Схема контура заземления частного дома 380в 15квт: Схема контура заземления частного дома 380в 15квт

Схема контура заземления частного дома 380в 15квт


Заземление в частном доме 🔌 своими руками 220в и 380в

Сегодня в каждом доме есть холодильник, печь СВЧ и телевизор. Другие добавят к этому списку стиральную машину, водонагреватель, пылесос, кондиционер и т. п. Все эти приборы требуют много качественной электроэнергии. При этом и домашняя техника, и система защиты людей от поражения электрическим током будут функционировать нормально только при наличии надежного заземления.

Согласитесь: с заземлением дом становится надежнее!

Почему необходимо качественное заземление

Заземление – это электрическое соединение металлических поверхностей приборов с землей. Физически оно состоит из ряда последовательно соединенных конструктивных элементов, которые называют системой заземления.

Его электрическое сопротивление в сетях 220В, 380В не должно быть выше 4 Ом.

Многим известно, что правила организации рабочего места на предприятии требуют заземления металлических корпусов компьютеров. Конечно, это делается для повышения электробезопасности. Однако при этом улучшается и помехоустойчивость электроники, что увеличивает скорость работы компьютера. Так почему бы не провести в дом заземление, чтобы обеспечить лучшие условия для работы и себе, и технике?

Так бывает, что при касании металлического корпуса водонагревателя или стиральной машины ощущается пощипывание током. Неприятность данного вида также устраняется при заземлении корпуса агрегата.

Так выглядят заземляющие контакты защитного провода

Известно, что исправная микроволновая печь не создает опасного излучения для людей, находящихся рядом. При этом действительно надежная защита обеспечивается только при надежном заземлении ее корпуса. Если же в доме установлен газовый котел, его эксплуатация без заземления вообще не допускается из соображений безопасности.

Во вновь строящемся жилье всегда устанавливается устройство защитного отключения, которое предотвращает возгорание проводки и поражение людей электричеством. Его полноценная работа возможна только при наличии контура защитного заземления. Читайте о подключении УЗО в статье «Схема подключения автоматов и УЗО в однофазной и трехфазной сети с заземлением в частном доме и квартире».

Как известно, громоотвод защищает строения от пожара, а электроприборы — от повышенного напряжения. Монтаж молниеотвода у деревянного дома выполняется только при наличии контура заземлителей.

Защита человека от поражения электрическим током

Приведенная иллюстрация наглядно демонстрирует механизм защиты людей от поражения электрическим током при наличии заземления. Суть его заключается в том, чтобы тело человека не подвергалось воздействию недопустимого напряжения и тока.

Системы энергоснабжения и контур заземления в частном доме

Всем известно, что далеко не в каждом жилье имеется защитный проводник. Может показаться, что в существующих линиях электропередачи уже заложено решение всех вопросов безопасности. Однако зачастую системы подачи электроэнергии либо устарели, либо находятся не в должном состоянии.

Система электроснабжения TN-C

В настоящее время огромное количество жилья получает электроэнергию по двухпроводной линии системы TN-C. В данной схеме защитный проводник PE и нулевой N объединены на подстанции в провод PEN.

На производстве с целью защиты применяют так называемое зануление, то есть корпус оборудования соединяют с проводом PEN. В жилых помещениях так делать нельзя, так как в ряде аварийных ситуаций поверхность прибора может оказаться под напряжением. Вывод: для надежной защиты людей и техники необходимо заземление.

Система электроснабжения TN-C-S

Эффективное и правильное решение – это преобразовать систему TN-C в TN-C-S. В этом случае на входе в здание проводник PEN расщепляют на PE и нулевой N, и в этом месте производят подключение местного заземления (снова!) Для практического осуществления на вводном щите устанавливают шину заземления, контактирующую со щитком и шину зануления, изолированную от его корпуса.

К шине нуля подключают проводник PEN линии электропередачи, а к шине земли подключают местный защитный контур. Между шинами устанавливают перемычку. Со стороны внутренней электропроводки к шине нуля подключают проводники N, а к шине — провод PE.

Данный способ обеспечения защиты имеет недостаток: при плохом контакте или обрыве общего проводника PEN все подключенные к данной линии электроснабжения объекты будут соединены с Вашим контуром. Это может привести к появлению опасного напряжения на проводнике PE, или он перегорит.

Система электроснабжения ТТ

Подобных неприятностей можно избежать, если использовать еще один метод защиты – преобразовать систему TN-C в TT. Такое решение чаще применяют в производственных условиях. В этом случае проводник PEN считают нулевым N, а корпуса потребителей заземляют отдельно.

В практическом плане преобразование сети следует выполнить так же, как и в предыдущем случае, однако перемычку между шинами не ставят. В этом случае корпуса приборов будут всегда под потенциалом земли, однако в данной схеме обязательно применение УЗО и реле напряжения.

Заметим, что в двухпроводной схеме отсутствует защитный провод и возникает вопрос: какой можно применить? При этом, по правилам устройства электроустановок он должен быть в составе общего кабеля, и электропроводку в доме следует заменить. Иногда его все же прокладывают отдельно в кабель-канале. Конечно, сечение защитного провода должно быть не меньше, чем у проводников нуля и фазы.

Система электроснабжения TN-S

Самая надежная система электроснабжения — TN-S. В этом случае от подстанции идут отдельно защитный проводник PE, нулевой N и провода фазы L (один или три). Однако и в этом случае надежность линии электропередачи может вызывать сомнение, так что лучше на входе в дом проводник PE соединить с контуром местного заземления. Как видите, практически в любом случае, если речь идет о частном доме, полноценную защиту можно обустроить только при наличии собственного защитного контура.

Варианты устройства заземляющего контура

Далеко не всегда необходимо обустраивать так называемое искусственное заземление. Возможно, в Вашем случае уже существует естественный заземлитель, который и нужно использовать. В качестве естественного заземлителя могут выступать:

  • труба водопроводной скважины;
  • заложенный в грунт трубопровод из металла;
  • сваи и другие железобетонные элементы;
  • стальные рельсы, трубы и другой профиль, заглубленный в грунт.
Стандартный вариант подключения защитного провода

Разумеется, в случае использования естественного заземлителя следует обеспечить его надежное электрическое соединение с шиной РЕ вводного щита. Лучше всего в качестве соединителя подойдет стальная полоса сечением 40х5мм, которую необходимо приварить к конструкции в грунте.

Ее прокладывают до цоколя здания. Здесь к полосе приваривают болт диаметром 10мм, на который наворачивают две гайки с двумя шайбами между ними. Между шайбами зажимают медный провод сечением не менее 10мм2, который подключается к шине РЕ входного щита. Не допускается использовать в качестве заземлителей:

  • трубы отопительной системы;
  • водопровод;
  • канализационные трубы;
  • трубопроводы горючих и токсичных веществ.

Один из вариантов естественного заземления – железобетонный фундамент здания. При этом необходимо соблюсти ряд условий:

  • отдельные металлические элементы фундамента должны быть соединены с помощью сварки;
  • его поверхности не должны быть обработаны изолирующими гидроизоляционными материалами;
  • фундамент не должен находиться в агрессивной среде;
  • влажность грунта должна быть не более 3%.
Основные варианты заземления частного дома

Если нет ничего, что можно использовать в качестве естественного заземлителя, придется сделать искусственный своими руками. Схему контура заземления можно выполнить в виде:

  • контура вокруг здания из большого количества элементов, забитых на небольшую глубину;
  • конструкции из трех и более штырей, забитых на глубину порядка 2-3м в виде треугольника, квадрата и т. п;
  • одного электрода, заглубленного на несколько метров.

Теоретически все варианты имеют право на существование. Практически, наиболее популярна схема из трех штырей, размещенных в углах треугольника. Заметим, если сделать своими руками конструкцию в цокольном этаже здания, можно не опасаться увеличения сопротивления растеканию тока в результате промерзания грунта.

Расчет параметров заземляющего контура

Как мы уже отмечали, в сети 220 В и 380 В сопротивление заземления не должно превышать 4 Ом. Данная величина зависит от целого ряда параметров:

  • глубины заложения, количества и площади электродов;
  • проводимости поверхности заземлителей;
  • глубины заложения и размеров горизонтальных элементов;
  • состава грунта и его увлажненности.
Общая схема исполнения заземления

Кроме того, сопротивление грунта заметно увеличивается при его замерзании, так что необходимо принимать во внимание климатическую зону. Исходя из необходимых электрических характеристик, а также перечисленных параметров, и происходит расчет заземления. При этом, расчетные формулы имеют немало составляющих и достаточно громоздки.

Разумеется, сложные расчеты необходимо производить в промышленных условиях, когда речь идет о большом количестве материалов и значительных размерах конструкций. В условиях частного дома заметно проще выполнить оценочные расчеты, проконсультироваться в местной организации электроснабжения и у соседей. Мы же подготовили для Вас справочную таблицу расчета количества заземлителей.

Таблица расчета параметров заземления
Тип грунта
Удельное сопротивление грунта, Ом*м
Количество заземлителей
Солончаковые почвы252
Торф503
Садовая земля403
Чернозем503
Песок сильно увлажненный604
Глина604
Песок умеренно увлажненный13010
Супесь влажная15012

Данная таблица составлена для условий 3-й климатической зоны с возможными температурами до -40°С. Состав грунта условно принят одинаковым по всей глубине закладки контура. При этом выбраны следующие параметры конструкции:

  • штыри из стального уголка сечением 50х50х5мм и длиной 3м;
  • расстояние между заземлителями 2м;
  • горизонтальная соединительная полоса из стали сечением 40х4мм;
  • глубина закладки горизонтальных элементов 0,5м.

Из таблицы следует, что соль и влага способствую растеканию тока в грунте, тогда как сухой песок имеет большое сопротивление. Следовательно, правильно обустроить заземление в сухой сезон, тогда в другие периоды его параметры только улучшатся. На практике следует выполнить заземляющий контур в соответствии с таблицей, предусматривая возможность добавления штырей. После завершения работ его сопротивление измеряют и, при необходимости, монтируют дополнительные заземлители.

Земляные работы при обустройстве заземления

Инструкция обустройства треугольного контура заземления

На практике наиболее популярна схема выполнения заземляющего контура в виде треугольника, хотя возможны любые другие варианты его геометрии. Три штыря одинаковой длины забивают в грунт в углах равностороннего треугольника и соединяют их горизонтальной шиной.

В замкнутой системе при нарушении одного из контактов контур продолжает работать. В случае последовательного размещения заземлителей при разрыве горизонтального соединителя сопротивление контура заметно возрастает. В таком варианте для увеличения надежности можно подключить горизонтальный соединитель в середине конструкции и выполнить несколько линий.

Элементы заземляющего контура

Чтобы обустроить контур защитного заземления, потребуются следующие материалы:

    • уголок стальной 50х50х5мм, длина каждого штыря 3-5м;
    • полоса из стали сечением 40х4мм;
    • комплект оцинкованных метизов М10 из болта, двух гаек и двух шайб;
    • антикоррозийный состав или краска для наружных работ.

В качестве штырей может также выступать пруток диаметром не менее 12мм. При этом использование арматуры не приветствуется, так как она имеет повышенное сопротивление поверхности. Уголок, напротив, подходит очень хорошо, так как имеет большую площадь контактной поверхности, не изгибается при забивании в землю, обладает небольшим сечением и легко входит в грунт.

Выше представлен перечень основного инструмента, необходимого для выполнения работ. Сначала необходимо вырыть траншею глубиной 0,7м в виде треугольника со стороной 2,5м на расстоянии 1-2м от здания. Одна из вершин треугольника должна быть соединена канавкой той же глубины со стеной дома. При этом необходимо предусмотреть возможность размещения дополнительных стержней, если сопротивление контура заземления окажется больше 4Ом.

Размеры контура заземления в виде треугольника

Его следует измерить по мере готовности конструкции.Стальной профиль длиной 3-5м обрезают болгаркой под углом для облегчения забивания в грунт. Отметим, что для уменьшения сопротивления растекания тока следует выбрать максимально длинные стержни, которые удастся загнать в землю. В любом случае они должны заходить ниже глубины промерзания не менее, чем на 1м. Для облегчения работы можно предварительно пробурить отверстия в земле на длину бура.

Уголки забивают в грунт кувалдой, разместив их в вершинах треугольника со стороной 2м. В итоге, верхний срез уголков должен выступать над дном траншеи на 20см. Учтите, при увеличении или уменьшении расстояния между штырями на 1м, общая эффективность контура соответственно возрастает или падает на 10-20%.

Этапы обустройства треугольного контура заземления

Выступающие части уголка соединяются полосой 40х4мм с помощью сварки. Далее горизонтальный соединитель выводится на цоколь здания, где к нему приваривается болт. Надежность конструкции будет выше, если соединительная полоса является единым куском. Места сварки следует обработать антикором или покрыть краской.

Больше ничего красить не следует, так как это ухудшит электрический контакт заземления с грунтом.

После выполнения монтажных работ рекомендуется сфотографировать конструкцию, а затем траншеи засыпают грунтом без камней и мусора. Места бурения земли уплотняют.На приваренный к полосе болт наворачивают две гайки с двумя шайбами между ними. Между шайбами зажимают кольцо медного провода сечением не менее 10мм2, который подключается к шине заземления входного щита. Варианты ввода заземления в здание

Как вариант, в цоколе здания можно просверлить отверстие, в которое вставляется металлический штырь или шпилька, приваренный к полосе заземляющего контура. В этом случае медный проводник подсоединяется с внутренней стороны здания.

Монтируем заземление промышленного изготовления

Рассмотренная выше система защиты хороша тем, что ее можно обустроить из стандартных материалов самостоятельно. Придется повозиться с земляными работами и сваркой, зато результат достигается сравнительно небольшими средствами. Альтернативный вариант – приобрести специальный комплект для обустройства заземления.

Фабричный набор для монтажа заземления

Комплекты, один из которых представлен на фото, рассчитаны на суммарную длину от 6 до 45м и состоят из различного количества следующих элементов:

  • штырь стальной омедненный длиной 1,5м;
  • муфта соединительная;
  • наконечник стартовый;
  • головка направляющая для насадки перфоратора;
  • зажим для подключения провода;
  • смазка токопроводящая;
  • лента гидроизоляционная;
  • насадка на перфоратор.

Рассматриваемая система защиты хороша тем, что не требует сварочных работ и занимает минимальную площадь. Покрытые медью стержни имеют очень хороший контакт с землей. В этом случае в небольшой ямке можно установить всего один достаточно длинный заземлитель (до 40м).

Однако стоит такой комплект немало. Кроме того, забивая стержни в грунт, можно попасть на камень. Извлечь детали из земли без повреждения проблематично. Кроме того, при устройстве заземления нужно проверять его сопротивление после забивания очередного штыря.

Этапы монтажа модульного заземления своими руками

Монтаж модульного заземлителя производится в следующем порядке:

  • резьбовые части стержня покрывают токопроводящей смазкой;
  • наворачивают на стержень наконечник стартовый и муфту соединительную;
  • в муфту закручивают головку направляющую;
  • в перфоратор зажимают специальную насадку, которую устанавливают в гнездо направляющей головки;
  • один человек удерживает штырь в вертикальном положении, другой включает перфоратор и забивает штырь в землю;
  • резьбовые части следующего стержня покрывают токопроводящей смазкой;
  • наворачивают на стержень муфту соединительную;
  • направляющую головку переставляют на новый стержень, а его вкручивают в муфту предыдущего;
  • проверяют сопротивление растеканию тока измерителем Ф4103-М1;
  • по достижении значения менее 4Ом на стержень закрепляют зажим для подключения провода;
  • детали зажима предварительно смазывают токопроводящей смазкой и подсоединяют медный провод сечением не менее 10мм2;
  • зажим вместе с проводом плотно обматывают лентой гидроизоляционной.

Проверка характеристик заземляющего контура своими руками

Наиболее просто и правильно проверить результаты своего труда, пригласив специалиста с измерителем сопротивления заземления. Необходимый для этого прибор Ф4103-М1 стоит дороже, чем конструкция контура, так что покупать его Вы не будете.

Если не удалось получить значения менее 4 Ом, необходимо забивать и приваривать дополнительные штыри.

Возможно, Вам посоветуют добавить в почву соль или подлить воды для улучшения растекания тока. Прокомментируем такие идеи в стихах: соль и вода ведут в никуда. Вода скоро высохнет, и заземление уже не будет обеспечивать должную защиту Вашей семьи. Соль вызовет коррозию стали, и работу придется переделывать через непродолжительное время.

Стандартный прибор для измерения сопротивления заземления

Проверить защитный контур в частном доме можно и самостоятельно, подключив нагрузку к проводнику фазы и заземлению. Так, при мощности нагрузки 1000 Вт и сопротивлении заземляющего контура 4 Ом разница напряжения составит 18 В при включении и отключении потребителя. Соответственно, если получается больше 18 В, сопротивление растеканию тока выше нормы.

Отметим, что нестандартные эксперименты с высоким напряжением опасны для жизни. Производить проверку сопротивления защитного заземления не следует, не имея соответствующих знаний. Во время измерения сопротивления заземления рядом с ним не должно быть людей. Не допускается прикосновение к оголенным проводам и заземлению. Нельзя выполнять электрические соединения, не отключив напряжение в сети.

Знак заземления по нашей версии

Надеемся, что приведенные рекомендации помогут Вам надежно заземлить собственный дом, обеспечив защиту людей, жилья и бытовой техники. Заметим, что внешний осмотр видимых частей заземляющего контура рекомендуется два раза в год, а выборочный контроль элементов в земле — раз в десять лет.

Следующий видеоролик иллюстрирует опыт самостоятельного обустройства заземления для частного дома.

Поделитесь с друьями!

Схема инвертора с ферритовым сердечником

5 кВА - Полная рабочая схема с подробными расчетами

В этом посте мы обсуждаем конструкцию схемы инвертора мощностью 5000 Вт, которая включает трансформатор с ферритовым сердечником и, следовательно, намного компактнее, чем аналоги с обычным железным сердечником.

Блок-схема

Обратите внимание, что вы можете преобразовать этот инвертор с ферритовым сердечником на любую желаемую мощность, прямо от 100 Вт до 5 кВА или по своему усмотрению.

Понять приведенную выше блок-схему довольно просто:

Входной постоянный ток, который может подаваться через аккумулятор 12 В, 24 или 48 В или солнечную панель, подается на ферритовый инвертор, который преобразует его в высокочастотный выход переменного тока 220 В на частоте около 50 кГц.

Но поскольку частота 50 кГц может не подходить для нашей бытовой техники, нам необходимо преобразовать этот высокочастотный переменный ток в требуемые 50 Гц / 220 В или 120 В переменного тока / 60 Гц.

Это реализуется через каскад инвертора с Н-мостом, который преобразует эту высокую частоту в выходной сигнал в желаемое 220 В переменного тока.

Однако для этого каскаду H-моста потребуется пиковое значение 220 В RMS, что составляет около 310 В постоянного тока.

Это достигается с помощью мостового выпрямителя, который преобразует высокочастотное 220 В в 310 В постоянного тока.

Наконец, это напряжение на шине постоянного тока 310 В преобразуется обратно в 220 В 50 Гц с помощью H-моста.

Мы также можем видеть каскад генератора с частотой 50 Гц, питаемый от того же источника постоянного тока. Этот генератор на самом деле является дополнительным и может потребоваться для схем с H-мостом, у которых нет собственного генератора. Например, если мы используем H-мост на основе транзисторов, то нам может понадобиться этот каскад генератора для работы полевых транзисторов высокого и низкого уровня соответственно.


ОБНОВЛЕНИЕ: Возможно, вы захотите сразу перейти к новому обновленному « УПРОЩЕННЫЙ ДИЗАЙН » в нижней части этой статьи, в котором объясняется одношаговый метод получения бестрансформаторного синусоидального выхода 5 кВА вместо того, через сложный двухэтапный процесс, как описано в концепциях ниже:


Простая конструкция инвертора с ферритовым коутом

Прежде чем мы изучим версию 5 кВА, вот более простая схема для новичков.Эта схема не использует никаких специализированных драйверов IC, а работает только с n-канальными МОП-транзисторами и этапом начальной загрузки.

Полную принципиальную схему можно увидеть ниже:

MOSFET 400 В, 10 А Характеристики IRF740

В приведенной выше простой схеме ферритового инвертора переменного тока с 12 В на 220 В мы можем увидеть готовый модуль преобразователя постоянного тока с 12 В до 310 В, используемый. Это означает, что вам не нужно делать сложный трансформатор на основе ферритового сердечника. Для новых пользователей такая конструкция может быть очень полезной, поскольку они могут быстро построить этот инвертор, не прибегая к каким-либо сложным расчетам и выбору ферритового сердечника.

5 кВА Предварительные требования для проектирования

Сначала вам нужно найти источник питания 60 В постоянного тока для питания предлагаемой схемы инвертора 5 кВА. Намерение состоит в том, чтобы разработать переключающий инвертор, который будет преобразовывать постоянное напряжение 60 В в более высокое напряжение 310 В при пониженном токе.

Топология, используемая в этом сценарии, представляет собой двухтактную топологию, в которой используется трансформатор с соотношением сторон 5:18. Для регулирования напряжения, которое может вам понадобиться, и ограничения тока - все они питаются от источника входного напряжения.Также с той же скоростью инвертор ускоряет разрешенный ток.

Когда речь идет о входном источнике на 20 А, можно получить 2 - 5 А. Однако пиковое выходное напряжение этого инвертора 5 кВА составляет около 310 В.

Технические характеристики ферритового трансформатора и полевого транзистора

Что касается архитектуры, трансформатор Tr1 имеет 5 + 5 витков первичной обмотки и 18 витков вторичной обмотки. Для переключения можно использовать полевой МОП-транзистор 4 + 4 (тип IXFH50N20 (50 А, 200 В, 45 мР, Cg = 4400 пФ). Вы также можете использовать полевой МОП-транзистор любого напряжения с Uds 200 В (150 В) с наименьшим проводящим сопротивлением.Используемое сопротивление затвора и его эффективность по скорости и пропускной способности должны быть превосходными.

Ферритовая секция Tr1 состоит из феррита размером 15x15 мм c. Индуктор L1 сконструирован с использованием пяти колец из железного порошка, которые могут быть намотаны как провода. Для сердечника индуктора и других связанных деталей вы всегда можете получить его от старых инверторов (56 В / 5 В) и в их демпфирующих каскадах.

Использование полного моста IC

Для интегральной схемы можно использовать IC IR2153. Выходы микросхем можно увидеть с буферизацией каскадов BJT.Кроме того, из-за большой емкости затвора важно использовать буферы в виде комплементарных пар усилителей мощности, пара транзисторов NPN / PNP BD139 и BD140 справляется с этой задачей.

Альтернативная ИС может быть SG3525

Вы также можете попробовать использовать другие схемы управления, такие как SG3525. Кроме того, вы можете изменить напряжение входа и работать в прямом подключении к сети в целях тестирования.

Топология, используемая в этой схеме, имеет гальваническую развязку, а рабочая частота составляет около 40 кГц.В случае, если вы планируете использовать инвертор для небольшой операции, вы не охлаждаете, но для более длительной работы обязательно добавьте охлаждающий агент с помощью вентиляторов или больших радиаторов. Большая часть мощности теряется на выходных диодах, и напряжение Шоттки падает до уровня 0,5 В.

Входное напряжение 60 В может быть получено путем последовательного подключения 5 аккумуляторных батарей 12 В, номинальная емкость каждой батареи должна быть 100 Ач.

СПЕЦИФИКАЦИЯ IR2153

Пожалуйста, не используйте BD139 / BD140, вместо этого используйте BC547 / BC557 для ступени драйвера выше.
Высокочастотный каскад 330 В

220 В, полученное на выходе TR1 в указанной выше цепи инвертора 5 кВА, все еще не может использоваться для работы обычных приборов, поскольку содержимое переменного тока будет колебаться на входной частоте 40 кГц. кГц 220 В переменного тока в 220 В 50 Гц или 120 В 60 Гц переменного тока, потребуются дополнительные этапы, как указано ниже:

Сначала необходимо будет выпрямить / отфильтровать 220 В 40 кГц через мостовой выпрямитель, состоящий из диодов с быстрым восстановлением, рассчитанных примерно на 25 ампер Конденсаторы на 300 В и 10 мкФ / 400 В.

Преобразование 330 В постоянного тока в 220 В переменного тока 50 Гц

Затем это выпрямленное напряжение, которое теперь может достигать примерно 310 В, необходимо будет подавать импульсами с требуемой частотой 50 или 60 Гц через другую схему полного мостового инвертора, как показано ниже:

Клеммы с пометкой «нагрузка» теперь могут использоваться непосредственно в качестве конечного выхода для работы с желаемой нагрузкой.

Здесь МОП-транзисторы могут быть IRF840 или любого аналогичного типа.

Как намотать ферритовый трансформатор TR1

Трансформатор TR1 - это основное устройство, которое отвечает за повышение напряжения до 220 В при 5 кВА, поскольку оно имеет ферритовый сердечник и состоит из пары ферритовых сердечников EE, как подробно описано ниже:

Поскольку задействованная мощность составляет около 5 кВ, сердечники E должны быть огромного размера, можно попробовать ферритовый сердечник E80 типа.

Помните, что вам может потребоваться включить более 1 сердечника E, может быть 2 или 3 сердечника E вместе, размещенных бок о бок для достижения массивной выходной мощности 5 кВА из сборки.

Используйте самый большой из возможных и намотайте 5 + 5 витков, используя 10 номеров из 20 суперэмалированных медных проводов SWG, параллельно.

После 5 витков остановите первичную обмотку, изолируйте слой изолентой и начните 18 витков вторичной обмотки через эти 5 витков первичной обмотки. Используйте 5 параллельных жил из эмалированной меди 25 SWG для намотки вторичных витков.

После завершения 18 витков подключите его к выходным выводам бобины, изолируйте лентой и намотайте оставшиеся 5 витков первичной обмотки, чтобы завершить конструкцию TR1 с ферритовым сердечником. Не забудьте соединить конец первых 5 витков с началом первичной обмотки верхних 5 витков.

Метод сборки электронного сердечника

Следующая диаграмма дает представление о том, как можно использовать более одного электронного сердечника для реализации описанной выше конструкции ферритового инверторного трансформатора мощностью 5 кВА:

Ферритовый сердечник E80

Обратная связь от Г-н.Sherwin Baptista

Уважаемые все,

В вышеупомянутом проекте для трансформатора я не использовал прокладки между деталями сердечника, схема хорошо работала с охлаждением трафо во время работы. Я всегда предпочитал ядро ​​EI.

Я всегда перематывал трафареты в соответствии с моими расчетными данными, а затем использовал их.

Тем более, что trafo представляет собой сердечник EI, разделить ферритовые части было проще, чем избавиться от сердечника EE.

Я также пробовал открывать трафареты ядра EE, но, увы; Я закончил тем, что сломал ядро ​​при его разделении.

Я никогда не мог открыть ядро ​​EE, не сломав ядро.

В соответствии с моими выводами, в заключение я бы сказал несколько вещей:

--- Те блоки питания с неразъемными трафаретами сердечника работали лучше всего. (Я описываю трафарет от старого блока питания atx для ПК, поскольку я использовал только его. Блоки питания для ПК не выходят из строя так легко, если только это не перегоревший конденсатор или что-то еще.) ---

--- Те блоки питания, которые были трафареты с тонкими прокладками часто обесцвечивались и быстро выходили из строя.(Это я узнал по опыту, так как до настоящего времени я купил много подержанных блоков питания, просто чтобы изучить их) ---

--- Гораздо более дешевые блоки питания таких марок, как CC 12v 5a, 12v 3a ACC12v 3a RPQ 12v 5a все

У таких ферритовых трафаретов между сердечниками были более толстые кусочки бумаги, и все они плохо работали !!! ---

В ФИНАЛЕ трафарет сердечника EI35 работал лучше всего (без удержания воздуха пробел) в вышеуказанном проекте.

Подробная информация о подготовке схемы инвертора с ферритовым сердечником 5 кВА:

Шаг 1:

  • Использование 5 герметичных свинцово-кислотных батарей по 12 В 10 Ач
  • Общее напряжение = 60 В Фактическое напряжение
  • = 66 В при полной зарядке (13.2в на каждый аккумулятор) напряжение
  • = 69В напряжение постоянного заряда.

Шаг 2:

После расчета напряжения батареи у нас есть 66 вольт при 10 ампер при полной зарядке.

  • Далее идет питание на ic2153.
  • Модель 2153 имеет максимальное напряжение ZENER 15,6 В между Vcc и Gnd.
  • Итак, мы используем знаменитый LM317 для подачи стабилизированного напряжения 13 В на микросхему.

Шаг 3:

Регулятор lm317 имеет следующие упаковки;

  1. LM317LZ --- 1.2-37v 100ma to-92
  2. LM317T --- 1,2-37v 1.5amp to-218
  3. LM317AHV --- 1.2-57v 1.5amp to-220

Мы используем lm317ahv, в котором 'A' является суффиксом код, а «HV» - высоковольтный корпус,

, поскольку микросхема регулятора выше может поддерживать входное напряжение до 60 В и выходное напряжение 57 В.

Шаг 4:

  • Мы не можем подавать 66 В напрямую в пакет lm317ahv, так как его вход составляет максимум 60 В.
  • Итак, мы используем ДИОДЫ, чтобы снизить напряжение батареи до безопасного напряжения для питания регулятора.
  • Нам нужно безопасно сбросить примерно 10 В с максимального входа регулятора, который составляет 60 В.
  • Следовательно, 60v-10v = 50v
  • Теперь безопасный максимальный вход регулятора от диодов должен быть 50 вольт.
.

7 Изучены схемы модифицированного синусоидального инвертора - от 100 Вт до 3 кВА

Когда инвертор с прямоугольным выходом переменного тока модифицируется для генерации грубого синусоидального переменного тока на выходе, он называется модифицированным синусоидальным инвертором.

В следующей статье представлены 7 интересных модифицированных конструкций синусоидального инвертора с исчерпывающим описанием процедуры его изготовления, принципиальной схемы, выходных сигналов и подробных списков деталей. Конструкции предназначены для обучения и создания экспериментальных проектов инженерами и студентами.

Здесь мы обсуждаем различные разновидности модифицированных конструкций, от скромных 100 Вт до массивных моделей с выходной мощностью 3 кВА.

Как работают модифицированные инверторы

Люди, которые плохо знакомы с электроникой, могут немного запутаться относительно разницы между прямоугольным и модифицированным прямоугольным преобразователем. Это можно понять из следующего краткого объяснения:

Как мы все знаем, инвертор всегда будет генерировать переменный ток (AC), аналогичный напряжению нашей домашней сети переменного тока, чтобы он мог заменить его во время сбоев питания.Простыми словами, переменный ток - это в основном повышение и понижение напряжения определенной величины.

Тем не менее, в идеале этот переменный ток должен быть максимально приближен к синусоиде, как показано ниже:

Основная разница между синусоидальной формой волны и прямоугольной формой волны

Это повышение и падение напряжения происходит с определенной скоростью, то есть с определенным числом раз в секунду, известная как его частота. Так, например, переменный ток 50 Гц означает 50 циклов или 50 повышений и понижений определенного напряжения за одну секунду.

В синусоидальном переменном токе, который встречается в нашей обычной сетевой розетке, вышеупомянутые подъемы и спады напряжения имеют форму синусоидальной кривой, то есть его характер постепенно изменяется со временем и, следовательно, не является внезапным или резким. Такие плавные переходы в форме волны переменного тока становятся очень подходящими и рекомендуемым типом источника питания для многих распространенных электронных устройств, таких как телевизоры, музыкальные системы, холодильники, двигатели и т. Д.

Однако в прямоугольной диаграмме скачки и спады напряжения происходят мгновенно и внезапно.Такой немедленный рост и падение потенциала создает резкие всплески на краях каждой волны и, таким образом, становится очень нежелательным и неподходящим для сложного электронного оборудования. Поэтому всегда опасно работать с ними от инвертора квадратного переплетения.

Измененная форма волны

В модифицированной конструкции прямоугольной волны, как показано выше, форма прямоугольной волны в основном остается той же, но размер каждого участка формы волны имеет соответствующие размеры, так что ее среднее значение близко к форме волны переменного тока Средняя стоимость.

Как вы можете видеть, между каждыми квадратными блоками есть пропорциональное количество зазоров или пустых областей, эти зазоры в конечном итоге помогают преобразовать эти квадратные волны в синусоидальную волну на выходе (хотя и грубо).

И что отвечает за преобразование этих прямоугольных волн с размерами в синусоидальные особенности? Что ж, это неотъемлемая характеристика магнитной индукции трансформатора, которая эффективно преобразует переходы "мертвого времени" между прямоугольными волновыми блоками в синусоидальные волны, как показано ниже:

Во всех 7 конструкциях, описанных ниже, мы пытаемся реализовать эту теорию и убедитесь, что среднеквадратичное значение прямоугольных сигналов соответствующим образом контролируется путем прерывания пиков 330 В на модифицированное среднеквадратичное значение 220 В.То же самое можно применить к 120 В переменного тока, отсекая 160 пиков.

Как рассчитать с помощью простых формул

Если вам интересно узнать, как рассчитать приведенную выше измененную форму волны, чтобы она приводила к почти идеальной репликации синусоиды, то полное руководство см. В следующем посте:


Расчет измененного среднеквадратичного значения синусоидального синусоидального сигнала


Проект № 1: Использование IC 4017

Давайте исследуем первый модифицированный дизайн инвертора, который довольно прост и использует одну IC 4017 для обработки требуемой измененной формы сигнала.

Если вы ищете простую в сборке модифицированную схему синусоидального инвертора мощности, то, возможно, вас заинтересует следующая концепция. Он выглядит удивительно простым и дешевым с выходом, который в значительной степени сопоставим с другими более сложными аналогами синусоидальной волны.

Мы знаем, что когда входной сигнал тактовой частоты подается на ее контакт № 14, ИС выдает импульсы высокого логического уровня цикла смещения через свои 10 выходных контактов.

Глядя на принципиальную схему, мы обнаруживаем, что выводы ИС имеют оконечные нагрузки для питания базы выходных транзисторов, так что они проводят после каждого альтернативного выходного импульса ИС.

Это происходит просто потому, что базы транзисторов попеременно подключаются к выводам IC, а промежуточные выводы выводов просто удаляются или остаются открытыми.

Обмотки трансформатора, которые подключены к коллектору транзистора, реагируют на альтернативное переключение транзистора и создают на его выходе повышенный переменный ток, имеющий форму волны, точно такую, как показано на схеме.

Выходная мощность этого модифицированного синусоидального инвертора, хотя и не совсем сопоставима с выходной мощностью синусоидального инвертора, но определенно будет намного лучше, чем у обычного прямоугольного инвертора.Кроме того, эту идею очень легко и дешево реализовать.

ПРЕДУПРЕЖДЕНИЕ: ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ ЗАЩИТНЫЕ ДИОДЫ ЧЕРЕЗ КОЛЛЕКТОР-ЭМИТТЕР ТРАНЗИСТОРА TIP35 (КАТОД К КОЛЛЕКТОРУ, АНОД К ЭМИТТЕРУ)


ОБНОВЛЕНИЕ: Согласно расчетам, представленным в этой статье, выводы IC 4017 могут быть идеально настроенным для получения впечатляющего внешнего вида модифицированного синусоидального инвертора.

Модифицированное изображение можно увидеть ниже:

ПРЕДУПРЕЖДЕНИЕ: ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ ЗАЩИТНЫЕ ДИОДЫ ЧЕРЕЗ КОЛЛЕКТОР-ЭМИТЕР ТРАНЗИСТОРА TIP35 (КАТОД К КОЛЛЕКТОРУ, АНОД К ЭМИТТЕРУ)

Минимальные характеристики
  • Вход: 12 В от свинцово-кислотной батареи, например, 12 В от батареи 7 Ач
  • Выход: 220 В или 120 В в зависимости от номинала трансформатора
  • Форма волны: измененная синусоида

Отзыв от одного из преданных читателей этого блога , Ms Sarah

Hello Swagatam,

Это то, что я получил из выходных сигналов резисторов R4 и R5 IC2.Как я уже сказал, я ожидал, что у меня будет биполярная волна. Один положительный, а другой отрицательный. для моделирования волнового цикла переменного тока. Надеюсь, эта картинка поможет. Мне нужен путь вперед, пожалуйста.

Спасибо

Мой ответ:

Здравствуйте, Сара,

Выходы IC не будут показывать биполярные волны, поскольку сигналы с этих выходов предназначены для идентичных транзисторов типа N и от одного источника .... это трансформатор, который отвечает за создание биполярной волны на выходе, поскольку он настроен с двухтактной топологией с использованием центрального ответвителя.... так что то, что вы видите на R4 и R5, - это правильный сигнал. Пожалуйста, проверьте форму волны на выходе трансформатора, чтобы убедиться в биполярности формы волны.

Дизайн № 2: Использование НЕ Gates

Второй в списке - уникальная модифицированная концепция синусоидального инвертора, также разработанная мной. Все устройство вместе с каскадом генератора и выходным каскадом может быть легко построено любым энтузиастом электроники в домашних условиях. Настоящая конструкция легко сможет поддерживать выходную нагрузку 500 ВА.

Давайте попробуем разобраться в работе схемы в деталях:

Ступень осциллятора:

Глядя на схему выше, мы видим продуманную схему, включающую как генератор, так и функцию оптимизации ШИМ.

Здесь вентили N1 и N2 подключены как генератор, который в первую очередь генерирует идеально однородные прямоугольные импульсы на своем выходе. Частота устанавливается путем регулировки значений соответствующих 100K и конденсатора 0,01 мкФ.В этой конструкции он установлен на частоте около 50 Гц. Значения можно изменить соответствующим образом для получения выходного сигнала 60 Гц.

Выходной сигнал генератора поступает на буферный каскад, состоящий из четырех параллельных и попеременно расположенных вентилей НЕ. Буферы используются для поддержания идеальных импульсов и предотвращения деградации.

Выходной сигнал из буфера подается на каскады драйвера, где два мощных транзистора Дарлингтона берут на себя ответственность за усиление принимаемых импульсов, так что его можно, наконец, подать на выходной каскад этой конструкции инвертора на 500 ВА.

До этого момента частота представляет собой обычную прямоугольную волну. Однако введение ступени IC 555 полностью меняет сценарий.

IC 555 и связанные с ней компоненты сконфигурированы как простой генератор ШИМ. Отношение меток к пространству ШИМ можно дискретно регулировать с помощью потенциометра 100К.

Выход PWM интегрирован с выходом o

.Схема защиты от короткого замыкания

Короткое замыкание - это непреднамеренное соединение между двумя клеммами, которые подают питание на нагрузку. Это может произойти как в цепи переменного, так и постоянного тока, если это источник переменного тока, то короткое замыкание может привести к отключению источника питания всей области, но на многих уровнях, от электростанции до дома, есть предохранители и схемы защиты от перегрузки. А если это источник постоянного тока, например аккумулятор, он может нагреть аккумулятор, и аккумулятор очень быстро разрядится.В некоторых случаях аккумулятор может взорваться. Существует множество способов защиты цепи от короткого замыкания, и для защиты от перегрузки доступно множество типов предохранителей.

Мы собираемся разработать и изучить простую схему защиты от короткого замыкания низкого напряжения для постоянного напряжения . Схема разработана с целью безопасной работы схемы микроконтроллера и может защитить ее от повреждения из-за короткого замыкания в другой части схемы.

Необходимые компоненты
  • СК100Б Транзистор ПНП - 1 шт.
  • BC547B Транзистор NPN - 1 шт.
  • Резистор 1 кОм - 1 шт.
  • Резистор 10 кОм - 1 шт.
  • Резистор 330 Ом - 2 шт.
  • Резистор 470 Ом - 1 шт.
  • Источник питания 6 В постоянного тока - 1 шт.
  • Макетная плата - 1 шт.
  • Соединительные провода - согласно требованию
SK100B PNP Транзистор

Начиная с выемки транзистора - эмиттер, середина - база, а последняя - коллектор

  • Излучатель - E
  • База - B
  • Коллектор - C
BC547B Транзистор NPN
Схема защиты от короткого замыкания

Типичный пример короткого замыкания - это когда положительная и отрицательная клеммы батареи соединены вместе с проводом с низким сопротивлением, например, проводом.В этом состоянии аккумулятор может загореться и даже взорваться. Так часто бывает с мобильными батареями в мобильных устройствах.

Чтобы избежать этого состояния короткого замыкания, используется схема защиты от короткого замыкания . Схема защиты от короткого замыкания отклонит ток или прервет контакт между схемой и источником питания.

Иногда при использовании неисправной бытовой техники, такой как духовка, утюг и т. Д., Случается сбой в электросети с внезапной искрой.Причина этого в том, что где-то в неисправном приборе протекает избыточный ток. Это может привести к поражению электрическим током или вызвать возгорание дома, если он не защищен. Поэтому во избежание такого повреждения используется предохранитель или автоматический выключатель . В таком состоянии автоматический выключатель или предохранитель отключает основное питание в доме. Цепь предохранителя-выключателя также представляет собой схему защиты от короткого замыкания , , в которой используется провод с низким сопротивлением, который плавится и отключает основной источник питания в доме всякий раз, когда через него проходит избыточный ток.

Итак, здесь мы собираемся изучить и спроектировать схему, чтобы избежать повреждения из-за короткого замыкания в ней.

Схема

Работа цепи защиты от короткого замыкания

Выше показана простая схема защиты от короткого замыкания постоянного тока с низким энергопотреблением, которая состоит из двух транзисторных схем, одна из которых представляет собой транзисторную схему BC547 NPN, а другая - транзисторную схему SK100B PNP.Вход подается на схему с помощью источника питания 5 В постоянного тока, который может быть обеспечен либо батареей, либо трансформатором.

Работа схемы проста, когда горит зеленый светодиод D1, это означает, что схема работает нормально и риск повреждения отсутствует. Красный светодиод D2 должен гореть только при коротком замыкании.

При включении источника питания транзистор Q1 смещается и начинает проводить ток, а светодиод D1 загорается.В это время красный светодиод D2 не горит из-за отсутствия короткого замыкания.

Свечение зеленого светодиода D1 также указывает на то, что напряжение питания и выходное напряжение примерно равны.

В нашей схеме стимуляции мы сгенерировали «короткое замыкание» с помощью переключателя на выходе. Когда происходит «короткое замыкание», выходное напряжение падает до 0 В и Q1 перестает проводить, поскольку его базовое напряжение равно 0 В. Транзистор Q2 также перестает проводить, поскольку напряжение на его коллекторе также упало до 0 В.

Итак, теперь ток проходит через КРАСНЫЙ светодиод D2 и проходит через землю по короткому замыканию (через переключатель).Это приводит к тому, что красный светодиод D2 начинает проводить, поскольку он смещен в прямом направлении, и указывает на то, что было обнаружено короткое замыкание, и ток отводится через красный светодиод D2 вместо повреждения всей цепи.

.

Онлайн-симулятор схем и редактор схем

«Попробуйте - это отличная идея».

«Удивительно удобный и простой для использования даже начинающему любителю».

«Симулятор схем на основе браузера может похвастаться множеством функций».

Технология «Smart Wires»:
Создайте свою схему быстрее, чем когда-либо прежде, с помощью нашей уникальной интеллектуальной технологии Smart Wires для соединения терминалов и перестановки компонентов.

Проприетарный движок моделирования :
Ядро числового решателя повышенной точности плюс усовершенствованный механизм моделирования, управляемый событиями в смешанном режиме, упрощают быстрое выполнение моделирования.

Схема презентационного качества:
Печатайте четкие, красивые векторные PDF-файлы ваших схем, а также экспортируйте их в PNG, EPS или SVG для включения схем в проектные документы или результаты.

Мощный графический движок:
Легко работайте с несколькими сигналами с помощью настраиваемых окон построения графиков, вертикальных и горизонтальных маркеров и расчетов сигналов. Экспорт графических изображений для включения в проектную документацию.

.

Cхема щита учета электроэнергии 380в для частного дома 15 квт — RozetkaOnline.COM

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

3 фазы

Напряжение: 380В

Выделенная мощность: 15 кВт

Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте — на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

 

Простая схема подключения электрощита частного дома 15 кВт

 

 

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

1. Щит навесной металлический, степень защиты ip54 или выше.

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

 

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

 

 

Простой щит учета, система заземления TT

 

 

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

 

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

 

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

 

 

Подробная пошаговая инструкция по выбору оборудования и сборке доступна по этой ссылке…

 

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

 

 

 

Подробная пошаговая инструкция с пояснениями сборки, доступна по ссылке…

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

 

Вариант электрического щита частного дома с УЗИП 

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

 

Схема щита учета с УЗИП, система заземление TN-C-S

 

 

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

 

Щит учета электрической энергии с УЗИП, заземление ТТ

 

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

 

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

 

 

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

 

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Cхема щита учета электроэнергии 380в для частного дома 15 квт

Cтандартные в таких случаях параметры сети для подключения частного дома это:

- 3 фазы

- Напряжение: 380В

- Выделенная мощность: 15 кВт

- Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте - на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

 

Простая схема подключения электрощита частного дома 15 кВт

 

 

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

1. Щит навесной металлический, степень защиты ip54 или выше.

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

 

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

 

 

Простой щит учета, система заземления TT

 

 

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

 

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт


От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

 

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

 

 

Подробная пошаговая инструкция по выбору оборудования и сборке доступна по этой ссылке...

 

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

 

 

 

Подробная пошаговая инструкция с пояснениями сборки, доступна по ссылке...

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

 

Вариант электрического щита частного дома с УЗИП 


Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

 

Схема щита учета с УЗИП, система заземление TN-C-S

 

 

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

 

Щит учета электрической энергии с УЗИП, заземление ТТ

 

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

 

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

 

 

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

 

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Щит учета электроэнергии частного дома — схема, сборка, установка

Стандартные параметры электросети частных домов – 3 фазы, напряжение 380 В. Мощности выделяется 15 кВт, а для проводки используется 4-х жильный тип кабеля. По этой причине коммутационные и защитные приборы закрываются от нелегального подключения. Самостоятельная сборка электрощита для частного дома 380 В 15 кВт предусматривает его установку в доступной для проверки зоне и базовое применение.

Блок: 1/7 | Кол-во символов: 398
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Простая схема подключения электрощита частного дома 15 кВт

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

1. Щит навесной металлический, степень защиты ip54 или выше.

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

Простой щит учета, система заземления TT

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

Блок: 2/5 | Кол-во символов: 975
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Характеристики и специфика трехфазной сети

Электрощиток в трехфазной сети

Электрическая сеть на 380 В предназначена для подсоединения трехфазного и однофазного оборудования. В случае с трехфазным подсоединение происходит на 3 фазы и нейтраль для равномерного распределения нагрузки мощной бытовой техники.

Наличие трех фаз позволяет использовать 4-5-жильные провода с меньшим сечением и дифавтоматы на 3-4 полюса. Выделенная мощность для сети 380 В разделяется поровну по фазам. То есть, если выделено 18 кВт, каждая фаза будет по 6 кВт.

При помощи автомата трехполюсного или четрыехполюсного типа осуществляется обесточивание линии в случае повышенной нагрузки одной фазы. С учетом временной задержки дифавтомата требуется правильно распределить данную нагрузку.

Без распределения нагрузки возникает «перекос фаз», который приводит к постоянному выключению электричества.

Блок: 2/7 | Кол-во символов: 873
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Выбор количества автоматических выключателей

Однополюсной автоматический выключатель

Но в первую очередь вам нужен сам ящик (щит) в который вы будете все устанавливать. Он подбирается исходя из количества автоматических выключателей («Автоматов»), а сколько их ставить это уже решать вам. Можно хоть на каждую розетку и выключатель поставить отдельный автомат. Но конечно это будет излишним. Лучше всего поделить розетки и освещение. То есть один автомат на освещение другой на розетки. Если потребление будет слишком большое то можно, например 2 комнаты подключить на одну пару автоматов, а остальные комнаты на другую пару. Под словом пара я подразумеваю два автомата один на «свет» другой на розетки. Если какой либо прибор в доме потребляет больше 5 киловатт,  то его необходимо подключать отдельной линией (и соответственно отдельным автоматом). Это такие приборы как электроплита, электрокотел и т.п. Так же стиральную машину рекомендуется подключать на отдельную линию. Ну и, конечно же, надо держать пару запасных автоматов на случай появления нового потребителя в доме. На вводе так же желательно устанавливать двухполюсной автомат (двойной) а так же УЗО и ОПС, но об этом позже.

Выбор мощности автоматических выключателей

Различные автоматические выключатели

В предыдущей статье про замену проводки я вам уже рассказывал про выбор сечения проводов и что сечение 2.5мм²  идет на розетки, а 1.5мм² на освещение. Так вот автоматы подбираются исходя из сечения проводки, что бы он мог отключиться до того как ваш провод начнет плавиться от перегрузки. Получается, что на провод в 2.5мм² ставят автомат с номиналом мощности 25А (ампер) а на 1.5мм²  мощностью 16А. Ниже приведу таблицу, на какое сечение какой автомат рекомендуется ставить и какова максимальная нагрузка у такого провода:

Сечение медных жил проводов, кв. мм Допустимый длительный ток нагрузки для проводов, А Номинальный ток автомата защиты, А Предельный ток автомата защиты, А Максимальная мощность однофазной(220В) нагрузки КВТ Характеристика бытовой нагрузки(220В)
1.5 19 10 16 4,1 Освещение и сигнализация
2.5 27 16 20 5,9 Розеточные группы и электрические полы
4 38 25 32 8,3 Водонагревате-ли и кондиционеры
6 46 32 40 10,1 Электрические плиты и духовые шкафы
10 70 50 63 15,4 Вводные линии

Блок: 2/7 | Кол-во символов: 2266
Источник: https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Блок: 3/5 | Кол-во символов: 875
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Что такое УЗО и зачем оно нужно?

Устройство защитного отключения (УЗО)

Будем считать, что вы определились с количеством и мощностью автоматов. Далее поговорим про УЗО. УЗО — это устройство защитного отключения, предназначенное для защиты от утечек тока. В нашем  случае под утечкой тока подразумевается электричество, которое проходит мимо электропроводки и электроприборов. Задача этого прибора обнаружить эту утечку и отключить питание. Простыми словами если вы возьметесь за 2 оголенных провода то устройство отключит ток до того как вы почувствуете удар током, но это в теории))). Так же в этом устройстве имеется защита от перегрузки (как на автомате). УЗО бывает таких же номиналов что и автоматы(10А,16А,25А и т.д).  А вообще УЗО это очень полезная штука, которая срабатывает при малейших утечках тока, так что не пренебрегайте такой защитой. Вот скажем у электродвигателя стиральной машины, перетерлась изоляция провода (Фаза) в таком случае корпус вашей машинки будет под током (а вы этого не знаете). Без УЗО вас будут  ждать неприятные последствия. Можно привести еще кучу ситуаций, в которых  будет полезно данное устройство, но думаю это излишне. Полагаю, вы уже выбрали для себя, будете, ставить его или нет.

Блок: 3/7 | Кол-во символов: 1222
Источник: https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Блок: 4/5 | Кол-во символов: 963
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

ОПС  что это и для чего?

И так продолжим разбирать сборку щита учета электроэнергии на 220В. Следующим элементом, который мы рассмотрим, будет элемент под названием ОПС (Ограничитель импульсных перенапряжений). Предназначено данное устройство от входящих перенапряжений (например, молнии). Но для корректной работы требует заземления. В щит устанавливается параллельно вводного автомата (далее на схеме будет  показано подробно). Принцип работы данного устройства заключается в том, что при перенапряжении ОПС создает внутри себя короткое замыкание, вследствие  чего отключается  вводной автомат, тем самым преграждая дальнейший путь перенапряжению в вашу домашнюю сеть, а ток, который прошел, сбрасывает  на заземление.  Считается, что данный прибор одноразовый и после перенапряжения он выходит из строя. Выглядит он как обычный однополюсной  автомат только за место «флажка» выключателя на нем находиться индикатор рабочего состояния (когда он зеленый значит, прибор исправен если красный, то он вышел из строя). Если вы подключаете  к электросети новый дом, то установка ОПС обязательна. Если же просто ремонтируете проводку, то данный вопрос остается на ваше усмотрение. ОПС подразделяются на три «B», «C»,«D».

Класс «B»

Монтируется на ввод в помещение в ГРЩ (главный распределительный щит.) Является защитой от  ударов молний и  перенапряжений.

Класс «С»

Монтируется  в помещении в РЩ (распределительный щит). Предназначен для защиты внутренней проводки и автоматических выключателей. Защищают от остаточных перенапряжений, которые прошли через класс «В». Самый распространенный вариант, который устанавливается наиболее часто.

Класс «D»

Устанавливается непосредственно на потребитель. Защищает потребитель от высокочастотных помех и перенапряжений, которые прошли через класс «С».

Блок: 4/7 | Кол-во символов: 1790
Источник: https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Блок: 5/5 | Кол-во символов: 1202
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Выбор счетчика

Что бы собрать щит учета электроэнергии на 220В вам не обойтись без счетчика. Счетчики бывают  электромеханические и электронные. Электромеханические счетчики имеют механический механизм отсчета, конечно, они отличаются от своих предшественников с диском. Теперь диск заменил светодиодный индикатор. При отключении данного прибора от сети все показания остаются на  табло.

Механический счетчик

Электронный счетчик имеет жидкокристаллический дисплей,  на котором выводятся показания.  Погрешность, как и у механического аналога, в пределах 1%. Данный счетчик отличается от механического тем, что в случае отключения от сети  или поломки прибора вы не сможете увидеть показания. Хотя электронные счетчики имеют более продвинутый функционал. Помимо потребленной энергии он может показывать количество активной и реактивной энергии и еще много другого (в зависимости от модели). Так же много моделей оснащены функцией дистанционной передачи показаний.

Так же счетчики подразделяются на однотарифные и двухтарифные. Однотарифные  счетчики считают электроэнергию по одному тарифу, то есть по дневному и вы платите за каждый киловатт определенную сумму. В большинстве случаев такие счетчики оснащены механической системой счета, но бывают исключения (то есть может быть и электронный).

Двухтарифный счетчик  считает  электроэнергию по 2 тарифам. Дневной и ночной. Дневной считается, так же как и на однотарифном, но дневной тариф идет с 8:00 до 23:00. С 23:00 до 8:00 начинается ночной тариф, но платить вы за него будете почти вдвое меньше. Но стоит такой прибор вдвое дороже.

Электронный счетчик

Класс точности- это показатель погрешности электросчетчика. Сейчас новые модели идут с классом точности 2 и выше, что допускается в любой электрической сети. Так что на этом параметре не стоит  заострять внимание.

Размеры счетчиков

По размерам счетчики тоже могут быть разные. Бывают большие и маленькие. Качество от размера никак не зависит. Большие счетчики требуют отдельного места в ящике (в ящике бывают специальные места, отведенные для этого). Маленькие же устанавливаются  также как автоматы и не требуют специально отведенного места для себя.

Блок: 5/7 | Кол-во символов: 2158
Источник: https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/

Несколько полезных советов по сборке щита

При сборке электрического щита необходимо использовать только качественную и надёжную электротехническую продукцию. Не стоит обращать внимание на более дешёвые китайские аналоги, личная безопасность гораздо важнее.

Для подключения проводов к автоматам лучше всего применять специальные наконечники для опрессовки. Конечно тогда придётся приобрести и клещи, с помощью которых выполняется обжим, но их стоимость не слишком высокая.

Использование изолирующей ленты уже не актуально, многие электрики используют исключительно термоусадочные трубки. Такой расходный материал удобен и надёжен и не обязательно приобретать строительный фен, можно воспользоваться обыкновенной зажигалкой.

Для удобства эксплуатации все элементы электрического шкафа должны быть промаркированы. Только тогда можно будет быстро и легко отключить напряжение в определённой комнате. Можно делать пометки на корпусе устройства или сделать небольшие таблички и закрепить их на изделии с помощью скотча.

Блок: 5/6 | Кол-во символов: 1015
Источник: https://ProFazu.ru/elektrosnabzhenie/podklyuchenie/sborka-elektroshhita-dlya-chastnogo-doma-380-v-15-kvt.html

Выбор щита

После того как вы определились со всем вышеизложенным (автоматы, УЗО, ОПС, счетчик), пришло время выбрать ящик для всего этого. А именно исходя из количества автоматов, размера счетчика и т.п. Щиты бывают в пластиковом и металлическом исполнении, скрытого и открытого монтажа. Тут опять же все зависит от условий, в котором вы будете производить монтаж. На ящиках есть маркировка, на какое количество автоматических выключателей они рассчитаны,  так что тут все подбирается индивидуально. Но не стоит выбирать слишком маленький ящик, так как будет неудобно производить монтаж.

Виды щитов

Ну и последнее что могу посоветовать, это учитывать степень «пылевлагозащищенности». Она маркируется, например: IP65. Ниже приведена таблица степени защиты.

Таблица степени влагозащиты.

Блок: 6/7 | Кол-во символов: 787
Источник: https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/

Установка щита учета

Устанавливается щит учета на улице на высоте 1200-1600 мм, на столбе (опоре) указанном, как вводной. Спуск проводов к щиту и подъем проводов от щита производится в трубах или коробах или открыто на хомутах. Спуск проводов от щита к дому в траншее производится только в трубе с поворотом трубы в траншею.

Блок: 7/8 | Кол-во символов: 323
Источник: https://ehto.ru/uchet-elektroenergii/shhit-ucheta-elektroenergii-chastnogo-doma

Заземление щита учета

Заземление щита учета производится локально. Проволока не менее 10 мм или металлическая полоска прокладываются от щита вниз по столбу с надежным закреплением хомутами на столбе.

Для самого заземления используется арматура бетонной опоры или отдельный штырь вбитый в землю на глубину 1,8-2,0 метра до достижения нормативного сопротивления заземления, 4 Ом для 380 В и 8 Ом для 220 В (ПУЭ 7, 1.7.101.)

Похожие посты:

Блок: 8/8 | Кол-во символов: 433
Источник: https://ehto.ru/uchet-elektroenergii/shhit-ucheta-elektroenergii-chastnogo-doma

Кол-во блоков: 23 | Общее кол-во символов: 20987
Количество использованных доноров: 5
Информация по каждому донору:
  1. https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt: использовано 4 блоков из 5, кол-во символов 4015 (19%)
  2. https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/: использовано 5 блоков из 7, кол-во символов 5930 (28%)
  3. https://stroimdoom.ru/elektrika/kak-sobrat-shhit-ucheta-elektroenergii-220v/: использовано 5 блоков из 7, кол-во символов 8223 (39%)
  4. https://ProFazu.ru/elektrosnabzhenie/podklyuchenie/sborka-elektroshhita-dlya-chastnogo-doma-380-v-15-kvt.html: использовано 2 блоков из 6, кол-во символов 1038 (5%)
  5. https://ehto.ru/uchet-elektroenergii/shhit-ucheta-elektroenergii-chastnogo-doma: использовано 4 блоков из 8, кол-во символов 1781 (8%)

Схема трехфазного вводного щитка для электропроводки в частном доме

Стандартные параметры электросети частных домов – 3 фазы, напряжение 380 В. Мощности выделяется 15 кВт, а для проводки используется 4-х жильный тип кабеля. По этой причине коммутационные и защитные приборы закрываются от нелегального подключения. Самостоятельная сборка электрощита для частного дома 380 В 15 кВт предусматривает его установку в доступной для проверки зоне и базовое применение.

Блок: 1/7 | Кол-во символов: 398
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Характеристики и специфика трехфазной сети

Электрощиток в трехфазной сети

Электрическая сеть на 380 В предназначена для подсоединения трехфазного и однофазного оборудования. В случае с трехфазным подсоединение происходит на 3 фазы и нейтраль для равномерного распределения нагрузки мощной бытовой техники.

Наличие трех фаз позволяет использовать 4-5-жильные провода с меньшим сечением и дифавтоматы на 3-4 полюса. Выделенная мощность для сети 380 В разделяется поровну по фазам. То есть, если выделено 18 кВт, каждая фаза будет по 6 кВт.

При помощи автомата трехполюсного или четрыехполюсного типа осуществляется обесточивание линии в случае повышенной нагрузки одной фазы. С учетом временной задержки дифавтомата требуется правильно распределить данную нагрузку.

Без распределения нагрузки возникает «перекос фаз», который приводит к постоянному выключению электричества.

Блок: 2/7 | Кол-во символов: 873
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Щит учета электроэнергии ЩУ 15квт 25А IP54 с розеткой 220В (производится в Санкт-Петербурге!)

предназначен для учета и контроля потребленного электричества на садовых и дачных участках, в коттеджах, загородных домах, в производственных помещениях. Установленное в щите учета 380В 15кВт оборудование защищает отходящую в дом кабельную линию и подключенные электроприемники от перегрузок и коротких замыканий, а однофазная розетка 220В позволяет удобно подключить дрель, перфоратор, обогреватель, миксер или освещение при строительстве частного дома или проведения ремонта.

Наш щит учета с розеткой полностью выполняет стандартные требования ТУ Ленэнерго, в нем установлено следующее оборудование:

  1. Металлический корпус 400Х300Х165 IP54 с внутренней дверью, окошком для снятия показаний, сальниками и ключами
  2. Трехфазный двухтарифный счетчик электроэнергии ЦЭ 2727 50А CL (Петербургский завод измерительных приборов)
  3. Трехполюсный (трехфазный) автомат 25А 15кВт EASY9 Schneider Electric в пломбировочном боксе для подключения входящего кабеля
  4. Трехполюсный (трехфазный) автомат 25А 15кВт EASY9 Schneider Electric для подключения отходящего кабеля
  5. Розетка 220В + защитный автомат 1п 16а EASY9

В комплекте со щитом учета идет паспорт, документы на счетчик и корпус, сертификат соответствия ТУ, схемы подключения и бухгалтерские документы.

Обращаем ваше внимание, что комплект заземления и комплект крепления корпуса к столбу не входит в стоимость щита учета и приобретается отдельно!

В зависимости от вашего ТУ на подключение мы можем предложить щит учета с увеличенной степенью защиты (IP65), щит учета с ограничителем мощности, щит учета с защитой от удара молнии и импульсных перенапряжения, щит учета с GSM-модемом, щит учета с УЗО или комплектующие других производителей.

Если у вас остались вопросы по нашему шкафу учета — обратитесь к разделу FAQ (вкладка под ценой). Там мы собрали для вас наиболее часто задаваемые вопросы и ответы на них.

Блок: 2/4 | Кол-во символов: 1953
Источник: http://www.elektro-portal.com/product/show/24409

Трехфазная схема распределительного щита

Типовая схема трехфазного щита состоит из входного 3-х фазного автоматического выключателя и нескольких групповых автоматов, которые защищают только свои отходящие однофазные линии. Тут на входе стоит 3-х полюсный автоматический выключатель номиналом 25А-40А и с характеристикой выше групповых однофазных автоматов (с характеристикой С). Это необходимо для попытки соблюдения селективности и исключения одновременного срабатывания входного автомата и группового. Хотя при коротком замыкании скорее всего сработают и вводной автомат С25 и групповой В16. При такой минимальной разнице номиналов автоматических выключателей добиться селективности практически не возможно.

В схеме все нулевые проводники заводим на общую нулевую шину, все заземляющие проводники заводим на общую шину заземления, а фазные проводники на автоматические выключатели. Объединять групповые автоматы по фазам можно с помощью перемычек из провода, а лучше с помощью специальной гребенчатой шины. Ниже представлена типовая трехфазная схема распределительного щита 380В. Может кому и пригодится я сюда еще вставил счетчик электроэнергии. Здесь представлена система заземления TN-S. Если у вас система заземления TN-C, то вам обязательно нужно делать переход на систему заземления TN-C-S, т.е. разделять входящий PEN проводник на самостоятельные нулевой рабочий N и нулевой защитный PE проводники. Как это правильно организовать читайте здесь.

Вот наглядный пример подключения автоматических выключателей в 3-х фазном электрощите. Все фото сборки данного щитка можете посмотреть здесь: Сборка трехфазных электрощитов на заказ

Если у кого-то в доме помимо однофазных потребителей есть трехфазная нагрузка, например, электрическая плита, то вам должна пригодиться следующая схема трехфазного распределительного щита. В представленном варианте можно подключить один 3-х фазный прибор и несколько однофазных.

Если в щитке нет места для счетчика электроэнергии или он стоит в другом месте, то вот схема щита 380В аналогичная предыдущей, но уже без прибора учета. Тут все фазные проводники напрямую идут на групповые автоматические выключатели.

Если с предыдущими трехфазными схемами распределительных щитов все понятно, то идем дальше. Ниже для вас выложил схему, где еще присутствуют УЗО и дифавтомат. С их помощью обязательно нужно защищать все группы розеток. Этого требует ПУЭ, а также электробезопасность должна быть на первом месте. Тут дифавтомат стоит только на стиральную машину, так как в случае его срабатывания найти неисправность будет не так сложно. УЗО в паре с автоматическим выключателем стоит на группу кухонных розеток. Почему в паре можете узнать тут. Это сделано для облегчения поиска неисправности, так как в них будет включено много разных электроприборов. Если сработал автомат, то значит где-то короткое замыкание или если вы включили в сеть все электроприборы одновременно, то скорее всего перегрузка. Если сработало УЗО, то вероятнее всего появилась утечка в каком-то бытовом приборе. Ниже нарисовано как правильно подключить УЗО и подключить дифавтомат в щитке 380В.

Ниже представлен реальный пример трехфазного щита с подключением 2-х полюсных и 4-х полюсных УЗО.

Вот еще одна схемка может кому и пригодится. Она построена на одном общем (входном) и нескольких групповых УЗО.

Ниже представлены полностью готовые к монтажу трехфазные щитки. Это моя работа по сборке электрощитов на заказ. Данная услуга доступна всем желающим из любой точки нашей необъятной родины. Любые вопросы по данному вопросу пишите на адрес Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Я готов вам предложить закупку комплектующих у официальных поставщиков электроматериалов по личной скидке до 20% от розничной цены ЭТМ. При заказе сборки электрощита разработка схемы и паспорт идут бесплатно. Буду очень рад вашим заказам. С каждого собранного электрощита 50% дохода идет на погашение ипотеки. Сделаем вместе жилье доступным для электромонтажника )))

Еще вас будут радовать цветные наклейки)))

Остались вопросы? Буду рад на них ответить в комментариях. Если и после этого ничего не понятно, то не искушайте судьбу и позовите грамотного электрика.

Электрик, химик, механик и программист едут вместе в машине. Вдруг заглох мотор.
— Электрик говорит, — «Наверно аккумулятор сел».
— Химик говорит, — «Нет, скорее всего не тот бензин».
— Механик,- «Я думаю, что это передача не работает.»
— Программист, — «Может выйдем из машины, и зайдем обратно?»

Блок: 2/2 | Кол-во символов: 4507
Источник: https://morflot.su/sborka-jelektroshhita-dlja-chastnogo-doma-380v/

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Блок: 3/5 | Кол-во символов: 875
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Фото шкафа учета электроэнергии 380В 15кВт в сборе

 

Конструктив. Шкаф учета имеет 2 двери, каждая из которых имеет свой замок. Внешняя дверь заземлена. На внутренней двери расположено окошко для снятия показаний со счечика и органы управления автоматическими выключателями, а также розетка.

«Внутрянка». Вводной автомат в боксе под опломбировку. Все провода (ПВ3 4мм) имеют цвет соглазно фазировки. Внизу расположены сальники PG 29 18-25мм для подключения СИПа. Слева от розетки расположены клеммы N и PE

Внешний вид шкафа учета на столб

Блок: 3/4 | Кол-во символов: 548
Источник: http://www.elektro-portal.com/product/show/24409

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Блок: 4/5 | Кол-во символов: 963
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Как купить 3-х фазный шкаф учета электроэнергии 15кВт 25А 380В IP54 в компании ПромЭлектроСервис?

Все шкафы учета изготавливаются индивидуально под заказ, срок изготовления типового щита учета составляет 3-4 рабочих дня после внесения 100% предоплаты.

Чтобы заказать сборку и купить шкаф учета электроэнергии:

  1. Оформите заказ на сайте и укажите свои контактные данные для связи. В ответном письме вам будет выставлен счет на оплату, оплатить который можно в любом отделении банка, при помощи терминала оплаты или онлайн-банкинга.
  2. Оплатить наличными по адресу ул. Седова 57 (наше производство)

Блок: 4/4 | Кол-во символов: 597
Источник: http://www.elektro-portal.com/product/show/24409

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Блок: 5/5 | Кол-во символов: 1202
Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt

Алгоритм распределения нагрузки по трем фазам

Основные сложности при сборке конструкции – группировка и равномерное разделение нагрузки так, чтобы мощная техника не становилась причиной выключения из-за перегрузки. Это выйдет при суммарной мощности, не превышающей номинал и не одновременной работы всех устройств.

Общий порядок группировки нагрузки на автоматы

Таблица степеней защиты

Простой и надежной является схема с установкой для отдельной потребительской группы или мощной техники индивидуального автомата и УЗО. Минусами подключения являются большой трехфазный щиток и затраты на его обустройство. Альтернативой является подвод нескольких линий к одному автомату и правильная последовательность их объединения:

  • Для подключения розеток и осветительных устройств нужно использовать разные автоматы. Это исключит обесточивание всей сети при поломке одной группы.
  • Ванную комнату, кухню или баню («мокрые зоны») нельзя размещать в одной группе с «сухими». Автоматы для влажной среды подбираются с иными характеристиками.
  • Уличная группа – свет и розетки подсоединяются к отдельным автоматическим приборам. Допускается совмещение данной группы с хозпостройками.
  • Для питания автоматических ворот, охранного освещения и СКУД применяются отдельные автоматы.
  • Для запитки мощной бытовой техники ставятся персональные УЗО и автоматы. Можно группировать электрический духовой шкаф с электроплитой, стиралку и посудомойку, проточный и накопительный бойлер. Во избежание перегрузки приборы не рекомендуется подключать единовременно.

Для правильного формирования групп сделайте перечень линий с указанием нагрузки каждой.

Блок: 5/7 | Кол-во символов: 1614
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Видео по теме

Хорошая

Блок: 6/6 | Кол-во символов: 23
Источник: https://ProFazu.ru/elektrosnabzhenie/podklyuchenie/sborka-elektroshhita-dlya-chastnogo-doma-380-v-15-kvt.html

Специфика сборки щитка в деревянном доме

Повышенная степень горючести и риски пожарных ситуаций предусматривают особый порядок монтажа щитка в домах из дерева. Изначально пиломатериал пропитывается антипожарными средствами, которые могут удерживать огонь до 20 минут. Чтобы исключить возможность возгорания, понадобится придерживаться строгой последовательности работ.

Нюансы выбора материалов

Проводка в потолке из дерева в металлической гофре

При подборе материалов учитываются такие нюансы:

  • Деревянный дом допускается электрифицировать только медным кабелем. Провод должен иметь маркировку «нг» и LS – двухслойная негорючая изоляция.
  • Выбор сечения проводника. Можно рассчитать по формулам или воспользоваться таблицей ПУЭ.
  • Все точки проводки, в том числе розеточно-осветительные, заземляются.
  • Разрешено применять трех-, четырехжильный провод.
  • Обязательная установка УЗО для защиты пробоя по корпусу и возгорания бревен.
  • Установка для каждой линии или группы отдельного автомата с мощностью в соответствии с суммарной нагрузкой на сеть.
  • Отдельный прибор выключения на каждую группу. Для двухэтажного здания достаточно модели 25 А на вводе и отдельно для группы – прибора на 16 А.
  • Выбор розеток в зависимости от способа прокладки проводки – скрытого или открытого.

Прибор учета должен располагаться перед вводным автоматом для удобства пломбирования.

Требования к распредщитку

Правильный электрощиток для дома из дерева – металлический, который не контактирует с пиломатериалом. Толщина стенки изделия – от 1 до 2 мм, но при коротком замыкании электрическая дуга прожигает металл. В этом случае можно отделать стену кирпичом и поставить на готовую поверхность бокс. Второй вариант прослойки – асбестоцементная плита или укладка под короб отреза асбестовой ткани, сложенного в несколько раз.

Блок: 6/7 | Кол-во символов: 1794
Источник: https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/

Кол-во блоков: 15 | Общее кол-во символов: 18501
Количество использованных доноров: 5
Информация по каждому донору:
  1. https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/218-ckhema-shchita-ucheta-elektroenergii-380v-dlya-chastnogo-doma-15-kvt: использовано 3 блоков из 5, кол-во символов 3040 (16%)
  2. https://StrojDvor.ru/elektrosnabzhenie/sxema-trexfaznogo-vvodnogo-shhitka-dlya-elektroprovodki-v-chastnom-dome/: использовано 5 блоков из 7, кол-во символов 5930 (32%)
  3. https://ProFazu.ru/elektrosnabzhenie/podklyuchenie/sborka-elektroshhita-dlya-chastnogo-doma-380-v-15-kvt.html: использовано 2 блоков из 6, кол-во символов 1926 (10%)
  4. https://morflot.su/sborka-jelektroshhita-dlja-chastnogo-doma-380v/: использовано 1 блоков из 2, кол-во символов 4507 (24%)
  5. http://www.elektro-portal.com/product/show/24409: использовано 3 блоков из 4, кол-во символов 3098 (17%)

Монтаж ящика учета электроэнергии -

Cхема щита учета электроэнергии 380в для частного дома 15 квт

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

3 фазы

Напряжение: 380В

Выделенная мощность: 15 кВт

Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте — на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

Простая схема подключения электрощита частного дома 15 кВт

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

Простой щит учета, система заземления TT

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Собираем электрощит для частного дома на 380 В 15 кВт

Сборка электрощита для частного дома напряжением 380 В и мощностью до 15 кВт требует соответствующего подхода и наличия следующего инструмента:

  • плоскогубцы;
  • плоская и фигурная отвёртки;
  • обжимные клещи;
  • монтажный нож с набором сменных лезвий.

Все работы начинаются с планирования, а если хозяин дома предпочитает обратиться в электротехническую компанию, то перед началом монтажа составляется проект и предварительная схема. Также следует подготовить составляющие щита и расходные материалы (опрессовочные наконечники, термоусадку, DIN-рейку, дюбели).

Из каких элементов состоит электрический щит

Закупать составляющие электрощита необходимо сразу, чтобы впоследствии не терять время и не ездить по несколько раз за день в электротехнический магазин. Мощность щита определена, она составляет 15 кВт, это означает, что максимальная потребляемая мощность не превысит 15 кВт/ч.

Электрощит частного дома, перечень элементов:

  1. Счётчик электрической энергии. Счётчик является первым элементом, который должен быть установлен в щите. Лучшим решением станет покупка электронного устройства, рассчитанного на подключение трёх фаз. Такие измерительные приборы обладают высокой точностью и длительным сроком эксплуатации. Вся информация выводится на цифровой экран. Электронные счётчики могут быть запрограммированы на функционирование в нескольких тарифах.
  2. Электрический щит. Сейчас в магазинах имеется большое количество электрощитов самых различных размеров и рассчитанных на определённое количество элементов. Цена на изделие варьируется в зависимости от наличия DIN-рейки, встроенного замку, а также смотрового окна (специально для снятия показаний со счётчика). Следует обратить на защиту от пыли и влаги, её уровень должен составить не менее IP 54. Габариты — 445×400×150, и толщины стенки в 1 мм.
  3. Вводной автоматический выключатель. Следует приобретать трёхполюсный автомат, ведь заводимое напряжение в дом составит 380 В, а это означает наличие трёх фаз.
  4. Устройство защитного отключения (УЗО). Монтируется в обязательном порядке, так как является защитным элементом при появлении опасного потенциала на корпусе электроприбора.
  5. Автоматические выключатели. Подбирать ампераж следует исходя из нагрузки потребителя, о чём будет рассказано далее.
  6. Реле напряжения. Защищает бытовые электроприборы от скачков напряжения. Многие пользователи устанавливают реле, но оно не является обязательным элементом. Также сейчас получило широкое применение устройство защиты от импульсных скачков (УЗИП). Например, при ударе молнии в воздушную ЛЭП, напряжение в доме достигнет высоких пределов, что станет губительным для всей техники. УЗИП вовремя отключит сеть, но, как и реле напряжения, устанавливают его не часто.
  7. Измерительные приборы. Также являются необязательным элементом электрощита. К измерительным приборам относятся амперметры и вольтметры, часто комбинируемые в одно изделие.

Какие автоматические выключатели подобрать для электрощита

Основной вопрос, затрагивающий многих пользователей: как определиться с автоматами? Расчёт номинального тока автоматического выключателя производится исходя из такого параметра как нагрузка потребителя или его мощность.

Для примера. Номинальная мощность одновременно включённых электроприборов и осветительной сети составит 15 кВт. Существует формула: P=U×I, где P-мощность, U — напряжение, I — сила тока. Если P=15000 Вт, то сила тока составит (округлив) 68 А. Это означает, сумма номинальных значений автоматов не должна превысить 68 А. Но следует помнить, что к щиту подводят трёхфазную сеть, поэтому номинальный амперах необходимо поделить на 3, что даст приблизительно 23 А. Это означает, что входной автомат следует устанавливать в 25 А.

Для осветительных сетей использует автоматы на 6.3 или 10 А. Это общепринятые стандарты, к которым удобно прибегать для экономии времени. Если всё же появилось свободное время, то можно рассчитать ампераж автомата на свет, используя вышеприведённую формулу, только P будет равно сумме мощностей всех ламп, используемых в отдельной или общей осветительной линии.

Ампераж автоматов для силовых цепей не должен быть менее 16 А. Именно такое номинальное значение позволит на протяжении длительного времени пользоваться электрическими приборами бесперебойно. Если установить автоматический выключатель с меньшим номинальным порогом, то включение бытового прибора будет восприниматься устройством как короткое замыкание на линии и автомат отключит напряжение.

Также в доме могут присутствовать и более мощные электроприборы: варочные поверхности, духовые шкафы, холодильные камеры. И если несколько розеток можно объединить в одну группу, то для таких приборов потребуется установка отдельного автомата со значением не менее 25 А. Мощность современной электрической панели может достигать 7 кВт и выше.

Последовательность правильного монтажа электрического щита

Для того, чтобы электрощит в доме был смонтирован правильно, следует использовать только качественные электротехнические изделия, а также расходные материалы. Только после окончания монтажа, в щиток подводят рабочее напряжение.

Правильная сборка трёхфазного электрощита имеет следующую последовательность:

  1. Установка вводного автомата. Номинал устройства должен охватывать максимально потребляемую мощность. Так как в дом будут заведены 3 фазы, напряжение между которыми составит 380 В, то необходимо устанавливать трёхполюсный автоматический выключатель. Не рекомендуется для экономии средств монтировать 3 однополюсных автомата и соединять их специальной планкой. Вводной автомат устанавливается в левом верхнем углу щита и соответственно маркируется.
  2. После вводного автомата необходимо установить УЗО. Номинал устройства должен соответствовать номиналу вводного выключателя. Также следует обратить внимание на ток отсечки — чем меньше этот показатель, тем быстрее УЗО отключит сеть. Существуют дифференциальные автоматы, включающие в себя защитные функции от короткого замыкания и отключение сети при возникновении тока утечки (УЗО и стандартный выключатель). Использовать такое изделие проще, но его стоимость достаточно высока.
  3. Правее УЗО, на небольшом расстоянии, монтируют нулевую шину. Современные шины предусматривают между медной планкой и корпусом щита пластиковый диэлектрик. Выполняется это для того, чтобы в случае отгорания нуля и попадания на него фазы, электрический щиток не оказался под опасным для жизни напряжением.
  4. На планке с вводным автоматом, УЗО и нулевой шиной также могут быть размещены измерительные приборы и реле напряжения. Если монтировать вольтметр и амперметр в трёхфазную сеть, то необходимо выбирать изделия, отображающие как линейную, так и фазную нагрузку. А также способные показывать данные на каждой фазе отдельно.
  5. На нижней DIN-рейке расположены автоматические выключатели силовых и осветительных линий. Чтобы не запутаться и постоянно не смотреть на номинал автоматов, изделия осветительной линии следует расположить на небольшом расстоянии от силовых выключателей.

После сборки щита его можно монтировать к стене и подключать провода от потребителей к автоматам. Пример схемы электрощита, количество автоматов может меняться в зависимости от желания хозяина.

Если щит учёта электроэнергии напряжением в 380 В расположен не на улице, то перед вводным автоматом монтируют сначала его. Но установка прибора контроля за расходом электроэнергии в доме неудобно, так проверяющие лица (для экономии времени и отсутствии хозяев) должны снимать показания на улице.

Несколько полезных советов по сборке щита

При сборке электрического щита необходимо использовать только качественную и надёжную электротехническую продукцию. Не стоит обращать внимание на более дешёвые китайские аналоги, личная безопасность гораздо важнее.

Для подключения проводов к автоматам лучше всего применять специальные наконечники для опрессовки. Конечно тогда придётся приобрести и клещи, с помощью которых выполняется обжим, но их стоимость не слишком высокая.

Использование изолирующей ленты уже не актуально, многие электрики используют исключительно термоусадочные трубки. Такой расходный материал удобен и надёжен и не обязательно приобретать строительный фен, можно воспользоваться обыкновенной зажигалкой.

Для удобства эксплуатации все элементы электрического шкафа должны быть промаркированы. Только тогда можно будет быстро и легко отключить напряжение в определённой комнате. Можно делать пометки на корпусе устройства или сделать небольшие таблички и закрепить их на изделии с помощью скотча.

Видео по теме

Ящик на столбе

Альбом пользователя Avs7153, созданный 15.03.13 .

Типовые схемы организации электрического вводного щитка с узлом учёта электроэнергии.

В примерах трёхфазное подключение 15кВт.
Через наклонную черту указаны системы заземления ящика и домовой сети.
Применение той или иной схемы обусловлено, с одной стороны, здравым смыслом. А с другой — маразмом снабжающей организации, которая может требовать взаимоисключающие вещи. Например TNCS и «ноль в счётчик».
Применение УЗО в щите учета обусловлено необходимостью защиты не только распределительного щита, но и отходящего кабеля. Поврежденный подземный кабель не обязательно выдаст короткое замыкание, отслеживаемое автоматом. Утечка в условиях влажного грунта может быть небольшой и незаметной — однако, учитываемой счетчиком! Желающие могут посчитать месячные расходы на 0.5А утечку по формуле: Р=0.5*220/1000*24*30*Тариф.

Для построения правильного ЩУ нужно учитывать:
1. Состояние линии электропередач. Голые или изолированные провода.
Наличие повторного заземления нуля на столбах. Расстояние до трансформатора.
2. Расположение щита учета — столб, забор, трубостойка, фасад дома, внутри дома.
3. Наличие отдельного заземления у отводного столба, трубостойки, забора.
4. Характеристики основного заземления.
5. Наличие грозоразрядников на столбе отвода.
6. Характеристики ввода в дом (воздушный, подземный).
7. Выделенная мощность, количество фаз. Предполагаемая потребляемая мощность.
8. Ток короткого замыкания, обеспечиваемый линией.
9. Особые требования снабжающей организации и, возможно, поблажки от неё же.

Работающий щиток учёта можно собрать полусотней разных способов, но безопасных лишь несколько, которые и приведены в альбоме.

Суть повторного заземления в том, что оно работает совместно со всеми другими повторными заземлениями в этой линии, и с заземлением нуля на трансформаторе тоже. Поэтому и допускается ненормированность отдельного повторного заземления. Для металлического ящика — это единственная защита до вводного автомата и почти единственная до УЗО.
Если во входящем СИПе фаза попадёт на корпус, может и не возникнуть короткое замыкание, достаточное для автомата на ТП, так хотя бы часть потенциала уйдёт в землю через ноль. А отключив ноль получаем ничем не защищённый ящик, который в этом случае нужно делать пластиковым.
Розетка в ЩУ во-первых, недопустима, а во-вторых, подключать через неё можно лишь потребителей класса защиты II (пластмассовые), с двухполюсной вилкой и через дополнительную дифзащиту 30мА.

Установка и монтаж щита учета

Доброго времени! Сегодня мы расскажем о том, как собрать щит учёта электроэнергии 220В. И что в основном для этого нужно.
Сразу скажем, что вопрос сборки достаточно сложный, и если вы не уверены в своих силах, то лучше не беритесь за такую работу самостоятельно, так как цена ошибки здесь чревата такими последствиями как короткое замыкание или пожар.
В конце мы приведём схему, в которой покажем, какие неисправности в щите учёта могут послужить причиной выхода из строя оборудования, начиная от котлов отопления и заканчивая светодиодными лампами.

Итак, начнём. Как понятно из названия, «щит учёта», этот щит служит для учёта электроэнергии, которую вы потребляете. Поэтому в нем обязательно должен присутствовать счётчик, но обо всём по порядку.

Выбор щита

В первую очередь вам нужен сам ящик (щит), в который вы будете все устанавливать. Он подбирается исходя из количества автоматов, размера счетчика и т.п. Щиты бывают в пластиковом и металлическом исполнении, скрытого и открытого монтажа. Тут опять же все зависит от условий, в которых вы будете производить монтаж. На ящиках есть маркировка, на какое количество автоматических выключателей они рассчитаны, так что тут все подбирается индивидуально. Но не стоит выбирать слишком маленький ящик, так как будет неудобно производить монтаж.

Совет: на улице лучше ставить стальные щитки.
Во-первых, потому что случайным людям будет гораздо сложнее в него попасть и сломать. Во-вторых, на морозе пластик становится ломким и со временем может потрескаться, из-за чего нужно будет менять щит, а это немало лишней работы.

Ну и последнее, что могу посоветовать, это учитывать степень «пылевлагозащищенности». Она маркируется, например: IP65. Ниже приведена таблица степени защиты.

Автоматические выключатели

Итак, щиток — это первое, что вы покупаете. Но перед этим нужно определиться с тем, какое количество автоматических выключателей будет установлено.

Заранее эти расчёты делает ваш электрик, а так же вы можете сделать это самостоятельно.

Для начала, лучше всего поделить розетки и освещение. Допустим: один автомат на освещение, а второй на розетки. Далее всё зависит от вашего потребления электричества. Если потребление будет большое, то можно, например, 2 комнаты подключить на одну пару автоматов, а остальные комнаты на другую. Под парой автоматов мы подразумеваем два автомата «свет и розетки». т.е получается 4 автомата.

Обратите внимание:
Если какой-либо прибор в доме потребляет больше 5 киловатт, то его необходимо подключать отдельной линией (и, соответственно, отдельным автоматом). Это такие приборы как электроплита, электрокотел и т.п. Так же стиральную машину рекомендуется подключать на отдельную линию. Ну и, конечно же, надо держать пару запасных автоматов на случай появления нового потребителя в доме.

На вводе желательно устанавливать двухполюсной автомат (двойной), а так же УЗО и ОПС, но об этом ниже.

Выбор мощности автоматических выключателей

Начнём с того, что автоматы подбираются исходя из сечения проводки, чтобы он мог отключиться до того как ваш провод начнет плавиться от перегрузки.
В основном провода сечением 2.5мм² идут на розетки, а 1.5мм² на освещение.

Получается, что на провод в 2.5мм² ставят автомат с номиналом мощности 20 А (ампер), а на 1.5мм² мощностью 16А. Ниже приведем таблицу, на какое сечение и какой автомат рекомендуется ставить, а также какова максимальная нагрузка у такого провода:

Что такое УЗО и зачем оно нужно?

Будем считать, что вы определились с количеством и мощностью автоматов. Далее поговорим про УЗО.
УЗО — это устройство защитного отключения, предназначенное для защиты от утечек тока. В нашем случае под утечкой тока подразумевается электричество, которое проходит мимо электропроводки и электроприборов. Задача этого прибора обнаружить эту утечку и отключить питание. Простыми словами: если вы возьметесь за 2 оголенных провода, то устройство отключит ток до того, как вы почувствуете удар током, но это в теории.
Также в этом устройстве имеется защита от перегрузки (как на автомате). УЗО бывает таких же номиналов, что и автоматы(10А,16А,25А и т.д). А вообще УЗО это очень полезная штука, которая срабатывает при малейших утечках тока, так что не пренебрегайте такой защитой. Вот скажем у электродвигателя стиральной машины перетерлась изоляция провода (Фаза) в таком случае корпус вашей машинки будет под током (а вы этого не знаете). Без УЗО вас будут ждать неприятные последствия. Можно привести еще кучу ситуаций, в которых будет полезно данное устройство, но думаю это излишне.
Полагаю, вы уже выбрали для себя, будете ставить его или нет.

ОПС: что это и для чего?

Следующим элементом, который мы рассмотрим, будет элемент под названием ОПС (Ограничитель импульсных перенапряжений). Предназначено данное устройство от входящих перенапряжений (например, молнии). Но для корректной работы требует заземления.
В щит устанавливается параллельно вводного автомата (далее на схеме будет показано подробно). Принцип работы данного устройства заключается в том, что при перенапряжении ОПС создает внутри себя короткое замыкание, вследствие чего отключается вводной автомат, тем самым преграждая дальнейший путь перенапряжению в вашу домашнюю сеть, а ток, который прошел, сбрасывает на заземление. Считается, что данный прибор одноразовый и после перенапряжения он выходит из строя. Выглядит он как обычный однополюсной автомат только за место «флажка» выключателя на нем находится индикатор рабочего состояния (когда он зеленый — прибор исправен, если красный, то он вышел из строя). Если вы подключаете к электросети новый дом, то установка ОПС обязательна. Если же просто ремонтируете проводку, то данный вопрос остается на ваше усмотрение. ОПС подразделяются на три категории: «B», «C», «D».

К Класс «B»

Монтируется на ввод в помещение в ГРЩ (главный распределительный щит.) Является защитой от ударов молний и перенапряжений.

К Класс «С»

Монтируется в помещении в РЩ (распределительный щит). Предназначен для защиты внутренней проводки и автоматических выключателей. Защищают от остаточных перенапряжений, которые прошли через класс «В». Самый распространенный вариант, который устанавливается наиболее часто.

К Класс «D»

Устанавливается непосредственно на потребитель. Защищает потребитель от высокочастотных помех и перенапряжений, которые прошли через класс «С».

Выбор счетчика:


Счетчики бывают электромеханические и электронные.
Электромеханические счетчики имеют механический механизм отсчета. Конечно, они отличаются от своих предшественников с диском. Теперь диск заменил светодиодный индикатор. При отключении данного прибора от сети все показания остаются на табло.

Электронный счетчик имеет жидкокристаллический дисплей, на котором выводятся показания. Погрешность, как и у механического аналога, в пределах 1%. Данный счетчик отличается от механического тем, что в случае отключения от сети или поломки прибора вы не сможете увидеть показания. Хотя электронные счетчики имеют более продвинутый функционал. Помимо потребленной энергии он может показывать количество активной и реактивной энергии и еще много другого (в зависимости от модели). Также многие модели оснащены функцией дистанционной передачи показаний.

Кроме того, счетчики подразделяются на однотарифные и двухтарифные.
Однотарифные счетчики считают электроэнергию по одному тарифу, то есть по дневному, и вы платите за каждый киловатт определенную сумму. В большинстве случаев такие счетчики оснащены механической системой счета, но бывают исключения (то есть может быть и электронный).

Двухтарифный счетчик считает электроэнергию по 2 тарифам. Дневной и ночной. Дневной считается, так же как и на однотарифном, но дневной тариф идет с 8:00 до 23:00. С 23:00 до 8:00 начинается ночной тариф, но платить вы за него будете почти вдвое меньше. Но стоит такой прибор вдвое дороже.

Класс точности — это показатель погрешности электросчетчика. Сейчас новые модели идут с классом точности 2 и выше, что допускается в любой электрической сети. Так что на этом параметре не стоит заострять внимание.

Размеры счетчиков

По размерам счетчики тоже могут быть разные. Бывают большие и маленькие. Качество от размера никак не зависит. Большие счетчики требуют отдельного места в ящике (в ящике бывают специальные места, отведенные для этого). Маленькие же устанавливаются также как автоматы и не требуют специально отведенного места для себя.

Сборка щита

Ну вот, мы постепенно подошли к самому главному ответу на вопрос: как же нам собрать щит учета электроэнергии на 220 В. Ниже будет приведена схема сборки, но сейчас постараюсь вам объяснить все на словах.

Итак, первое, с чего мы начнем, это установка вводного автомата (далее ВА). Я приведу пример с установкой УЗО и ОПС, если вы их не устанавливаете, то просто пропускаете этот момент. Далее параллельно вводного автомата устанавливается ОПС (то есть фазный провод из ВА идет на ОПС, а из него на шину заземления). Далее провода «фаза» и «ноль» из ВА идут на счетчик, а из счетчика на УЗО. Из УЗО проводом «фаза» подключаются все группы автоматов, а провод ноль идет на нулевую шину (обычно шины идут в комплекте, но при их отсутствии вам придётся их докупать). Группы автоматов можно соединить специальной шиной, либо перемычками из провода 6мм².

Осталось подключить только ВА «питающим» проводом. По цвету можете монтировать как угодно, но лучше следовать стандарту. Синий, либо коричневый, это «ноль», белый или красный — это «фаза», желто-зеленый это заземление. А вот и сама схема сборки:

Схема сборки щита с УЗО и ОПС

Схема сборки щита без УЗО и ОПС:

Ну вот в принципе и все, что мы хотели рассказать. При затягивании контактов на автоматах делайте это с максимальным усилием (если затяните не достаточно сильно, то со временем контакт ослабеет и начнет греться, со всеми вытекающими последствиями).
Спасибо за внимание. Удачного вам ремонта!

Проконсультироваться бесплатно и приобрести всё необходимое для сбора щита учёта, можно на нашем сайте.

Cборка электрощита для частного дома 380В 15кВт: распределительный, уличный

На чтение 11 мин Просмотров 3к. Опубликовано Обновлено

Стандартные параметры электросети частных домов – 3 фазы, напряжение 380 В. Мощности выделяется 15 кВт, а для проводки используется 4-х жильный тип кабеля. По этой причине коммутационные и защитные приборы закрываются от нелегального подключения. Самостоятельная сборка электрощита для частного дома 380 В 15 кВт предусматривает его установку в доступной для проверки зоне и базовое применение.

Характеристики и специфика трехфазной сети

Электрощиток в трехфазной сети

Электрическая сеть на 380 В предназначена для подсоединения трехфазного и однофазного оборудования. В случае с трехфазным подсоединение происходит на 3 фазы и нейтраль для равномерного распределения нагрузки мощной бытовой техники.

Наличие трех фаз позволяет использовать 4-5-жильные провода с меньшим сечением и дифавтоматы на 3-4 полюса. Выделенная мощность для сети 380 В разделяется поровну по фазам. То есть, если выделено 18 кВт, каждая фаза будет по 6 кВт.

При помощи автомата трехполюсного или четрыехполюсного типа осуществляется обесточивание линии в случае повышенной нагрузки одной фазы. С учетом временной задержки дифавтомата требуется правильно распределить данную нагрузку.

Без распределения нагрузки возникает «перекос фаз», который приводит к постоянному выключению электричества.

Конструкция и элементы электрощита

Элементы электрощитка

Для трехфазного щита с мощностью 15 киловатт и мощностью потребления 15 кВт/ч понадобятся следующие комплектующие:

  • Прибор учета электроэнергии. Счетчик устанавливается в щитке сразу. Для домашней сети подойдут электронные модели, отличающиеся высокой точностью и надежностью. Они работают по нескольким тарифам, выводят данные на цифровой дисплей.
  • Электрощит. Представляет собой бокс различных габаритов. Уличный вариант должен иметь DIN-рейку, замок, смотровое отверстие для снятия показаний. Оптимальный уровень пыле- и влагозащиты – IP 54, толщина стенок – 1 мм.
  • Дифавтомат на вводе. Подойдет трехполюсная модель, подключаемая к трем фазам.
  • УЗО. Элемент защиты от возникновения опасного потенциала на корпусе прибора.
  • Выключатель автоматического типа. В частном доме на ввод понадобится устройство в 25 А, для системы освещения – на 6,3 или 10 А, для силовой цепи – 16 А. Мощность такого переключателя – от 7 киловатт.
  • Реле напряжения. Предотвращает поломки бытового оборудования при колебаниях напряжения.
  • Измерительные устройства. Вольтметр и амперметр в одном корпусе – не обязательное устройство.

Для предотвращения импульсных колебаний и защиты от молний можно заменить реле на УЗИП.

Выбор схемы сборки трехфазного электрического щита

Схема подключения заземления

Сборка щита на 380 для дома производится по нескольким схемам. В отличие от квартиры, в домах помимо защитной автоматики устанавливается УЗО, через которое заводится освещение. Приобретение элемента влияет на бюджет работ, но система электроснабжения получается надежной и безопасной.

Установка распределительного бокса предусматривает организацию линии заземления. Частный дом заземляется по схемам:

  • TN-C-S. Рекомендована ПУЭ, но подходит только для новых магистралей с регулярным обслуживанием.
  • TT. Монтируется на основе защитных устройств и контура заземления.

Работоспособность составляющих схем заземления поддерживает пользователь.

Использование кросс-модуля для трехфазного щита

Кросс-модуль

Для простоты сборки щита на 380 В и возможности переподключения автоматов к другим фазам применяется кросс-модуль. Его ставят после счетчика. Особенность прибора – наличие трех выходов под три фазы и нескольких выходов с аналогичными фазами.

Через кросс-модуль производится разделение нагрузки на дифавтоматы. Подсоединение делается так:

  1. Оконечный кабель вставляется в гнездо.
  2. Жила фиксируется при помощи прижимного винта.
  3. Для переподключения фаз винт выкручивается, провод извлекается и подключается на свободный вывод нужной фазы.

Менять местами провода нужно только при перегрузке одной из фаз.

Сборка распредщитка 380 В только на дифференциальных автоматах

Дифавтомат с электронным блоком дифференциальной защиты

Дифавтомат – прибор для отдельной линии, который работает в качестве обычного автомата и устройства защиты от токовой утечки. На каждую группу потребителей можно поставить отдельный прибор, распределив нагрузку без фазного перекоса.

Преимущества схемы сборки трехфазного щита на дифавтоматах для загородного или частного дома:

  • защита каждой линии от утечек, перегрузок, замыканий с помощью одного прибора;
  • быстрый поиск проблемного участка при поломках;
  • отсутствие нулевых шин;
  • подбор числа дифавтоматов по количеству отводных линий;
  • самостоятельный выбор принципа группировки элементов в боксе;
  • легкость распределения фазной нагрузки.

Минусы подключения – понадобится габаритный распределительный щит, более 72 модулей, что очень дорого.

Модели с индикацией причины срабатывания определяют, почему выключился дифференциальный автомат.

Схема с двумя УЗО

Схема с двумя УЗО

Сбор щитка по схеме подключения с двумя УЗО на 380 Вольт подразумевает установку мощных устройств на входе. Возле каждой группы потребителей располагаются шины нейтрали и заземления. Нулевые подаются через отдельную монтажную шину:

  • элемент окрашивается в синий цвет лаком для ногтей или акриловой краской;
  • с шины через 1 удаляются зубцы;
  • нейтральный провод подключается от шины;
  • зубчики вставляются в пазы и затягиваются прижимными винтами.

После УЗО ставится кросс-модуль, куда заводится фаза. Защитные автоматы для линий подкидываются на выход.

К преимуществам схемы относятся:

  • доступная стоимость расходников;
  • небольшие габариты бокса;
  • простота переключения одного-двух потребителей из группы.

Минусов сборки гораздо больше:

  • большие затраты на трехфазные модели УЗО;
  • сложности с переподключением групповых потребителей;
  • длительный поиск причины неполадки;
  • отключение 50% потребителей от сети в момент срабатывания одного автомата;
  • проблема с выравниванием нагрузки и отдельным размещением «мокрых» и «сухих» зон.

Схема подойдет, если у вас дачный деревянный дом, который используется периодически, а не круглогодично.

Чтобы не перепутать шины, подпишите их или наклейте этикетки.

По одному УЗО на каждую фазу

УЗО и однополюсные автоматы

Собирать схему можно из двухполюсных УЗО и кросс-модулей после каждого. Нагрузка, распределенная по фазам, подкидывается на выходы устройств защитного отключения. Шин нейтрали и заземления будет три – по количеству УЗО.

К преимуществам подключения относятся:

  • логичное распределение групп потребителей;
  • выключение 20-25 % потребителей при активации одного УЗО.

Минусами являются проблематичность выделения «мокрых» комнат в отдельную группу без перекоса фаз, затраты времени на поиск поломок. Для устранения минусов можно собрать каждую группу на отдельной дин-рейке, установить УЗО, а затем разместить автоматы последовательно.

Установите на опасные линии индивидуальные УЗО.

УЗО на вводе и однополюсный автомат

УЗО на вводе и однополюсные автоматы

Простейшая и популярная сборка трехфазного щита, которая не дает в будущем изменять порядок расположения элементов. Нагрузка на фазы распределяется только один раз. Схема отличается бюджетной стоимостью и реализуется в щитке небольших габаритов на 54-72 модуля.

На вводе выполняется монтаж УЗО, а для распределения нагрузки применяются однополюсные модели. ПУЭ ограничивает пользователя в количестве линий подключения. Основанием является п. 7.1.83, где сказано, что ток утечки в сумме не должен быть больше 1/3 номинала. Под токовой утечкой сети ПУЭ подразумевают 10мкА на 1 м провода.

Схема выгодная в плане стоимости элементов, небольшого размера короба, в котором находится примерно 32 модуля. К ее минусам относятся проблемы с группировкой, отсутствие возможности изменения фазной нагрузки, наличие нулевых шин. Для выравнивания напряжения придется почти полностью перебрать щиток. В противном случае возможен сильный перекос напряжения, нагрев шины с выгоранием нуля и перегрузка автоматов.

Часто происходит срабатывание УЗО в ложном режиме.

Больше трех групповых УЗО

Система защиты с индивидуальными УЗО

Электроэнергия в загородном доме и коттедже протекает по большому количеству линий. В случае установки 3-х защитных устройств возникают проблемы с поиском повреждений, отдельной групповой разводкой влажных помещений и улицы.

Многоуровневая система защиты с индивидуальными УЗО после групповых позволит организовать отдельную запитку «мокрых» и «сухих» зон. Количество групп на фазе определяется количеством потребителей, особенностями разбивки нагрузки и размером распределительного щитка.

Перед работами нужно подсчитать затраты на каждый узел с учетом стоимости дин-рейки, шины, кабеля. Выполнение вводного щита с более, чем 3-мя УЗО, рассчитанного на 380 Вольт, имеет несколько нюансов:

  • чтобы не запутаться, нужно подписать или промаркировать каждый провод, автомат и УЗО;
  • указать, на какую фазу выведен проводник. К примеру, на первую фазу подведено три УЗО. На первом указывается L1-1, на втором – L1-2, на третьем – L1-3.

Несмотря на сложность схемы, система получается персонализированной. Если сработал один УЗО, обнаружить повреждение можно на конкретной линии. В момент активации устройства выключается небольшое количество оборудования.

Алгоритм распределения нагрузки по трем фазам

Основные сложности при сборке конструкции – группировка и равномерное разделение нагрузки так, чтобы мощная техника не становилась причиной выключения из-за перегрузки. Это выйдет при суммарной мощности, не превышающей номинал и не одновременной работы всех устройств.

Общий порядок группировки нагрузки на автоматы

Таблица степеней защиты

Простой и надежной является схема с установкой для отдельной потребительской группы или мощной техники индивидуального автомата и УЗО. Минусами подключения являются большой трехфазный щиток и затраты на его обустройство. Альтернативой является подвод нескольких линий к одному автомату и правильная последовательность их объединения:

  • Для подключения розеток и осветительных устройств нужно использовать разные автоматы. Это исключит обесточивание всей сети при поломке одной группы.
  • Ванную комнату, кухню или баню («мокрые зоны») нельзя размещать в одной группе с «сухими». Автоматы для влажной среды подбираются с иными характеристиками.
  • Уличная группа – свет и розетки подсоединяются к отдельным автоматическим приборам. Допускается совмещение данной группы с хозпостройками.
  • Для питания автоматических ворот, охранного освещения и СКУД применяются отдельные автоматы.
  • Для запитки мощной бытовой техники ставятся персональные УЗО и автоматы. Можно группировать электрический духовой шкаф с электроплитой, стиралку и посудомойку, проточный и накопительный бойлер. Во избежание перегрузки приборы не рекомендуется подключать единовременно.

Для правильного формирования групп сделайте перечень линий с указанием нагрузки каждой.

Специфика сборки щитка в деревянном доме

Повышенная степень горючести и риски пожарных ситуаций предусматривают особый порядок монтажа щитка в домах из дерева. Изначально пиломатериал пропитывается антипожарными средствами, которые могут удерживать огонь до 20 минут. Чтобы исключить возможность возгорания, понадобится придерживаться строгой последовательности работ.

Нюансы выбора материалов

Проводка в потолке из дерева в металлической гофре

При подборе материалов учитываются такие нюансы:

  • Деревянный дом допускается электрифицировать только медным кабелем. Провод должен иметь маркировку «нг» и LS – двухслойная негорючая изоляция.
  • Выбор сечения проводника. Можно рассчитать по формулам или воспользоваться таблицей ПУЭ.
  • Все точки проводки, в том числе розеточно-осветительные, заземляются.
  • Разрешено применять трех-, четырехжильный провод.
  • Обязательная установка УЗО для защиты пробоя по корпусу и возгорания бревен.
  • Установка для каждой линии или группы отдельного автомата с мощностью в соответствии с суммарной нагрузкой на сеть.
  • Отдельный прибор выключения на каждую группу. Для двухэтажного здания достаточно модели 25 А на вводе и отдельно для группы – прибора на 16 А.
  • Выбор розеток в зависимости от способа прокладки проводки – скрытого или открытого.

Прибор учета должен располагаться перед вводным автоматом для удобства пломбирования.

Требования к распредщитку

Правильный электрощиток для дома из дерева – металлический, который не контактирует с пиломатериалом. Толщина стенки изделия – от 1 до 2 мм, но при коротком замыкании электрическая дуга прожигает металл. В этом случае можно отделать стену кирпичом и поставить на готовую поверхность бокс. Второй вариант прослойки – асбестоцементная плита или укладка под короб отреза асбестовой ткани, сложенного в несколько раз.

Полезные советы при сборке электрощитка

Термоусадочные трубки для проводов

Чтобы собрать электрощит с приборами учета электроэнергии и защитным оборудованием, рассчитанным на 380 В 15 кВт, понадобится приобрести качественный влагостойкий бокс. Провода подкидываются на автоматы специальными опрессовочными наконечниками, обжимаются клещами.

Изоляционная лента не сможет создать надежное покрытие. Удобнее работать с термоусадочными трубками, которые при нагреве феном или зажигалкой плотно обжимают изделия.

Жилы подбираются с одинаковым сечением. Разные сечения кабеля в одной клемме выключателя приведут к оплавлению изоляции и пожарам.

Готовый короб должен иметь промаркированные элементы. Так будет проще выключить подачу напряжения в отдельное помещение. Подписать узлы можно маркером или приклеить на скотч бумажные таблички.

Вводно-распределительное устройство устанавливается на столб, от которого подается электроэнергия. От ЛЭП протягивается кабель через щит к дому, а только потом выполняется разводка электрических групп. Законодательство предусматривает разделение щитка на аппараты ввода и распределения электропитания.

На землю или не на землю

Требует ли Национальный электротехнический кодекс (NEC) заземления трехфазной трехпроводной системы на 480 В (В), соединенной треугольником? Нет, это необязательно. В этой статье исследуются положения NEC о заземлении электрической системы. Как правило, пользователи Кодекса должны понимать, что есть системы, которые необходимо заземлять, системы, которые не требуется заземлять, и системы, которые не должны быть заземлены. Часть II статьи 250 NEC содержит положения о заземлении электрической системы.Давайте подробнее рассмотрим требования.

Требуется заземление системы

Раздел 250.20 включает в себя текст, указывающий на необходимость заземления электрической системы в соответствии с разделами 250.20 (A) и (B), в зависимости от напряжения и расположения фаз каждой системы. Если система является необязательной, но выбирается ее заземление, должны применяться все правила заземления системы в NEC.

Раздел 250.20 (A) устанавливает требования к системам заземления менее 50 В.Кодекс требует, чтобы системы переменного тока менее 50 В были заземлены при любом из следующих условий:

  • При питании от трансформаторов, если напряжение в системе питания превышает 150 В на землю
  • При питании от трансформаторов, если система питания не заземлена
  • При установке снаружи в качестве воздушных проводов

В разделе 250.20 (B) рассматриваются требования к заземлению для проводки в помещениях и систем внутренней электропроводки от 50 до 1000 В. Системы в этом диапазоне напряжений должны быть заземлены при любом из следующих условий:

  • Если система может быть заземлена так, чтобы максимальное напряжение относительно земли на незаземленных проводниках не превышало 150 В
  • Если система трехфазная, 4-проводное соединение, соединение звездой, нейтральный проводник используется в качестве проводника цепи
  • Если система трехфазная, 4-проводная и соединена треугольником, при этом средняя точка одной фазной обмотки используется в качестве проводника цепи

Предыдущие требования относятся ко многим системам внутренней электропроводки, установленным сегодня.В пункте 1, если система может быть заземлена таким образом, что напряжение между фазой и землей составляет менее 150 В, она всегда должна быть заземлена. Примером этого является однофазная 2-проводная система с выходом 120 В (вторичный). Если один или другой проводник заземлен, межфазное напряжение системы составляет 120 В.

Дополнительное заземление системы

В разделе 250.21 (A) приводится список электрических систем, которые разрешено, но не обязательно заземлять, а именно:

  • Системы исключительно для промышленных электропечей для плавки, рафинирования, отпуска и т.п.
  • Отдельно производные системы исключительно для выпрямителей, питающих только промышленные приводы с регулируемой скоростью
  • Отдельно производные системы, питаемые от трансформаторов с номинальным первичным напряжением 1000 В или менее, если система используется исключительно для цепей управления, если квалифицированный персонал обслуживает установки, и если требуется непрерывность управляющего питания
  • Другие системы, которые не требуется заземлять в соответствии с требованиями Раздела 250.20 (B)

Типичные системы, разрешенные, но не требующие заземления, включают 240 В, трехфазные, 3 -проводные и 480 В, трехфазные, 3-проводные системы, соединенные треугольником.

Заземление системы не разрешено

Раздел 250.22 касается электрических систем, заземление которых запрещено. К ним относятся схемы для мостовых кранов, которые работают с горючими волокнами в опасных зонах класса III. Идея состоит в том, что первое замыкание фазы на землю не вызовет ливня искр или горячих частиц, которые могут вызвать пожар из-за скопления волокон на нижнем этаже.

Это состояние часто встречается на текстильных фабриках из-за того, что производственные процессы находятся в местах класса III.Другие системы, которые нельзя заземлять, - это изолированные системы питания, используемые в медицинских учреждениях. Эти требования изложены в Разделе 517.160.

Раздел 250.22 также запрещает электрические цепи для оборудования в рабочей зоне электролитической ячейки, как это предусмотрено в статье 668. Электролитические ячейки обычно используются в отраслях промышленности по переработке алюминия и хлора.

Вторичные цепи низковольтной системы освещения нельзя заземлять, как указано в Разделе 411.5 (A). Также нельзя заземлять низковольтные системы освещения подводных бассейнов, питаемые изолирующими трансформаторами.Перечисленные трансформаторы для этих систем относятся к изолирующему типу с заземленным металлическим барьером между первичной и вторичной обмотками. Обратите внимание, что эти системы не разрешается заземлять, но обычно требуется заземление следующих: обычно не токоведущие металлические части кожухов оборудования и кабельные каналы, которые содержат эти незаземленные системные проводники и оборудование.

Незаземленные системы также обычно должны быть оборудованы системами обнаружения заземления, как указано в 250.21 (B) и такое оборудование должно иметь маркировку «Внимание! Незаземленная система, работающая _____ вольт между проводниками» в соответствии с 250.21 (C).

Удары плавающей нейтрали в распределительной сети

Обрыв (ослабленная) нейтраль

Если нейтральный провод разомкнут, сломан или потерян на одной из сторон источника (распределительный трансформатор, генератор или на стороне нагрузки - распределительный щит потребителя), нейтральный проводник распределительной системы будет « float » или потеряет свою контрольную точку заземления.

Удары плавающей нейтрали в распределителе мощности (фото Mardix Limited; Fickr)

Состояние плавающей нейтрали может привести к тому, что напряжения могут достигать максимального значения, равного среднеквадратичному значению фазового напряжения относительно земли, в зависимости от состояния несимметричной нагрузки. Состояние плавающей нейтрали в электросети имеет разное влияние в зависимости от типа источника питания, типа установки и балансировки нагрузки в распределительной сети.

Обрыв нейтрали или Свободная нейтраль может повредить подключенную нагрузку или создать опасное напряжение прикосновения к корпусу оборудования.

Здесь мы пытаемся понять состояние плавающей нейтрали в системе распределения T-T.


Что такое плавающая нейтраль?

Если точка звезды несбалансированной нагрузки не соединена с точкой звезды ее источника питания (распределительного трансформатора или генератора), то фазное напряжение не остается одинаковым для каждой фазы, а изменяется в зависимости от несимметричной нагрузки.

Поскольку потенциал такой изолированной точки звезды или нейтральной точки всегда меняется и не фиксируется, он называется Floating Neutral .


Нормальное состояние электропитания и состояние плавающей нейтрали

Нормальное состояние электропитания

В трехфазных системах точка звезды и фазы имеют тенденцию стремиться к « уравновешивает » в зависимости от коэффициента утечки для каждого из них. Фаза к Земле. Точка звезды будет оставаться близкой к 0 В в зависимости от распределения нагрузки и последующей утечки (более высокая нагрузка на фазе обычно означает более высокую утечку).

Трехфазные системы могут иметь или не иметь нейтральный провод.Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные устройства с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Схема здоровой энергосистемы
3-фазная 3-проводная система

Три фазы имеют свойства, которые делают ее очень востребованной в электроэнергетических системах.

Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга (суммирование до нуля в случае линейной сбалансированной нагрузки).Это позволяет исключить нейтральный провод на некоторых линиях. Во-вторых, передача мощности в линейную сбалансированную нагрузку постоянна.


3-фазная 4-проводная система для смешанной нагрузки

Большинство бытовых нагрузок являются однофазными. Обычно трехфазное питание либо не поступает в жилые дома, либо разделяется на главном распределительном щите.

Текущий закон Кирхгофа гласит, что сумма со знаком токов, входящих в узел, равна ноль . Если нейтральная точка является узлом, то в сбалансированной системе одна фаза совпадает с двумя другими фазами, в результате чего ток через нейтраль отсутствует.Любой дисбаланс нагрузки приведет к протеканию тока на нейтрали, так что сумма будет равна нулю.

Например, в сбалансированной системе ток, входящий в нейтральный узел с одной стороны фазы, считается положительным, а ток, входящий (фактически выходящий) из нейтрального узла с другой стороны, считается отрицательным.

Это усложняется с трехфазным питанием, потому что теперь мы должны учитывать фазовый угол, но концепция в точности та же. Если мы соединены звездой с нейтралью, то нейтральный проводник будет иметь нулевой ток на нем только в том случае, если три фазы имеют одинаковый ток на каждой.Если мы проведем векторный анализ этого, сложив sin (x) , sin (x + 120) и sin (x + 240) , мы получим ноль .

То же самое происходит, когда мы соединены треугольником, без нейтрали, но затем возникает дисбаланс в распределительной системе, за пределами сервисных трансформаторов, потому что распределительная система обычно соединяется звездой.

Нейтраль никогда не должна быть подключена к заземлению, кроме той точки обслуживания, где нейтраль изначально заземлена (на распределительном трансформаторе).Это может настроить землю в качестве пути, по которому ток возвращается обратно в службу. Любой разрыв цепи заземления может привести к возникновению потенциала напряжения.

Заземление нейтрали в трехфазной системе помогает стабилизировать фазные напряжения. Незаземленная нейтраль иногда упоминается как « плавающая нейтраль » и имеет несколько ограниченных применений.


Состояние плавающей нейтрали

Электроэнергия входит и выходит из помещения клиентов из распределительной сети, входя через фазу и покидая нейтраль.В случае обрыва нейтрального обратного пути электричество может двигаться по другому пути. Поток энергии, поступающий в одну фазу, возвращается через оставшиеся две фазы. Нейтральная точка не находится на уровне земли, но находится на уровне напряжения сети.

Эта ситуация может быть очень опасной, и клиенты могут серьезно пострадать от поражения электрическим током, если они коснутся чего-либо, где присутствует электричество.

Состояние плавающей нейтрали

Обрыв нейтрали может быть трудно обнаружить, а в некоторых случаях может быть нелегко идентифицировать.Иногда на сломанные нейтрали могут указывать мерцающие огни или покалывание.

Если у вас в доме мерцает свет или постукивает постукивание, вы можете получить серьезные травмы или даже смерть.


Измерение напряжения между нейтралью и землей

Практическое правило , используемое многими в промышленности, гласит, что напряжение между нейтралью и землей 2 В или меньше на розетке нормально, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.


Низкое показание

Если напряжение между нейтралью и землей низкое в розетке, значит система исправна. Если оно высокое, то вам все равно необходимо определить, в основном ли проблема на уровне ответвленной цепи или в основном на уровне панели. .

Напряжение нейтрали относительно земли существует из-за падения IR тока, проходящего через нейтраль обратно в соединение нейтрали с землей. Если система правильно подключена, не должно быть заземления нейтрали, за исключением трансформатора источника (в том, что NEC называет источником раздельно производной системы или SDS, который обычно является трансформатором).

В этой ситуации заземляющий провод не должен иметь тока и, следовательно, на нем не должно быть падения IR .Фактически, заземляющий провод используется в качестве длинного тестового провода, ведущего назад к заземлению нейтрали.


Высокое показание

Высокое показание может указывать на общую нейтраль ответвления , то есть нейтраль, совместно используемую более чем одной ответвленной цепью. Эта общая нейтраль просто увеличивает возможность перегрузки, а также воздействия одной цепи на другую.


Нулевое показание

Определенное напряжение между нейтралью и землей является нормальным для нагруженной цепи.Если показание стабильно близко к 0В. Есть подозрение на незаконное соединение нейтрали с землей в розетке (часто из-за потери жилы нейтрали, касающейся какой-либо точки заземления) или на субпанели.

Любые соединения нейтрали с землей, кроме тех, которые находятся на источнике трансформатора (и / или главной панели), должны быть удалены, чтобы предотвратить обратные токи, протекающие через заземляющие проводники.


Различные факторы, вызывающие плавающее положение нейтрали

Существует несколько факторов, которые определяют как причину плавающего положения нейтрали.Воздействие плавающей нейтрали зависит от положения, в котором нейтраль нарушена:

1) На трехфазном распределительном трансформаторе

Отказ нейтрали в трансформаторе в основном является отказом проходного изолятора нейтрали.

Использование ответвителя на вводе трансформатора определено как основная причина выхода из строя нейтрального провода на вводе трансформатора. Гайка на линии отвода со временем ослабляется из-за вибрации и разницы температур, что приводит к горячему соединению. Проводник начал плавиться и в результате оборвался нейтраль.

Плохая работа монтажников и технического персонала также одна из причин отказа нейтрали.

Обрыв нейтрали на трех фазах трансформатора приведет к скачку напряжения до линейного напряжения в зависимости от балансировки нагрузки в системе. Этот тип нейтрального положения может повредить оборудование клиента, подключенное к источнику питания.

В нормальных условиях ток течет от фазы к нагрузке к нагрузке обратно к источнику (распределительный трансформатор). При обрыве нейтрали ток из красной фазы вернется в синюю или желтую фазу, в результате чего между нагрузками будет напряжение между линиями.

У некоторых клиентов будет повышенное напряжение, а у других - низкое напряжение.


2) Обрыв провода нейтрали в линии НН

Воздействие обрыва нейтрального проводника в воздушном распределении НН будет таким же, как и при обрыве на трансформаторе . Напряжение питания увеличивается до линейного напряжения вместо фазного. Этот тип неисправности может привести к повреждению оборудования клиента, подключенного к источнику питания.


3) Обрыв провода нейтрали обслуживания

Обрыв провода нейтрали обслуживания приведет только к потере электропитания в точке обслуживания.Никаких повреждений оборудования заказчика.


4) Высокое сопротивление заземления нейтрали на распределительном трансформаторе:

Хорошее сопротивление заземления заземления Яма нейтрали обеспечивает путь с низким сопротивлением для тока нейтрали , идущего в землю. Высокое сопротивление заземления может обеспечить путь высокого сопротивления для заземления нейтрали на распределительном трансформаторе.

Предельное сопротивление заземления должно быть достаточно низким, чтобы обеспечить достаточный ток короткого замыкания для срабатывания защитных устройств во времени и уменьшить смещение нейтрали.


5) Перегрузка и разбалансировка нагрузки

Распределительная сеть Перегрузка в сочетании с плохим распределением нагрузки является одной из основных причин отказа нейтрали. Нейтраль должна быть правильно спроектирована так, чтобы минимальный ток проходил через нейтральный проводник. Теоретически предполагается, что ток в нейтрали равен нулю из-за отмены из-за сдвига фаз фазового тока на 120 градусов.

IN = IR <0 + IY <120 + IB <-120

В перегруженной несбалансированной сети много тока будет протекать в нейтрали, которая разрывает нейтраль в самом слабом месте.


6) Общие нейтрали

В некоторых зданиях разводка проводов так, что две или три фазы совместно используют одну нейтраль. Первоначальная идея заключалась в том, чтобы продублировать на уровне ответвления четырехпроводную (три фазы и нейтраль) разводку панелей управления. Теоретически на нейтраль вернется только несимметричный ток. Это позволяет одной нейтрали выполнять работу для трех фаз. Этот способ подключения быстро зашел в тупик с ростом однофазных нелинейных нагрузок. Проблема в том, что ток нулевой последовательности

от нелинейных нагрузок, в первую очередь третьей гармоники, будет арифметически складываться и возвращаться на нейтраль.Помимо потенциальной проблемы безопасности из-за перегрева нейтрали меньшего размера, дополнительный ток нейтрали создает более высокое напряжение нейтрали относительно земли.

Это напряжение нейтрали относительно земли вычитается из напряжения линии на нейтраль, доступного для нагрузки. Если вы начинаете чувствовать, что общие нейтралы - одна из худших идей, когда-либо воплощенных в меди.


7) Плохое качество изготовления и технического обслуживания

Обычно обслуживающий персонал не уделяет внимания сетям низкого напряжения. Ослаблено или Неадекватное затягивание нейтрального проводника повлияет на непрерывность нейтрали, что может вызвать плавающее положение нейтрали.

Как определить состояние плавающей нейтрали в панели?

Давайте возьмем один пример, чтобы понять Нейтральное плавающее состояние . У нас есть трансформатор, вторичная обмотка которого соединена звездой, Фаза к нейтрали = 240 В и Фаза к фазе = 440 В .


Условие (1) - нейтраль не плавает

Независимо от того, заземлена ли нейтраль, напряжения остаются неизменными: 240 В между фазой и нейтралью и 440 В между фазами.Нейтраль не плавает.


Условие (2) - Нейтраль плавает

Все устройства подключены: Если нейтральный провод цепи отсоединяется от основной панели электропитания дома, в то время как фазный провод цепи все еще остается подключенным к панели и в цепи есть электроприборы, включенные в розетки. В этой ситуации, если вы поместите тестер напряжения с неоновой лампой на нейтральный провод, он будет светиться так же, как если бы он был под напряжением, потому что на него подается очень небольшой ток, идущий от фазового источника через подключенное устройство ( s) к нейтральному проводу.

Все устройства отключены: Если вы отключите все приборы, освещение и все остальное, что может быть подключено к цепи, нейтраль больше не будет казаться находящейся под напряжением, потому что от нее больше нет пути к фазовому питанию.

  • Междуфазное напряжение: Измеритель показывает 440 В переменного тока. (Никакого влияния на 3-фазную нагрузку)
  • Напряжение между фазой и нейтралью: Измеритель показывает от 110 В до 330 В переменного тока.
  • Напряжение нейтрали относительно земли: Измеритель показывает 110 В.
  • Напряжение между фазой и землей: Измеритель показывает 120 В.

Это потому, что нейтраль «плавает» над потенциалом земли (110 В + 120 В = 230 В переменного тока) . В результате выход изолирован от системного заземления, и полный выход 230 В устанавливается между линией и нейтралью без заземления.

Если внезапно отключить нейтраль от нейтрали трансформатора, но оставить цепи нагрузки такими, какие они есть, тогда нейтраль на стороне нагрузки станет плавающей, поскольку оборудование, подключенное между фазой и нейтралью, станет между фазой и фазой (R - Y, Y - B). ), и поскольку они не имеют одинаковых номиналов, полученная в результате искусственная нейтраль будет плавающей, так что напряжения, присутствующие на различном оборудовании, больше не будут составлять 240 В, а будут где-то между 0 (не точно) и 440 В (также не совсем точно). ).

Это означает, что на одной линии от фазы к фазе у некоторых будет меньше 240 В, а у других - почти до 415 В. Все зависит от импеданса каждого подключенного элемента.

В системе с дисбалансом, если нейтраль отсоединена от источника, нейтраль становится плавающей нейтралью и смещается в положение, при котором она находится ближе к фазе с более высокими нагрузками и от фазы с меньшей нагрузкой. Предположим, что несимметричная трехфазная система имеет нагрузку 3 кВт в фазе R, нагрузку 2 кВт в фазе Y и нагрузку 1 кВт в фазе B.Если нейтраль этой системы отключена от сети, плавающая нейтраль будет ближе к R-фазе и дальше от B-фазы.

Таким образом, нагрузки с фазой B будут испытывать большее напряжение, чем обычно, в то время как нагрузки с фазой R будут испытывать меньшее напряжение. Нагрузки в фазе Y будут испытывать почти одинаковое напряжение. Выключатель нейтрали для несбалансированной системы опасен для нагрузок. Из-за более высокого или более низкого напряжения наиболее вероятно повреждение оборудования.

Здесь мы видим, что состояние нейтрального плавающего положения не влияет на трехфазную нагрузку, а влияет только на однофазную нагрузку.

Как исключить нейтральное плавающее положение?

Есть некоторые моменты, которые необходимо учитывать, чтобы предотвратить нейтральное смещение.


a) Используйте 4-полюсный выключатель / ELCB / RCBO в распределительном щите

Плавающая нейтраль может быть серьезной проблемой. Предположим, у нас есть панель выключателя с трехполюсным выключателем для трех фаз и шиной для нейтрали для трехфазных входов и нейтрали (здесь мы не использовали четырехполюсный выключатель). Напряжение между каждой фазой - 440, а напряжение между каждой фазой и нейтралью - 230. У нас есть одиночные выключатели, питающие нагрузки, требующие 230 вольт. У этих нагрузок 230 Вольт одна линия питается от выключателя и нейтраль.

Теперь предположим, что нейтраль ослабла, окислилась или каким-то образом отсоединилась в панели или, возможно, даже отключилась от источника питания. Нагрузки 440 В не будут затронуты, однако нагрузки 230 В могут иметь серьезные проблемы. В этом состоянии «плавающая нейтраль» вы обнаружите, что одна из двух линий упадет с 230 вольт до 340 или 350, а другая линия упадет до 110 или 120 вольт. Половина вашего оборудования на 230 В будет повышена из-за перенапряжения, а другая половина не будет работать из-за низкого напряжения.Так что будьте осторожны с плавающими нейтралами.

Просто используйте ELCB, RCBO или 4-полюсный автоматический выключатель в качестве дохода в 3-фазной системе питания, поскольку при размыкании нейтрали отключится все питание без повреждения системы.


b) Использование стабилизатора напряжения

Когда нейтраль выходит из строя в трехфазной системе, подключенные нагрузки будут подключаться между фазами из-за плавающей нейтрали. Следовательно, в зависимости от сопротивления нагрузки на этих фазах, напряжение продолжает колебаться от 230 В до 400 В.

Подходящий сервостабилизатор с широким диапазоном входного напряжения с высокой и низкой отсечкой может помочь в защите оборудования.


c) Хорошее качество изготовления и техническое обслуживание

Дайте более высокий приоритет техническому обслуживанию низковольтной сети. Затяните или примените соответствующий крутящий момент для затяжки нейтрального проводника в системе низкого напряжения

Заключение

Состояние неисправности «плавающая нейтраль» (отключенная нейтраль) - ОЧЕНЬ НЕ БЕЗОПАСНО , потому что, если устройство не работает, и кто-то, кто не знает о «плавающем» нейтральном положении, может легко прикоснитесь к нейтральному проводу, чтобы узнать, почему приборы не работают, когда они подключены к цепи и получают сильный ток.Однофазные устройства рассчитаны на работу с нормальным фазным напряжением, когда они получают линейное напряжение. Устройства могут быть повреждены.

Неисправность отключенной нейтрали является очень опасным состоянием и должна быть устранена как можно раньше путем поиска неисправностей именно тех проводов, которые необходимо проверить, а затем правильно подключить.

Опубликовано в Примечания и статьи по электрике

6 Проблемы с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Проблемы с проводкой и заземлением

В этой технической статье представлены типичные проблемы проводки и заземления, связанные с качеством электроэнергии.Приведены возможные решения этих проблем, а также возможные причины проблем, наблюдаемых в системе заземления. (См. Таблицу 2 внизу статьи)

6 Проблемы с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Следующий список представляет собой лишь образец проблем, которые могут возникнуть в системе заземления.

  1. Изолированное заземление
  2. Контуры заземления
  3. Отсутствие защитного заземления
  4. Множественные соединения нейтрали с землей
  5. Дополнительные заземляющие стержни
  6. Недостаточно нейтральных проводников

1.Изолированное заземление

Изолированное заземление само по себе не является проблемой заземления. Однако неправильно использованное изолированное заземление может быть проблемой. Изолированные заземления используются для подавления шума в системе заземления. Это достигается за счет использования изолированных розеток заземления, которые обозначены знаком «∆» на лицевой стороне розетки .

Изолированные розетки заземления часто имеют оранжевый цвет. На рисунке 1 показана правильно смонтированная изолированная цепь заземления.

Рисунок 1 - Правильно подключенная изолированная цепь заземления

Вот что говорит NEC об изолированном заземлении.

NEC 250-74 Подключение клеммы заземления розетки к коробке

Перемычка заземления оборудования должна использоваться для подключения клеммы заземления розетки заземляющего типа к заземленной коробке.

Исключение № 4. Там, где это требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, должна быть разрешена розетка, в которой вывод заземления специально изолирован от средств крепления розетки.Клемма заземления розетки должна быть заземлена изолированным заземляющим проводом оборудования, проложенным с проводниками цепи. Этому заземляющему проводнику должно быть разрешено проходить через один или несколько щитовых щитов без подключения к заземляющему зажиму щитового щита, как это разрешено в Разделе 384-20, Исключение, чтобы заканчиваться в том же здании или строении непосредственно на зажиме заземляющего провода оборудования. применимая производная система или источник.

(FPN): Использование изолированного заземляющего провода оборудования не отменяет требования по заземлению системы кабельных каналов и розеточной коробки.

NEC 517-16 Розетки с изолированными клеммами заземления

Розетки с изолированными клеммами заземления, как разрешено в Разделе 250-74, Исключение № 4, должны быть идентифицированы. Такая идентификация должна быть видна после установки.

(FPN): При выборе такой системы с розетками с изолированными заземляющими клеммами важно соблюдать осторожность, поскольку полное сопротивление заземления контролируется только заземляющими проводниками и не имеет функциональной выгоды от каких-либо параллельных путей заземления.

Ниже приводится список подводных камней, которых следует избегать при установке изолированных цепей заземления:

  • Подключение изолированной цепи заземления к обычной розетке.
  • Совместное использование кабелепровода изолированной цепи заземления с другой цепью.
  • Установка изолированной розетки заземления в двухконтурную коробку с другой цепью.
  • Отсутствует прохождение изолированной цепи заземления в металлической кабельной броне или кабелепроводе.
  • Не предполагайте, что изолированная розетка заземления имеет действительно изолированное заземление.

Вернуться к «Проблемы с проводкой и заземлением» ↑


2. Контуры заземления

Контуры заземления могут возникать по нескольким причинам. Первый - это когда два или более единиц оборудования используют общую цепь, такую ​​как цепь связи, , но имеют отдельные системы заземления (рисунок 2).

Рисунок 2 - Цепь с контуром заземления

Чтобы избежать этой проблемы, следует использовать только одно заземление для систем заземления в здании. Можно использовать более одного заземляющего электрода, но они должны быть связаны вместе (NEC 250-81, 250-83 и 250-84), как показано на Рисунке 3 ниже.

Рисунок 3 - Заземляющие электроды должны быть соединены вместе.

Вернуться к разделу «Проблемы с проводкой и заземлением» ↑


3. Отсутствие защитного заземления

Отсутствие защитного заземления представляет собой серьезную проблему . Отсутствие заземления обычно происходит из-за обхода защитного заземления. Это типично для зданий, в которых розетки на 120 В имеют только два провода.

Современное оборудование обычно оснащается вилкой с тремя контактами, один из которых является заземляющим.При использовании этого оборудования в двухконтактной розетке можно использовать переходник заземляющей вилки или «читерскую вилку» при условии, что в розетке имеется заземление оборудования.

Это устройство позволяет использовать устройство с тремя контактами в розетке с двумя контактами. При правильном подключении защитное заземление остается нетронутым. На рисунке 4 показано правильное использование вилки читера.

Рисунок 4 - Правильное использование адаптера заземляющей вилки или «штепсельной вилки»

Если в розетке нет заземления оборудования, то адаптер заземляющей вилки использовать нельзя.При наличии заземляющего провода оборудования предпочтительный метод решения проблемы отсутствия защитного заземления - установка новой трехконтактной розетки в розетке .

Этот метод гарантирует, что заземляющий провод не будет шунтирован. NEC подробно обсуждает заземляющие провода оборудования в Раздел 250 - Заземление .

Вернуться к «Проблемы с проводкой и заземлением» ↑


4. Множественные соединения нейтрали с землей

Еще одно заблуждение при заземлении оборудования состоит в том, что нейтраль должна быть связана с заземляющим проводом .В системе или подсистеме допускается только одно соединение нейтрали с землей. Обычно это происходит на служебном входе в объект, если нет отдельно производной системы.

Отдельно производная система определяется как система , которая получает энергию от обмоток трансформатора, генератора или преобразователя какого-либо типа. Отдельно производные системы должны быть заземлены в соответствии с NEC 250-26.

Нейтраль должна находиться отдельно от заземляющего провода во всех панелях и распределительных коробках, которые расположены ниже служебного входа.Дополнительное соединение нейтрали с землей в энергосистеме вызовет протекание нейтральных токов по системе заземления.

Этот ток в системе заземления возникает из-за параллельных путей. Рисунки 5 и 6 иллюстрируют этот эффект.

Рисунок 5 - Поток нейтрального тока с одним соединением нейтраль-земля
Рисунок 6 - Нейтральный ток с дополнительным соединением нейтраль-земля

Как видно на Рисунке 6, нейтральный ток может попасть в систему заземления из-за к дополнительному заземлению нейтрали на вторичной панели управления.Обратите внимание, что не только ток будет течь в заземляющем проводе для системы питания, но токи могут течь в экранированном проводе для коммуникационного кабеля между двумя компьютерами.

Если необходимо восстановить соединение нейтрали с землей (высокое напряжение нейтраль-земля), это может быть выполнено путем создания отдельно производной системы , как определено выше. На рисунке 7 показана отдельно производная система.

Рисунок 7 - Пример использования отдельно производной системы

Вернуться к разделу «Проблемы с проводкой и заземлением» ↑


5.Дополнительные стержни заземления

Дополнительные стержни заземления - еще одна распространенная проблема в системах заземления . Стержни заземления для объекта или здания должны быть частью системы заземления. Заземляющие стержни должны быть подключены там, где все заземляющие электроды здания соединены вместе.

Изолированное заземление можно использовать, как описано в разделе «Изолированное заземление NEC», но не следует путать его с изолированными заземляющими стержнями, что недопустимо.

Основная проблема с дополнительными заземляющими стержнями заключается в том, что они создают вторичные пути для протекания переходных токов, таких как удары молнии, для протекания .Когда на объекте используется один заземляющий стержень, любые токи, вызванные молнией, попадут в систему заземления здания в одной точке. Потенциал заземления всего объекта будет расти и падать вместе.

Однако, если для объекта используется более одного заземляющего стержня, переходный ток входит в систему заземления объекта более чем в одном месте, и часть переходного тока протекает по системе заземления, вызывая повышение потенциала заземления оборудования. на разных уровнях.

Это, в свою очередь, может вызвать серьезные проблемы с переходным напряжением и возможные условия перегрузки проводника !

Вернуться к Проблемы с проводкой и заземлением ↑


6. Недостаточный нейтральный проводник

С увеличением использования электронного оборудования в коммерческих зданиях растет беспокойство по поводу повышенного тока , подаваемого на заземленный провод ) . При типичной трехфазной нагрузке, которая уравновешена, теоретически в нейтральном проводе не течет ток, как показано на рисунке 8.

Рисунок 8 - Сбалансированная трехфазная система

Однако ПК, лазерные принтеры и другое электронное офисное оборудование используют одну и ту же базовую технологию для получения энергии, необходимой для работы. На рисунке 9 показан типичный блок питания ПК . Входная мощность обычно составляет 120 вольт переменного тока, однофазный.

Для работы внутренних электронных компонентов требуется различных уровней постоянного напряжения (например, ± 5, 12 вольт постоянного тока) .

Рисунок 9 - Базовая однопроводная линия для SMPS

Это постоянное напряжение получается путем преобразования переменного напряжения через какой-либо тип выпрямительной схемы, как показано.Конденсатор используется для фильтрации и сглаживания выпрямленного сигнала переменного тока. Эти типы источников питания называются импульсными источниками питания (SMPS).

Проблема с устройствами, которые включают использование SMPS , заключается в том, что они вносят тройные гармоники в систему питания .

Тройные гармоники - это гармоники, которые являются нечетными кратными компоненту основной частоты (h = 3, 9, 15, 21,…) . В системе со сбалансированной однофазной нагрузкой, как показано на рисунке 10, присутствуют составляющие основной гармоники и третьей гармоники.

Применение закона Кирхгофа в узле N показывает, что основная составляющая тока в нейтрали должна быть равна нулю. Но когда нагрузки сбалансированы, составляющие третьей гармоники в каждой фазе совпадают. Следовательно, величина тока третьей гармоники в нейтрали должна быть в три раза больше тока фазы третьей гармоники.

Рисунок 10 - Сбалансированные однофазные нагрузки

Это становится проблемой в офисных зданиях, когда несколько однофазных нагрузок питаются от трехфазной системы.С каждой цепью прокладываются отдельные нейтральные провода, поэтому ток нейтрали будет эквивалентен току в линии.

Однако, когда несколько нейтральных токов возвращаются к панели или трансформатору, обслуживающему нагрузку, тройные токи добавляются к общей нейтрали для панели , и это может вызвать перегрев и, в конечном итоге, даже привести к выходу из строя нейтрального проводника !

Если используются офисные перегородки, то в перегородке с трехфазными проводниками прокладывается такой же нейтральный провод, зачастую меньшего размера.Каждая розетка питается от отдельной фазы, чтобы сбалансировать ток нагрузки.

ВНИМАНИЕ! Однако одна нейтраль обычно используется всеми тремя фазами. Это может привести к плачевным результатам , если электрические розетки перегородки используются для питания нелинейных нагрузок, богатых тройными гармониками . В наихудших условиях ток нейтрали никогда не превысит 173% фазного тока.

На рисунке 10 показан случай, когда трехфазная панель используется для обслуживания нескольких однофазных ПК SMPS.

Вернуться к проблемам с проводкой и заземлением ↑


Резюме

Как обсуждалось выше, тремя основными причинами заземления в электрических системах являются:

  1. Личная безопасность
  2. Правильная работа защитного устройства
  3. Контроль шума

Следуя приведенным ниже инструкциям, можно достичь целей по заземлению:

  • Все оборудование должно иметь защитное заземление. Провод защитного заземления
  • Избегайте токов нагрузки в системе заземления.
  • Разместите все оборудование в системе на одной и той же опорной линии уравнивания потенциалов.

В таблице 1 приведены типичные проблемы с проводкой и заземлением.


Таблица 1 - Сводка проблем с проводкой и заземлением

Сводные вопросы
Хорошее качество электроэнергии и методы контроля шума не противоречат требованиям безопасности.
Проблемы с проводкой и заземлением вызывают большинство проблем, связанных с помехами оборудования.
Постарайтесь подключить чувствительное оборудование к выделенным цепям.
Заземленный проводник, нейтральный проводник, должен быть соединен с землей на трансформаторе или главной панели, но не на другой линии ниже панели, кроме случаев, когда это разрешено отдельно производными системами.

Таблица 2 - Типичные проблемы с проводкой и заземлением и причины

выпадение Обгоревшая панель или соединительная коробка
Наблюдаемое состояние или проблема проводки Возможная причина
Импульс, падение напряжения Ослабленные соединения
Неисправный выключатель
Токи заземления Дополнительное соединение нейтрали с землей
Токи заземления Переключение нейтрали на землю
Экстремальные колебания напряжения
Колебания напряжения Соединение нейтрали с землей с высоким импедансом
Высокое напряжение нейтрали относительно земли Заземление с высоким импедансом
Запах гари на панели, распределительной коробке или нагрузке Неисправный проводник, плохой соединение, искрение или перегрузка проводки
Панель или распределительная коробка теплые на ощупь Неисправный автоматический выключатель или плохое соединение
Жужжащий звук Дуга
Обгоревшая изоляция Перегрузка проводки, неисправный проводник или плохое соединение
Плохое соединение, неисправный провод
Отсутствие напряжения на нагрузочном оборудовании Сработал выключатель, плохое соединение или неисправный проводник
Неустойчивое напряжение на нагрузочном оборудовании Плохое соединение или дуга

Вернуться к разделу «Проблемы с проводкой и заземлением» ↑

Ссылка // Halpin, S.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *