЕ БОЛЕЕ 50% ПРУТНИКОВ В ЛЮБОЙ СЕКЦИИ ДОЛЖНЫ БЫТЬ СОЕДИНЕННЫМИ. (7) ЕСЛИ НА ЧЕРТЕЖАХ НЕ ПОКАЗАНО ИНОЕ, ЧИСТЫЕ РАССТОЯНИЯ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ БРУСКАМИ В СЛОЕ НЕ ДОЛЖНЫ БЫТЬ МЕНЕЕ 1.В 5 РАЗ НОМИНАЛЬНЫЙ ДИАМЕТР ШТАНГА И НЕ МЕНЕЕ 1,5 РАЗ РАЗМЕР ГРУБОГО АГРЕГАТА. ПРОЗРАЧНОЕ РАССТОЯНИЕ МЕЖДУ СЛОЯМИ НЕ ДОЛЖНО БЫТЬ МЕНЬШЕ 25 мм И ДИАМЕТРА ОДНОЙ ПЛОСКИ. БРУСКИ В ВЕРХНЕМ СЛОЕ ДОЛЖНЫ РАЗМЕЩАТЬСЯ НЕПОСРЕДСТВЕННО НАД НИЖНЕГО СЛОЯ. (8) КОЛЕНЧАТЫЕ СПЛИЦЫ.

LAP

ВЕРТИКАЛЬНОЕ СМЕЩЕНИЕ

МИН: d МАКС: d + 3 мм

75

БЕТОН, ПОДДЕРЖИВАЕМЫЙ ЗЕМЛЕЙ ИЛИ ВОДОЙ ПЕРВИЧНОЕ УКРЕПЛЕНИЕ

50

STIRRUPS 40

.НЕ ПОДВЕРГАЕТСЯ ПОГОДЕ ИЛИ НЕ НАПАДАЕТ НА ЗЕМЛЮ ПЕРВИЧНОЕ УКРЕПЛЕНИЕ

40

СТЯЖКИ, СТЯЖКИ И СПИРАЛИ

25

БЕТОННЫЕ ПЛИТЫ МОСТА УКРЕПЛЕНИЕ ВЕРХНЕГО УПЛОТНЕНИЯ

50

СТРОИТЕЛЬНОЕ СОЕДИНЕНИЕ (1) ПОЛОЖЕНИЕ И ФОРМА ЛЮБОГО СТРОИТЕЛЬНОГО СОЕДИНЕНИЯ ДОЛЖНЫ БЫТЬ ТАК ПОКАЗАНЫ НА ЧЕРТЕЖЕ ИЛИ СОГЛАСОВАНЫ С ИНЖЕНЕРОМ. (2) ИНТЕРФЕЙС МЕЖДУ ПЕРВЫМ И ВТОРОМ БЕТОНОМ ДОЛЖЕН БЫТЬ ШЕРОХОВАТЫМ С АПЛИТУДЕЙ МИНИМАЛЬНОЙ АППЛИТУДЫ 6 мм,

e.FALSEWORK

ДИАМЕТР =

ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ С ВЫСОКИМ НАПРЯЖЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АНАЛИЗАТОРА ПЕРЕДАЧИ (КПК) ДОЛЖНЫ ПРОВОДИТЬСЯ ОДИН (1) У АБАТТЕНТА И (1) НА ПАНЕЛЬ, ЧТОБЫ ОПРЕДЕЛИТЬ / ПРОВЕРИТЬ ФАКТИЧЕСКУЮ ПРОИЗВОДИТЕЛЬНОСТЬ ПОДШИПНИКА ПОДОБНЫХ СВАЙ. ИСПЫТАНИЯ ДОЛЖНЫ БЫТЬ ПОДТВЕРЖДЕНЫ ПРЕДСТАВИТЕЛЯМИ ИСПОЛНИТЕЛЬНОГО ОФИСА, КОНСУЛЬТАНТА, ПОДРЯДЧИКА И ОРГАНА. РЕЗУЛЬТАТЫ ПРЕДОСТАВЛЯЮТСЯ НА УТВЕРЖДЕНИЕ РАЗРАБОТЧИКОМ ДО КОНСТРУКЦИИ ПРОБКИ И НАДСТРОЙКИ.ВЫСОКОПРОИЗВОДИТЕЛЬНЫЕ ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ ДОЛЖНЫ ПРОВОДИТЬСЯ ТАК, ЧТОБЫ МОБИЛИЗИРОВАТЬСЯ НЕОБХОДИМАЯ МАКСИМАЛЬНАЯ СПОСОБНОСТЬ ПОДШИПНИКОВ И / ИЛИ ДОСТИГНУТЬ МАКСИМАЛЬНУЮ ПОСТОЯННУЮ НАБОР СВАЙ D / 120. МОЛОТОК ВЕС ОТ 1,5 ДО 2,0% ОТ НЕОБХОДИМОЙ ПРЕДЕЛЬНОЙ МОЩНОСТИ НАБОРНЫХ СВАЙ ИСПОЛЬЗУЕТСЯ И УДАЛЯЕТСЯ С ПОСТЕПЕННЫМ УВЕЛИЧЕНИЕМ ВЫСОТЫ. ПОЛНЫЕ РЕЗУЛЬТАТЫ ИСПЫТАНИЙ, ВКЛЮЧАЯ ТАБЛИЧНЫЕ РЕЗУЛЬТАТЫ ВСЕХ УДАРОВ, АНАЛИЗ CAPWAP И РЕКОМЕНДАЦИИ, ДОЛЖНЫ БЫТЬ ПРЕДОСТАВЛЕНЫ ПОДРЯДЧИКОМ ИСПЫТАНИЙ.

ОПАЛУБКА ДОЛЖНА БЫТЬ ИЗГОТОВЛЕНА ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА НЕ ВЫПОЛНЯЛАСЬ ПРИ ЗАДАННОЙ НАГРУЗКЕ, И БЫЛА ТАКИМ ОБРАЗОМ, ЧТОБЫ ИЗБЕЖАТЬ ОБРАЗОВАНИЯ ЛИНИЦ НА ПЕРЕСЕЧЕНИИ ПОВЕРХНОСТЕЙ.ВСЕ УГЛЫ БЕТОННОЙ КОНСТРУКЦИИ ДОЛЖНЫ БЫТЬ СФАСАННЫМИ НЕ МЕНЕЕ 20 мм, ЗА ИСКЛЮЧЕНИЕМ РЕЙЛИН И УГЛОВ ВХОДА, КОТОРЫЕ ДОЛЖНЫ БЫТЬ ЗАКРЫТЫМИ И ЗАПОЛНЕНЫМИ СООТВЕТСТВУЮЩИМ 20 мм. ЕСЛИ В ПЛАНАХ НЕ УКАЗАНО ИНОЕ. ВСЕ ОТКРЫТЫЕ БЕТОННЫЕ ПОВЕРХНОСТИ ИМЕЮТ ГЛАДКУЮ ОТДЕЛКУ И СООТВЕТСТВУЮЩИМ ЛИНИЯМ, ФОРМАМ И РАЗМЕРАМ, ПОКАЗАННЫМ НА ЧЕРТЕЖЕ, РАЗДЕЛКА ФОРМ И ФОРМЫ ДОЛЖНЫ БЫТЬ ПРЕДНАЗНАЧЕНЫ ИНЖЕНЕРОМ, СЛЕДУЮЩИЕ ИЗОБРАЖЕНИЯ МОГУТ ИСПОЛЬЗОВАТЬСЯ В КАЧЕСТВЕ РУКОВОДСТВА ПО ПОСТАВКЕ ЛЕНТОК.

ЛИНИЯ СИММЕТРИИ ИЛИ ПОДОБИЯ

d

(ii) РАЗМЕРЫ ДЛЯ СТРЕМКОВ И КРЮЧКОВ

МИН.ВРЕМЯ

ОПОРКА ПОД ФЕРМАМИ, БАЛКАМИ, РАМАМИ ........................................ ............... 28 ДНЕЙ ПАЛУБНЫЕ ПЛИТЫ ............................... .................................................. ............................. 14 ДНЕЙ СТЕНЫ .................. .................................................. .................................................. .... 7 ДНЕЙ КОЛОННЫ ........................................... .................................................. .......................7 ДНЕЙ СТОРОНЫ БАЛК И ВСЕХ ДРУГИХ ВЕРТИКАЛЬНЫХ ПОВЕРХНОСТЕЙ ...................................... .................................................. .......... 7 ДНЕЙ ..................................... .................................................. ............................. 7 ДНЕЙ

BS-2

РАЗДЕЛ В ВОДЕ

2a

РАЗДЕЛ В ЗЕМЛЕ

BS-2

мм

10 0 D d

d

РАЗДЕЛ В БЕТОНЕ

КАМНИ ДЛЯ ЗАЗЕМЛЕННОЙ РИПРАПЫ ДОЛЖНЫ БЫТЬ УТВЕРЖДЕННЫМ КАЧЕСТВОМ И ДОЛЖНЫМ ОБРАЗОМ И БЕСПЛАТНЫМИ ВЕЩЕСТВАМИ ГРЯЗИ, МАСЛА ИЛИ ПРИЧИНОВ ВЛИЯТЬ НА ПРАВИЛЬНУЮ ПРИКЛЮЧЕНИЕ РАСТВОРА.ОН ДОЛЖЕН БЫТЬ ТОЛЩИНОЙ НЕ МЕНЕЕ 20,00 см И ШИРИНОЙ НЕ МЕНЕЕ 1 1/2 РАЗ ЕГО ТОЛЩИНЫ. НИКАКИЕ КАМНИ, ЗА ИСКЛЮЧЕНИЕМ ЖАТКИ, НЕ ДОЛЖНЫ ИМЕТЬ ДЛИНОЙ МЕНЬШЕ 1 1/2 РАЗ ЕГО ШИРИНЫ.

ПОДРЯДЧИК ПРЕДСТАВЛЯЕТ ТРИ (3) КОМПЛЕКТА ЧЕРТЕЖЕЙ С ПРОЕКТНЫМ АНАЛИЗОМ AASHTO GIRGER В РЕГИОН IV-A DPWH ДЛЯ УТВЕРЖДЕНИЯ. НЕ ДОПУСКАЕТСЯ ИЗГОТОВЛЕНИЕ ФАКТИЧЕСКОГО ИЗГОТОВЛЕНИЯ ДО УТВЕРЖДЕНИЯ ЧЕРТЕЖЕЙ МАГАЗИНА И ПРОЕКТНОГО АНАЛИЗА.

РЕСПУБЛИКА ФИЛИППИНЫ

ПРЕДСТАВЛЕНА:

@ &

ПЛАН ВИД И ВЫСОТА ОТРЕЗКИ И ЗАПОЛНЕНИЯ ОТКЛОВ

ПЛАН ВИД НА ПЛОЩАДКУ НА СКЛОНЕ

ПЛАН

ПЛАН

НАКОНЕЧНИК И ЦЕНТР

С / С.C к C

BENCHMARK

МЕСТОПОЛОЖЕНИЕ ОТ ЦЕНТРА К ЦЕНТРУ

СОКРАЩЕНИЯ

НЕОБХОДИМЫЕ ПРЕДЕЛЬНЫЕ ПОДШИПНИКИ НА СВАЮЩУЮ СВАЛЬНУЮ СВОЮ ТАБЛИЧКУ: ЗАЗЕМЛЕННАЯ RIPRAP

ДИАМЕТР КОНТАКТОВ:

СОДЕРЖАНИЕ ЛИСТА:

КРУГЛЫЙ

СЕЧЕНИЕ В СУЩЕСТВУЮЩЕЙ БЕТОННОЙ КОНСТРУКЦИИ

ПЛАН ВИД ОГРАНИЧЕНИЯ НАКЛОНА

000D

EF

000D

EF

DUCE

EF

D

EF

DUR

EF ABT ABUT BEG BET BOTT BR BRG

.

R O

M IN

d 10

РАЗДЕЛ ЦЕЛЕВАЯ

УПРУГОЙ ПОДШИПНИК

6. МАГАЗИНОВЫЕ ЧЕРТЕЖИ ИЗГОТОВЛЕНИЯ

6d ИЛИ 63 мм МИН.

ПОДРАЗДЕЛЕНИЕ ЦЕЛЬ

2a ОГРАНИЧЕНИЯ РАЗМЕРОВ

4d ИЛИ

ДИАМЕТР КОНТАКТОВ:

2a

УКАЗАНИЕ ВЫСОТЫ

ОТДЕЛЕНИЯ СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ И КОНСТРУКЦИОННЫХ КОНСТРУКЦИЙ С НОВЫМИ КОНСТРУКЦИЯМИ РАЗМЕСТИТЬ СТРОИТЕЛЬСТВО ПРЕДЛАГАЕМОЙ КОНСТРУКЦИИ.

63 мм МИН.

ЛИСТ №

BS-2

4. ДЕМОНТАЖ КОНСТРУКЦИЙ И ЗАПРЕЩЕНИЙ

D

TITLE TARGET

NORTH ARROW

ПОВЕРХНОСТЬ БЕТОНА ДОЛЖНА БЫТЬ ЗАЩИТЫ ОТ ВРЕДИТЕЛЬНЫХ И УДАЛЕННЫХ ПОРАЖЕНИЙ КОРПУСА. 7 ДНЕЙ.

12d

d

D

ИДЕНТИФИКАЦИОННЫЙ СИМВОЛ

2 BS-2

N

18d MIN 30d MAX

(9) КРЮКИ И ИЗГИБЫ (i) РАЗМЕРЫ 90 - ГРАДУСОВ И 180 - ГРАДУСОВ КРЮЧКИ

d

ПРОЕКТ И МЕСТОПОЛОЖЕНИЕ:

ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ С НИЗКИМ НАПРЯЖЕНИЕМ (PIT) ДОЛЖНЫ ПРОВОДИТЬСЯ 50% ОТ ОБЩЕГО КОЛИЧЕСТВА СКВОЗНЫХ СВАЙ НА КОНСТРУКЦИЮ (АБАТТЕРЫ И ПРОКЛАДКИ) И ПРОВЕРИТЬ КОНСТРУКЦИЮ И ПРОВЕРИТЬ КОНСТРУКЦИЮ ОБНАРУЖИТЕ / ОЦЕНИТЕ ЛЮБУЮ НЕПРАВИЛЬНОСТЬ В ЗАВЕРШЕННЫХ НАБОРНЫХ СВАЯХ.

СИМВОЛЫ

7. СКВОЗНЫЕ СВАИ

1. СПЕЦИФИКАЦИЯ ВСЕ РАБОТЫ СООТВЕТСТВУЮТ ДЕПАРТАМЕНТАМ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ (DPWH) СТАНДАРТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЛЯ ДОРОГ, МОСТОВ И АЭРОПОРТОВ, VOL II РАЗЛИЧНЫХ КОМПОНЕНТОВ КОНСТРУКЦИИ ДОЛЖНЫ БЫТЬ УТВЕРЖДЕНЫ ИНЖЕНЕРОМ ДО НАЧАЛА ЛЮБЫХ СТРОИТЕЛЬНЫХ РАБОТ.

НИЖНЯЯ СВАЯ ДОЛЖНА БЫТЬ ВСТРОЕНА НЕ МЕНЕЕ (3) РАЗНЫМ ДИАМЕТРОМ (3D) В ЖЕСТКОЕ ПРОСТРАНСТВО С N-ЗНАЧЕНИЕМ НЕ МЕНЬШЕ 40, СООТВЕТСТВУЮЩИМ РАЗВИТИЮ НЕОБХОДИМОЙ ПРЕДЕЛЬНОЙ СПОСОБНОСТИ ПОДШИПНИКА.ЕСЛИ ВЫШЕУКАЗАННОЕ УСЛОВИЕ НЕ МОЖЕТ БЫТЬ СОБЛЮДЕНО ВО ВРЕМЯ СТРОИТЕЛЬСТВА, ПРОЕКТИРОВАТЕЛЬ ОБЯЗАН ОТРЕГУЛИРОВАТЬ ДЛИНУ СВАИ, ЕСЛИ НЕОБХОДИМО.

ф. ЗАЩИТА И ОТДЕЛЕНИЕ БЕТОНА

СТРОИТЕЛЬСТВО

ОТДЕЛ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ КАВИТ I РАЙОННЫЙ ИНЖЕНЕРНЫЙ ОТДЕЛ

БЕТОН В МОРСКОЙ СРЕДЕ ИЛИ БЕТОННЫЙ ЗАЛИВ 9000 НА ЭКСТРАКТЕ 9000 СОЕДИНИЛСЯ С КОНСТРУКТОМ ЭЛЕКТРИЧЕСКОЙ СРЕДЫ 9000 И СОСТАВЛЯЕТ КОНКРЕТ 9000 НА ЭКСКЛЮЗИВНОМ СОСТОЯНИИ ЭЛЕКТРОЭНЕРГИИ 9000 УТВЕРЖДЕНИЕ ЧЕРТЕЖЕЙ МАГАЗИНА, УКАЗЫВАЮЩИХ ИЗГИБ, РЕЗКУ, СОЕДИНЕНИЕ И УСТАНОВКУ ВСЕХ арматурных стержней.

d

4. УКАЗАНИЯ К РАБОЧИМ СВАЯМ: РАБОЧИЕ СВАИ ДОЛЖНЫ БЫТЬ ДИАМЕТРОМ 1200 ММ ДЛЯ АБАТМЕНТОВ И 1800 ММ ДЛЯ ПИРС. ИССЛЕДОВАНИЕ ПОДПОВЕРХНОСТИ НА МЕСТЕ ТАКЖЕ БУДЕТ ПРОВЕДЕННО ВО ВРЕМЯ СТРОИТЕЛЬСТВА ДЛЯ ПРОВЕРКИ ПОЧВЫ. ДАННЫЕ, ИСПОЛЬЗУЕМЫЕ В ПРОЕКТЕ, ОСНОВАНЫ НА ОТЧЕТЕ ОБ ИССЛЕДОВАНИИ ПОВЕРХНОСТНОЙ ПОЧВЫ, ПРЕДОСТАВЛЕННОЙ БЕТОНОМ ДЛЯ ПРОБИВНОЙ СВАИ, ИМЕЮТ МИНИМАЛЬНУЮ ПРОЧНОСТЬ НА СЖАТИЕ 28 ЦИЛИНДРОВ Fc = 28 МПа. АРМАТЫ ДОЛЖНЫ СООТВЕТСТВОВАТЬ ОБОЗНАЧЕНИЮ ASTM A615 / AASHTO M31 С ПРОЧНОСТЬЮ УХОДА Fy = 414 МПа.

МИНИМАЛЬНАЯ КРЫШКА, мм

б. Изгиб, соединение и размещение стержня

MAX = 15d

3. МАГАЗИНОВЫЕ ЧЕРТЕЖИ ИЗГОТОВЛЕНИЯ: ПОДРЯДЧИК ПРЕДСТАВЛЯЕТ ТРИ КОМПЛЕКТА ЧЕРТЕЖЕЙ С КОНСТРУКЦИОННЫМ АНАЛИЗОМ ГЕРДЕРА AASHTO ДЛЯ ПРИЛОЖЕНИЯ IV-A DPWH. НЕ ДОПУСКАЕТСЯ ИЗГОТОВЛЕНИЕ ФАКТИЧЕСКОГО ИЗГОТОВЛЕНИЯ ДО УТВЕРЖДЕНИЯ ЧЕРТЕЖЕЙ МАГАЗИНА И ПРОЕКТНОГО АНАЛИЗА.

, ЕСЛИ НЕ УКАЗАНО ИНОЕ, МИНИМАЛЬНАЯ УРОВЕНЬ

ДЛЯ БЕТОНА, ЗАЛОЖЕННОГО НА ЗЕМЛЮ, БЕЗОПАСНЫЙ БЕТОН МИНИМАЛЬНОЙ ТОЛЩИНОЙ 50 мм ДОЛЖЕН БЫТЬ ЗАКЛЮЧЕН ПЕРЕД УСТАНОВКОЙ УСИЛЕНИЯ.ДАННЫЙ БЛИЖАЙШИЙ БЕТОН НЕ ПРИНИМАЕТСЯ ВО ВНИМАНИЕ ПРИ ИЗМЕРЕНИИ КОНСТРУКТУРНОЙ ГЛУБИНЫ БЕТОННОГО ОТДЕЛЕНИЯ. (4) ПОДРЯДЧИК ПРЕДОСТАВЛЯЕТ ИНЖЕНЕРУ ДЛЯ УТВЕРЖДЕНИЯ ПОРЯДОК РАЗМЕЩЕНИЯ ВСЕХ БЕТОННЫХ РАБОТ.

МИН = 12d

2. АРМИРУЮЩАЯ СТАЛЬ (a) ДЛЯ ПРУТНИКОВ 16 мм И НИЖЕ Fy = 276 МПа (40 000 фунтов на квадратный дюйм) * ИСКЛЮЧАЯ КОВПЕЧНИК ПЛИТЫ ПАЛУБЫ, КОТОРЫЕ ДОЛЖНЫ БЫТЬ Fy = 414 МПа (b) ДЛЯ ПАРКОВ БОЛЬШЕ = 414 МПа Fy = 414 МПа 60,000psi)

c. БЕТОННОЕ ПОКРЫТИЕ ДЛЯ УСИЛЕНИЯ

В СООТВЕТСТВИИ С ПРЕДСТАВЛЕНИЕМ:

CLR см COL CONC CONST CONT CTR DET D.F. L. DIAM DIAPH DWG EA EF EL / ELEV

ОБ АБАТМЕНТЕ НАЧАЛО ЦЕНТРАЛЬНОЙ ЛИНИИ ПОДШИПНИКА НИЖНЕГО МОСТА

FTG кПа м мм MAX M.F.W.L. МИН МО МПа ПРОЗРАЧНЫЙ N САНТИМЕТР NF № КОЛОННЫ БЕТОН O.C. КОНСТРУКЦИЯ OWL НЕПРЕРЫВНЫЙ ЦЕНТР PEJ PVC ДЕТАЛЬ ДИЗАЙН УРОВЕНЬ НАВОДНЕНИЯ PVI КОЛИЧЕСТВО ДИАМЕТР R ДИАФРАГМА RC ЧЕРТЕЖ RDWY КАЖДЫЙ ТИП ЛИЦА ПО ВЫСОТУ

РЕКОМЕНДУЕМОЕ УТВЕРЖДЕНИЕ:

МАКСИМАЛЬНОЕ УТВЕРЖДЕНИЕ МАКС. УРОВЕНЬ НАВОДНЕНИЯ МИНИМАЛЬНЫЙ СРЕДНИЙ УРОВЕНЬ ПОРЯДКА МЕГАПАСКАЛЬНОГО НЬЮТОНА ВБЛИЗИ ЛИЦА В ЦЕНТРАХ ОБЫЧНЫЙ УРОВЕНЬ ВОДЫ ПРЕДВАРИТЕЛЬНОЕ РАСШИРЕНИЕ СОЕДИНЕНИЕ ПОЛИВИНИЛХЛОРИДА ТОЧКА ВЕРТИКАЛЬНОГО ПЕРЕСЕЧЕНИЯ КОЛИЧЕСТВО RADIUS 9000 RADIUS REINFORCED ROWINFORCED 9000

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. MANGUBAT ROAD,

ENGINEER II

ОБЩИЕ ПРИМЕЧАНИЯ

ПРОВЕРИЛ:

NENETTE K. IGNA

JULIETA A. DESEO ENGINEER V ГЛАВНЫЙ, ОТДЕЛ ПЛАНИРОВАНИЯ И ДИЗАЙНА

ASST. РАЙОННЫЙ ИНЖЕНЕР

TRECE MARTIRES CITY

ROMUALDO E. BERNARDO ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л.HEBRA, CESO IV

OSCAR U. DELA CRUZ

DIRECTOR III OIC - РЕГИОНАЛЬНЫЙ ДИРЕКТОР

ДИРЕКТОР ИНЖЕНЕРА

ДАТА:

ДАТА:

3 22

000

000 GITE

000

000 SITE

000 IMUS

000

000 SITE

000

CARMONA

МЕСТО ПРОЕКТА GURUNANAK BABA SARSATSAI KADIWA PARK

КАРТА МЕСТОПОЛОЖЕНИЯ

DASMA GAS CORP.

KADIWA MARKET

УКАЗАТЕЛЬ ЛИСТОВ ЛИСТА №. 1. ЛИСТ № 2. ЛИСТ № 3. ЛИСТ №4. ЛИСТ № 5. ЛИСТ № 6. ЛИСТ № 7. ЛИСТ № 8. ЛИСТ № 9. ЛИСТ № 10. ЛИСТ № 11.

НАЗВАНИЕ СТРАНИЦА МЕСТОПОЛОЖЕНИЕ / КАРТА ПОМЕЩЕНИЯ И УКАЗАТЕЛЬ ЛИСТОВ ОБЩИЕ ЗАМЕЧАНИЯ ОБЩИЙ ПЛАН И НАЛИЧИЕ СУЩЕСТВУЮЩИЕ ОТКРЫТИЯ, ПОДЪЕМ ДОРОЖНОГО ПОДХОДА ПЛАН И РАЗДЕЛ ОБЗОР КОЛИЧЕСТВА И ДЕТАЛИ СКВАЖИНЫ ТИП. ДЕТАЛИ, ПЛАНЫ, ЛИФТ. & SEC. АБАТМЕНТ A&B ДЕТАЛИ РАСПРОСТРАНЕНИЯ УСИЛЕНИЯ АБАТМЕНТА A&B ДЕТАЛИ КОЛОННЫ 1, КОЛОННЫ И ДИАФРАГМЫ ДЕТАЛИ КОЛОННЫ 2, КОЛПАЧКА И ДИАФРАГМЫ

РАСПОЛОЖЕНИЕ ПРОЕКТА

И НОМЕР

ПРОЕКТА

.12. ЛИСТ № 13. ЛИСТ № 14. ЛИСТ № 15. ЛИСТ № 16. ЛИСТ № 17. ЛИСТ № 18. ЛИСТ № 19. ЛИСТ № 20. ЛИСТ № 21. ЛИСТ № 22.

СОДЕРЖАНИЕ ЛИСТА:

РЕСПУБЛИКА ФИЛИППИНЫ

ДЕПАРТАМЕНТ ОБЩЕСТВЕННЫХ РАБОТ И ДОРОГ КАВИТ I РАЙОН ИНЖЕНЕРНОГО ОФИСА TRECE MARTIRES CITY

ДЕТАЛИ ОБЪЕДИНЕННЫХ ПУНКТОВ 1 ЧАСТИ ПОВЕРХНОСТЕЙ ПОВЕРХНОСТИ ДВИГАТЕЛЯ 2 ДЕТАЛИ НАДСТРОЙКИ ДЕТАЛИ НАДСТРОЙКИ ДЕТАЛИ ТИПОВОГО РАЗРЕЗА НАДСТРОЙКИ ДЕТАЛИ НАДСТРОЙКИ ПЛИТ НАД НАД КОНСТРУКЦИЕЙ ГРАФИК УСИЛЕНИЙ AASHTO PSCG L = 24.40М. AASHTO PSCG L = 15.00M. ДЕТАЛИ ПЛИТЫ ПОДХОДА И УСИЛЕНИЕ DPWH СТАНДАРТНЫЙ ДОСКА ПРОЕКТА

РАЗРАБОТАН:

ПРЕДСТАВЛЕНА:

КАРТА ПОМЕЩЕНИЙ

ПРОВЕРЯЕТСЯ В КАЧЕСТВЕ ПРЕДСТАВЛЕННОГО:

РЕКОМЕНДАЦИЯ:

РЕКОМЕНДАЦИЯ: РЕКОМЕНДАЦИЯ

УТВЕРЖДЕНО:

SHT NO.

REYNANTE B. SALAZAR, Sr. ПРОГРАММА МЕСТНОЙ ИНФРАСТРУКТУРЫ РАСШИРЕНИЕ КАДИВСКОГО МОСТА НА ГЛАВ. МАНГУБАТСКАЯ ДОРОГА,

ИНЖЕНЕР II

КАРТА МЕСТОПОЛОЖЕНИЯ / КАРТА ПОСЕЛЕНИЯ / ИНДЕКС ЛИСТОВ

ПРОВЕРИЛ:

NENETTE K.IGNA

JULIETA A. DESEO ENGINEER V ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ASST. РАЙОННЫЙ ИНЖЕНЕР

РОМУАЛЬДО Э. БЕРНАРДО ГЛАВНЫЙ ОТДЕЛ ПЛАНИРОВАНИЯ И ПРОЕКТИРОВАНИЯ

ДАТА:

ДАТА:

САМСОН Л. ХЕБРА, CESO IV

OSCAR U.

ДАТА:

ДАТА:

2 22

Буронабивные сваи - Designing Buildings Wiki

Буронабивные сваи , также известные как сменные сваи, представляют собой широко используемую форму фундамента здания, которая обеспечивает поддержку конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки.

Буронабивные сваи - это сваи, в которых при удалении грунта образуется отверстие для железобетонной сваи, которая заливается на месте. Грунт заменяется сваей, отсюда и «сменные» сваи, в отличие от свай-вытеснителей, когда грунт вытесняется забиванием или завинчиванием сваи.

Буронабивные сваи используются в основном в связных грунтах для образования фрикционных свай и при формировании свайных фундаментов рядом с существующими зданиями. Они популярны в городских районах, поскольку там минимальная вибрация, где высота над головой ограничена, где нет риска вспучивания, а также при необходимости варьировать длину свай.

[править] Установка

Буронабивные сваи бурятся с помощью ковшей и / или шнеков, приводимых в движение ударным бурением (вибромолоты) или вращательным бурением (скручивание на месте).

В нестабильных пластах грунта использование бентонитовой жидкости способствует стабилизации ствола, особенно в более глубоких сваях большого диаметра, и позволяет устанавливать сильно армирующие стальные сепараторы. Это известно как растачивание заподлицо (подробнее см. Ниже).

Если бурение и заливка происходят одновременно, сваи известны как сваи с непрерывным шнеком (CFA).

Сваи называются сваями большого диаметра, если они имеют диаметр 600 мм и более. Сваи небольшого диаметра менее 600 мм иногда помещают группами под общую шапку сваи для приема тяжелых грузов.

Несущая способность свай большого диаметра может быть увеличена за счет недоравертывания вала у основания. Это достигается с помощью расширяющегося режущего инструмента, который вырезает основу конической формы, диаметр которой в три раза превышает диаметр главного вала.

Форма опоры сваи или ствола скважины влияет на формирование сваи. Буронабивные сваи могут быть опорными или безопорными.

При укладке свай в устойчивый грунт можно просверлить и уложить бетон без предварительной облицовки отверстия. Однако необходимо принять меры предосторожности, облицовав первый метр ямы, чтобы предотвратить попадание поверхностного грунта в яму.

Существует две категории опорных свай в зависимости от используемой обсадной трубы или футеровки.

[править] Оболочка неразъемная

Скважина может быть сформирована ударным методом, при котором используется тяжелый режущий инструмент на небольшом треноге, который сбрасывается из поднятого положения с помощью лебедки, чтобы вырезать цилиндр из земли.Операция повторяется до тех пор, пока отверстие не будет погружено на требуемую глубину. В процессе резки в отверстие вставляется тонкая секционная облицовка, чтобы предотвратить его обрушение. В качестве альтернативы ствол скважины может быть сформирован роторным способом, при котором роторный бур работает внутри обсадной колонны или футеровки.

[править] Временный кожух

Обычно ствол скважины поддерживается стальной футеровкой с резьбовым соединением, которую удаляют либо во время, либо после укладки бетона.Трубку можно приподнять с помощью лебедки или домкратом.

При бурении заподлицо используется жидкость, такая как бентонит, для вымывания материала из отверстия, которое было ослаблено бурением. Жидкость можно заливать сверху (обратная промывка) или прокачивать через буровую штангу (прямая промывка). Пробуренная скважина закрывается временным стальным кожухом для предотвращения обрушения рыхлого поверхностного грунта. По мере бурения в отверстие непрерывно подается бентонит.

На необходимую глубину опускают арматуру через бентонит и заливают бетоном.Бентонит вытесняется бетоном и снова выкачивается из отверстия. Когда бетон достигает верхнего уровня отверстия, временная обсадная колонна снимается.

BN-DG-J05 Пример чертежа плана сваи

BN-DG-J05 Пример чертежа плана сваи

Детали
ОБЩИЕ ПРИМЕЧАНИЯ

1.Размеры в мм

2. Координаты и отметки в м.

3 Координаты относятся к системе координат предприятия.

4. Отметки относятся к нулевой отметке завода 0,000, что равно 3.200 + N.A.P.

5. Разметка размеров сваи с рейкой дана на отметке среза.

ЛЕГЕНДА

А Свая диаметром 380 рабочая нагрузка 600 кН
AX Диаметр сваи 290, рабочая нагрузка 300 кН
Сваи гребневые
CPT Голландский тест на проникновение конуса
BH Отверстие

ССЫЛКИ НА ЧЕРТЕЖИ

Спецификация на установку сборного железобетона

Железобетонные сваи BN0000-SO-JL1
Детали сваи BN0000-00402A

Схема расположения отверстий и голландского конуса

Тесты на проникновение BN0000-00401A
План участка общий BN0000-00101A
План участка BN0000-00201A

ИНСТРУКЦИИ ПО ЧЕРТЕЖУ

1.Обычный масштаб 1: 1000

2. Северное направление, линии совпадения и пределы батареи, если возможно, должны быть такими же, как на плане.

3. Установочные размеры, если это возможно, должны быть такими же, как и на плане

.

4. Система нумерации свай должна быть выбрана так, чтобы все номера свай были уникальными для всего проекта.

5. Номера стопок, которые использовались один раз на выданном чертеже и аннулированы, повторно не используются.

Щелкните здесь, чтобы увидеть pdf

Pilings - Три типа деталей DWG для AutoCAD • Проектирование

канадских долларов

ОБЪЯВЛЕНИЕ

Три различных типа фундаментных свай, с технической информацией, пошаговое описание процесса строительства и материалов, используемых при разливке методом аккумуляторного бурения на месте, свая, забитая на месте, базовая технология сборных забивных свай, детали

Чертеж этикеток, деталей и другой текстовой информации, извлеченной из файла САПР:

стальной кожух, бентонитовый раствор, сваи, арматурный каркас, забуренная свая, забивная свая, забивная сборная свая, бетонная смесь, бункер, шнек, сваебойная установка, дополнительные секции добавляются по мере необходимости, сваебойная установка, молот, сборная свая, сваи полностью забиты , молоток, стальной башмак, бентонитовый раствор, заливка бетонной смеси, мини-установка для забивки свай, по завершении обсадная колонна заполняется бетоном и арматурой, ведущая обсадная колонна, пробка из сухого бетона, внутренний ударный молот, полностью сварные швы, сборная свая, бурение выполнено с помощью шнека.

Исходные текстовые данные, извлеченные из файла САПР:

СТАЛЬНОЙ КОРПУС БЕНТОНИТОВЫЙ ШЛАМ ОТВЕРСТИЕ СВАИ УСИЛИТЕЛЬНАЯ КЛЕТКА 1) ПРЕДВАРИТЕЛЬНАЯ СВАЙКА ДЛЯ ОТЛИВКИ НА МЕСТЕ 2) ПРИВОДНАЯ СВАЙКА 3) ПРИВОДНАЯ ПРЕДВАРИТЕЛЬНАЯ СВАЙКА БЕТОННАЯ СМЕСЬ ХОППЕР ШНЕК СВАЙНАЯ УСТАНОВКА ДОПОЛНИТЕЛЬНЫЕ РАЗДЕЛЫ, ДОБАВЛЯЕМЫЕ ПО ТРЕБОВАНИЮ СВАЙНАЯ УСТАНОВКА МОЛОТОК PRECAST PILE ПОЛНОСТЬЮ С ДВИЖЕНИЕМ МОЛОТОК МОЛОТОК СТАЛЬНАЯ ОБУВЬ БЕНТОНИТОВЫЙ ШЛАМ БЕТОННАЯ СМЕСЬ, ЗАЛИВАЕМАЯ В МИНИ-СВАЙНАЯ УСТАНОВКА ПО ЗАВЕРШЕНИИ ПРОЕЗДА обсадная колонна заполняется бетоном и армируется. ВЕДУЩИЙ КОРПУС ПРОБКА СУХОГО БЕТОНА ВНУТРЕННИЙ МОЛОТОК ПОЛНОСТЬЮ СВАРНЫЕ СОЕДИНЕНИЯ PRECAST PILE PRECAST PILE РАБОТА С ПОМОЩЬЮ ШНЕКА.

Язык Английский
Тип чертежа Деталь
Категория Детали и системы конструкции
Дополнительные скриншоты
Тип файла dwg
Материалы Бетон, сталь
Единицы измерения
Зона основания
Особенности здания
Теги autocad, база, строительство, ДЕТАЛЬ, DWG, ФУНДАМЕНТ, фундаменты, фундамент, информация, представление, ступенька, технические, типы

ОБЪЯВЛЕНИЕ


Секущие буронабивные сваи (CSP)

Техника CSP (Обсаженные секущие сваи).Этот метод применяется в почвах с низкой несущей способностью и требует использования буровых установок, оснащенных двойной поворотной головкой (Double Rotary) с мощностью не менее 250 кН / м

Чертеж последовательности устройства и усиления секущих буронабивных свай.

Технология Double Rotary (двойная вращающаяся головка) представляет собой комбинацию двух методов сооружения буронабивных свай - использование шнека непрерывного действия (технология CFA) с использованием обсадных труб, что позволяет возводить фундаменты без раствора бентонита в любых грунтовых условиях, в том числе слабые и затопленные.Технология позволяет устанавливать отдельные буронабивные сваи и диафрагменные стены из секущих свай с гарантированным вертикальным отклонением менее 1,0-1,5 мм диаметром 660 мм, 820 мм, 1020 мм и глубиной до 23,5 м.

Технология абсолютно безопасна для устройства буронабивных свай вблизи существующих построек.

Рисунок 1 - Буровая установка СР-65 в эксплуатации

Повышенная несущая способность оснований таких свай при забивке слабого грунта достигается за счет применения обсадной трубы (предохраняет грунт вокруг скважины от разуплотнения и чрезмерного выноса более слабого грунта на поверхность шнеком) и подача бетонной смеси под избыточное давление.

Технологическая последовательность операций

Свая формируется следующим образом (рисунок 2):

Рисунок 2 - Технологическая последовательность формирования сваи

1. Бурение начинается с введения обсадной трубы на небольшую глубину, затем при вращении шнека непрерывного действия и обсадной колонны в разные стороны достигается заданная глубина. При этом сохраняется продвижение обсадной колонны, что не позволяет грунтовым водам проникать в полость обсадной колонны с разупрочнением за счет этого экологического грунта;
2.После достижения заданной глубины через полую часть шнека начинают подачу бетона с одновременным подъемом шнека и обсадной колонны. Заполнение кожуха разрыхленным шнеком грунтом выходит по лопастям шнека вверх и удаляется с помощью очистителя;
3. После заполнения обсадной колонны бетоном ее извлекают;
4. Арматурный каркас опускается на тело полученной сваи с помощью вибропогружателя. Эта технология позволяет значительно сократить временные и финансовые затраты на сооружение буронабивных свай.По данной технологии с помощью буровых установок Soilmec можно сооружать буронабивные сваи диаметром до 1000 мм и глубиной до 23,5 м (под защитой обсадной колонны).

Этот метод обычно используется для:

- ряды секущихся свай;
- сваи, пробуренные шнеком в неустойчивом и водонасыщенном грунте;
- сваи или скважины с очень малым допуском по отвесу.

Оборудование

Конструктивной особенностью оборудования является установка сплошного полого шнека в кожух (рисунок 1).
Для технологии Double Rotary разработаны специальные буровые установки, оснащенные двумя поворотными головками: верхний ротатор приводит в движение сплошной полый шнек, а нижний - поворачивает обсадную трубу в обратном направлении.
Для выполнения свай по данной технологии ООО «Буровая компания« Дельта »использует бурильные станки SR-65 фирмы Soilmec.

Преимущества

1. Может применяться во всех типах диспергируемых грунтов (несвязный плотный грунт, илы, твердые глины).
2.Отсутствие шума и значительных вибрационных воздействий позволяет устраивать сваи возле существующих построек.
3. Высокая производительность - до 20-24 свай глубиной до 23,5 м в смену.
4. Высокое качество заполнения щели бетоном за счет подачи бетона под давлением.
5. Параметры бурения контролируются высокоточным бортовым компьютером.
6. Вариант устройства перегородок из секущих буронабивных свай.

Схема контроля качества буронабивной сваи

Утвердил: Блок-схема контроля качества - буронабивная свая №1. Поток деятельности Подготовка Изготовление арматурного каркаса Теодолит Un

Просмотры 21 Загрузки 0 Размер файла 230KB

Отчет DMCA / Авторское право

СКАЧАТЬ ФАЙЛ

Рекомендовать истории
Цитирование превью

Утверждено:

Блок-схема контроля качества - буронабивная свая № 1.

Порядок действий

Подготовка

Изготовление каркаса из арматуры

Теодолит

Подземные услуги

Визуальная установка / теодолит

Схема сетки

Услуги UG / Услуги UG отклонены / нанесены на карту Согласно чертежу архитектора

Визуальный / теодолит

Обследование ветхости

Завершено (при необходимости)

Буровой раствор

Состояние арматуры

Диаметр сепаратора

Размер спирального звена и расстояние

Сварка

5.

Разметка положения сваи

Установка стального кожуха

Центр сваи

Размер

Положение (разметка) - смещение Вертикальность

6.

Бурение

Профиль почвы

Свойства

Стабилизация верхней части уровень жидкости

9. 10.

Окончательная очистка

Установите арматурный сепаратор

Толщина осадка (30 минут после завершения бурения) Окончательная очистка

12.

13.

Установить Tremie Pipe Проверка отложений 3

Бетонирование

Визуальный, заводской сертификат

Чертеж / спецификация Каждая поставка

Бережливое решение, приподнятое над землей

Согласно строительному чертежу

Испытание

Измерительная лента

Контрольный чертеж

W

I

PM, Surveyor

-

Лицензированный геодезист

Перед отвалом

Геодезический чертеж

-

I

Surveyor, CM

-

чертеж

W

I

Surveyor, CM

-

Лицензированный Surveyor

Dilap.Отчет об исследовании

W

PM, CM

-

Лицензированный регулятор потерь

Утвержденный расчет, брошюра и т.д.

DO

Отчет об испытаниях

I

-

I

CM QC

I

A

I

QC

I

A

I

I QC

I

Супервизор

I

-

I

Супервизор

-

W

I

I

Супервизор

I

I

I

Отчет об испытаниях

W

Утвержденный расчет MS / стального корпуса

Каждая поставка

Контрольный список проверок

W

I

Супервизор

I

Контрольный список проверок

W

I

Супервизор

I

Контрольный список проверок

W

I

Супервизор

Поставка с лентой

Строительный чертеж

Каждая клетка арматуры

Измерительная лента

Каждая клетка арматуры

Согласно строительному чертежу

Измерительная лента

Строительный чертеж

Размер: ______ Расстояние: _______ мм ± 10 мм Дополнительное усиление для предотвращения деформации наружного диаметра клетки : ______ мм

Измерительная лента

I

QC, Supervisor

I

Каждая арматурная клетка

Контрольный список проверок

Строительный чертеж

Каждая арматурная клетка

Контрольная лента

Контрольная лента

Контрольная лента

Каждая арматурная клетка 9 0003

Контрольный список для осмотра

W

I

Supervisor

I

Длина притирки: ____ D ± 10 мм Правильное место притирки Вверху 1000 мм для подъема Используйте расходную арматуру для других мест

Измерительную ленту

Строительный чертеж Каждые

арматурная клетка

Контрольный список проверок

W

I

Supervisor

I

Измерительная лента

Утвержденный MS

Каждая арматурная клетка

Контрольный список проверок

W

Center

сваи ± 10 мм

Теодолит, измерительный Утвержденная лента shopdwg Теодолит, измерительная Утвержденная лента shopdwg

Каждая точка

Контрольный список для проверки

W

I

Surveyor

I

I

000

Каждая точка

I

Сюрвейер

I

Правильный диаметр согласно строительному чертежу

Внутренний диаметр: _____ мм Расстояние: ≤ 3 м между узлами

Без вмятин / повреждений

Диаметр: _____ мм Длина: _______ м Центр сваи ± 10 мм ≤ 1 / ____

≤ 1 / ____

Visual

Измерительная лента

Строительный чертеж

-

Утвержденный MS

Теодолит, измерительный Утвержденная лента shopdwg Теодолит, вертикальный Утвержденный отвес MS, Утвержденный MS измерительная лента

Утвержденный MS

Каждая точка

I

Супервизор

I

Каждая точка

Контрольный список инспекции

W

I

Surveyor

I

Каждая точка

9000 9000 Supervisor

9000 9000 9000 Контрольный список

I

Каждая точка

Контрольный список проверок

W

I

Руководитель 90 003

I

Контрольный список проверок

W

I

Руководитель

I

Контрольный список проверок

W

I

Наблюдатель

I

I

Хранить образец почвы 2

Supervisor

I

Очистка с помощью очистного ведра

Каждая точка

Вязкость: _________ PH воронки затора: ________ Плотность: __________ Потери жидкости: _________ Мин. 2 x объем буронабивной сваи

Тест

Чертеж / Спецификация Перед использованием

Отчет об испытаниях

Visual

Утверждено MS

Перед использованием

-

≤ 1.5 м от верха обсадной колонны или ≤ 1 м от уровня земли

Измерительная лента

Утвержденный MS

Измерительная лента

Вытягивание каждого ковша во время бурения

Чертеж / технические характеристики Каждая точка

± 500 мм от уровня земли

≤ _____ мм

Каждая точка

Перед использованием

W

II

W

I

-

I

Контрольный список проверок

-

Supervisor Supervisor

I

I

Supervisor

I

Супервизор

I

Супервизор

I

W

I

I

Супервизор

I

Контрольный список проверок

W

I0003000

000

000

I0003000 контрольный список

W

I

Руководитель

I

Нет t деформирован, дополнительное усиление добавлено к Визуальному предотвращению деформации клетки ≤ 1 / ____ Теодолит, вертикальный отвес Верхний уровень + 50 мм / -0 мм Инструмент уровня

-

Каждая арматурная клетка

Контрольный список осмотра

W

I

Супервизор

I

Утвержденный MS

Каждая точка

Контрольный список проверок

W

I

Супервизор

I

Утвержденный shopdwg

Каждая точка

000

Контрольный список

I

Толщина осадка (после установки арматурного каркаса)

≤ _____ мм

Чертеж / технические характеристики По каждой точке

Контрольный список осмотра

W

I

Supervisor

I 9000 Min3

Размер трубы 9000 x3 агрегат или 200 мм

Контрольный список для проверки

W

I

Руководитель

I

Плунжер трубы / нижняя заглушка

Контрольный список осмотра

W

I

Руководитель

I

Состояние арматурного каркаса

Длина трубы

Толщина бетонной трубы

прием

Фактический объем бетона Верхний уровень арматуры

Время снятия стального каркаса

Нижний уровень стального каркаса Верхний уровень бетона

Засыпка просверленного отверстия Отверждение

Построенное положение

Построенное вертикальное положение

As- Встроенный уровень отсечения

До носка ворса (200 мм от носка ворса)

Измерительная лента

Измерительная лента Измерительная лента

Строительный чертеж

Утвержденный MS

Каждая точка

Контрольный список проверок

W

Строительный чертеж

Доступен на 3м ц / с и не поврежден

Измерение г ленты

Утверждено MS

Изменение профиля почвы

Каждая точка

Контрольный список проверок

I

Правильный арматурный каркас для конкретного просверленного отверстия Измерительная лента

Прокладка бетонного покрытия

Минимальная глубина согласно чертежу Визуальный

Утвержденный MS

Каждая точка

W

I

Размер арматуры, расстояние между стержнями и т. Д.

Носок сваи очищен от отложений

Visual

I

W

Отчет SI

Отчет SI

Утвержденный shopdwg

Руководитель

I

Контрольный список для осмотра почвы

правильный тип почвы согласно SI

Измерительная лента

I

Супервайзер

Контрольный список проверок

Утвержденный MS

Запись глубины при изменении профиля почвы

W

I

Каждая точка

Визуальный отвес , образец

Мин. глубина согласно чертежу

W

Наблюдатель

Верхний уровень бетона

Сваи в состоянии строительства

Каждая марка бетона Результат пробного смешивания - осадка, проведенное испытание кубиком ≤ 28 дней и т. д.перед первой разливкой

Каждая арматурная клетка

Перед разливкой

I

Наблюдатель Супервизор

I

Визуальный

≤ _____ мм

Измерительная лента

Чертеж / спецификация Каждая точка

Контрольный список

Проверка I

Supervisor

I

Марка бетона: _____ Осадка: _____ мм ± 25 мм 1 образец из каждой буронабивной сваи, 3 шт. проверено через 7 дней 3 шт. испытано через 14 дней 3 шт.испытано в течение 28 дней ≤ _____ часов

Visual, DO

Чертеж / спецификация Перед отливкой

Контрольный список проверки

W

I

Supervisor

I

Visual

Чертеж / спецификация

000 Контрольный список

9000

W

I

Supervisor

I

Visual, DO

Visual, измерительная лента Одобрено MS

Чертеж / спецификация Перед отливкой Во время литья

Контрольный список осмотра

Контрольный список осмотра

W

I

Для хранения ≤ 6 м и ≥ 1.5 м от бетонной поверхности ≥ 1000 мм над уровнем отсечения

Визуальная измерительная лента Одобрено shopdwg

Измерительная лента

Утверждено MS

Во время заливки

Контрольный список проверок

W

I

Supervisor

I > теоретический объем бетона

Запись отливки, DO

Утвержденный shopdwg

Во время отливки

Контрольный список осмотра

W

I

Супервайзер

I

Таймер

Утвержденный MS

W

I

Supervisor

I

Визуальный, измерительная лента Утвержденный MS

После заливки

Контрольный список для проверки

W

I

Supervisor

I

То же, что перед бетонированием ≤.5 часов после заливки

≥ 2 м ниже тремовой трубы

Дозаправка верхнего уровня бетона при падении уровня после извлечения стальной оболочки Мин. 6 часов после заливки

Измерительная лента

Измерительная лента Таймер

Нет активности в пределах 6 м от завершенного бурения свая для Visual, забаррикадируйте первые 24 часа Положение в процессе изготовления в пределах ± 75 мм

≤ 1 / ____

Уровень отсечения в процессе изготовления в пределах ± 10 мм

Теодолит

Теодолит

Инструмент для измерения уровня

I - Inspect / Запись / Основная ответственность, A - Утвердить, W - Свидетель, R - Выборочная проверка * Критерии приемки / допуски могут отличаться от проекта к проекту.Фактические требования см. В Спецификациях Консультанта.

Утвержденный shopdwg Утвержденный MS

Утвержденный MS

Во время литья

Во время литья

После литья После литья

Утвержденный MS

После литья

Утвержденный shopdwg

000 Все

Все

Все

Спецификация Все

Контрольный список проверок

Контрольный список проверок

Контрольный список проверок

W

W

W

WW

I

I

I

9000 Supervisor 9000 9000 Supervisor

9000 Supervisor

Supervisor

I

I

I

I

Supervisor

I

Встроенный чертеж

W

I

Surveyor

I

I

As-built чертеж

Сюрвейер

I

Построенный др awing

W

I

I

Supervisor

Surveyor

Проверьте длину притирки, верхняя часть бетона для испытательной сваи будет отличаться

I

WW

Обратите внимание на то, что верхний уровень арматуры будет другим для теста свая

I

Контрольный перечень проверок

Контрольный перечень проверок

Для удержания жидкости во время бурения

I

Предусмотрен

Перед заливкой

Контрольный перечень проверок

W 9000 MS3

I

Резервный резервуар для повторного использования

Поддерживать ≤ 1.5 м от верха обсадной трубы или ≤ 1 м от уровня земли

Перед заливкой

Контрольный список для проверки

W

Измерительная лента

Утвержденный MS

Примечание

Перед укладкой

I

Отвод

трубы

.

Спецификация

Subcon

W

Стабилизирующая жидкость

Снятие корпуса

Визуальный осмотр, посещение завода

Испытания арматуры третьей стороной Visuallab

MRCB

Контрольный список осмотра

Срок поставки

Выполнено, одобрено Консультантом

Нет окалины ржавчины, правильная прочность

Представитель клиента

Примечание

Контрольный список проверок

Марка бетона, осадка

14.

Каждая марка бетона

-

Каждые

Дата

point

Верхний уровень каркаса арматуры

Проверка отложений 2

Спецификация

Visual

Ред.

Visual

Правильный размер - в соответствии с диаметром буронабивной сваи

Вертикальность

Насыпь грунта на месте

Проверка отложений 1

Утверждено консультантом

Размер шнека / ковша

Объем

8.

RL ________ или ______ мм над уровнем земли

Носок сваи (низ сваи)

Насос в стабилизирующей жидкости

Спецификация

Верхний уровень обсадной колонны

Глубина сваи (начальная)

7.

Visual

Точка смещения в направлениях X и Y Условия

Запись

Утверждено консультантом

Вязкость: _________ PH воронки затора: ________ Плотность: __________ Потери жидкости: _________ Однородное сечение, без вмятин / повреждений Внутренний диаметр: ________ мм Толщина стенки: ________ мм Расположение и конструкция подъемного отверстия

Длина арматурного каркаса

Периодичность

Перед забивкой

Стабилизирующая жидкость

Размер и номера основных арматурных стержней.

Ссылка

Версия:

Visual

Твердое заземление. При необходимости предоставьте стальную пластину

Пройдите испытание (изгиб, повторный изгиб, растяжение)

Площадка для хранения арматуры

Подготовил:

Консультант по обследованию, излагающий черт. UG услуги отображение DWG. Консультант опрос, излагающий черт. Спецификация

Испытание арматуры

Прокладка бетонного покрытия

4.

Метод проверки

Согласно чертежу, полученному от клиента

Стальной кожух

3.

Критерии приемки *

Обследование границ

Конструктивная бетонная смесь Марка: _____ Пробная смесь бетона

Получение материала

Контрольные точки

Платформа свайных машин

2.

Проверено:

I0003

I Лицензированный инспектор

Что такое рабочий чертеж? Рабочие чертежи для Micropile Foundation

Рабочий чертеж - это технический чертеж как часть документации, необходимой для создания архитектурного или инженерного продукта.В инженерных целях они включают все необходимые данные для конструирования или изготовления желаемого объекта, такие как размеры, углы / ориентация и т. Д.

Рабочие чертежи содержат необходимую графическую и размерную информацию, которая потребуется подрядчику для строительства или будет использоваться поставщиками для изготовления компонентов отдельных работ или для установки или сборки каких-либо компонентов.

Традиционные чертежи содержат двумерные орфографические изображения здания или его компонентов, например планы, разрезы и фасады.В настоящее время большинство чертежей готовятся с помощью программного обеспечения САПР (автоматизированного проектирования); некоторые также сделаны вручную. Для лучшего понимания иногда включается трехмерное изображение конструкции или ее компонентов. Технические требования также могут быть включены в рабочие чертежи или может использоваться отдельный лист технических характеристик, но ни в коем случае не следует предоставлять дублирующую информацию, поскольку это приведет к путанице. Для большей ясности для рисования определенного элемента можно использовать различный вес линии (толщину линии).

Цель:

Рабочие чертежи следует составлять с учетом лиц, которые будут их использовать, и назначения их. Цели этих чертежей:

• Для составления плана строительства (со стороны подрядчика)

• Доставить инструкции для строительной площадки,

• Закупить компоненты,

• Подготовить рабочих чертежей ,

• Назначить субподрядчиков.

Здесь мы узнаем о рабочем чертеже микросваи , но при определении архитектурных целей рабочего чертежа можно также включить, скажем,

• Строительный чертеж

• Архитектурный чертеж

• Структурный чертеж

• Механический чертеж

• Электрический чертеж

• Сантехнические чертежи

Размеры даны таким образом, чтобы любой человек мог изготовить спроектированное изделие с помощью этих чертежей.Рабочие чертежи должны иметь достаточную точность, и следует сохранять масштаб, например, если чертеж составляет одну треть от фактического размера, масштаб должен быть 1: 3 и так далее.

Теперь рассмотрим рабочие чертежи микросваи . Рабочий чертеж должен содержать следующие данные:

1. Номер микровыступов, расположение и расположение
2. Расчет нагрузка микровыступов
3. Размер и тип арматурных стержней
4.Минимальная длина соединения (общее значение)
5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *