Анод катод: знаем ли мы, что такое анод? и что такое катод? / теория, измерения и расчеты / сообщество easyelectronics.ru

анод катод, подключение на схеме, где плюс и минус, полярность

Диод – популярный элемент, использующийся в электротехнике и выполняющий роль светоиндикатора. Для его правильной работы и излучения света он должен быть подключен правильно, с соблюдением полярности. Определить её можно несколькими способами: с помощью мультиметра, обычной батарейки или блока питания от мобильного телефона. Существует ещё несколько вариантов нахождения катода и анода диода. Однако в отличие от ранее упомянутых методов, они не дают 100% гарантии точного результата.

Определение полярности анода и катода в светодиодеИсточник userapi.com

Почему нужно уметь отличать анод от катода

Определение «плюса» и «минуса» светодиода необходимо для проверки имеющейся пиктограммы там, где она отсутствует. Часто это случается на новых, «б-ушных», выпаянных из старых схем, диодах. В этом случае нет никакой гарантии, что производитель дешевых элементов не ошибся в их маркировке.

Поэтому гарантии соответствия имеющейся маркировки никакой нет.

Подключение без проведения предварительного тестирования может завершиться пробивкой LED и не работающей электрической цепью. Произойдёт это из-за того, что ток диода движется в одном направлении (кроме двухцветников, моргающих светодиодов или ИК). Только верная распайка позволит получить нормальную, рабочую электросхему.

Важно! Точное определение, где у диода анод и катод позволяет собирать правильные электрические цепи, исключить вероятность пробивки LED или моргания светодиодов.

Виды диодов

Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:

  • Плюсовым, обладающим электропроводностью P.
  • Минусовым, обладающим электропроводностью N.
Анод и катод в светодиодеИсточник multiurok. ru

Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:

  • Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
  • Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.

Важно! Величина сопротивления в закрытом положении непосредственно связана со значением прямого тока. Если оно высокое, то сопротивление будет низким.

Классификация и система обозначений

Параметры, влияющие на классификацию диодов

Классификация диодов зависит от целого ряда факторов. В частности, это касается следующих условий:

  • Физических свойств.
  • Основных электрических параметров.
  • Конструктивно-технологических признаков.
  • Род полупроводников.

Принадлежность к тому или иному типу показывается по принципу системы условных обозначений. Периодически она обновляется с дополнением новых подвидов. В большинстве случаев маркировка осуществляется посредством использования буквенно-цифровых кодов.

Советская маркировка

Системы буквенно-цифровых сокращений диодов, использующиеся в электротехнике советской эпохи, неоднократно изменялась. Однако, наибольшей популярностью пользовался способ, параметры которого прописаны в ГОСТ 11. 336.919-81. К примеру, как это показано в списке, приведённом на изображении.

Советская маркировка диодовИсточник ru.wikipedia.org

В качестве примера можно привести такие обозначения:

  • ВИ 121.
  • ДГ 805 А.
  • ЦК 504Ж.

Помимо этого, система аббревиатур подразумевает использование дополнительных значений с целью конфигурации независимого конструктивно-технологического свойства изделия.


Как подключить светодиодную ленту к блоку питания – всё, что надо знать

Важно! На текущий момент, в отношении диодов, произведённых на территории РФ, распространяются требования вышеупомянутого государственного стандарта ГОСТ 11.336.919-81.

Иностранные способы

Стандартизация распознавания и маркировки диодов за границей РФ не практикуется. По этой причине, в разных странах действуют собственные правила. Например, в США действует система, внедрённая комитетом инженерной стандартизации полупроводниковой продукции Electronic Industries Alliance и Joint Electron Devices Engineering Council (EIA/JEDEC).

На территории ЕвроСоюза используются иные способы, маркирующиеся под аббревиатурой европейских принципов обозначения и регистрации типов компонентов – Pro Electron. В соответствии с требованиями документа диоды обозначаются двумя буквами и цифровым кодом. Полная распиновка сокращений приведена на следующем изображении.

Маркировка диодов по европейскому принципуИсточник ru.wikipedia.org

Другие способы

К другим распространённым системам маркировки относят:

  • GD-серию, в которую входят германиевые диоды, например GD9. Методика относится к старым и не применяющимся в современной промышленности.
  • OA-серию с аналогичными германиевыми диодами, разработанными компанией Mullard.

Полезно! Помимо этого, существует объёмный перечень производителей, пользующихся собственными системами кодировок.  

Популярные светодиоды

Как уже упоминалось, классификация современных светодиодов происходит с учётом их мощности, цвета, типа корпуса и целого ряда других признаков. Самыми распространёнными являются маломощные элементы в корпусах DIP или SMD, диаметром 3,5-10 мм.

Вышеупомянутые параметры могут отличаться в зависимости от мощности и предназначения лампочек. Например, в фонариках, светодиодных лентах, светильниках их мощность может варьироваться в диапазонах от 0,5 Вт до 1 Вт и более.

  • Светодиод DIP представлен в виде маленькой лампочки с ножками, которые служат для определения полярности. Обратите внимание маркировка ряда производителей может не совпадать с реальной.
  • Светодиод SMD отличается усложнённой процедурой определения анода и катода. Поэтому довольно часто мастера полагаются на адекватную информацию производителя, отмечающего катод пиктограммой или посредством среза/ скоса на корпусе.
Способ определения полярности светодиода типа SMDИсточник userapi. com Способ определения полярности маленького SMD светодиодаИсточник tempusliberum.ru

Наглядный пример самостоятельного определения катода и анода на светодиоде данного типа, показан на представленных изображениях.

Способы определения полярности

Найти катод и анод на диоде можно несколькими способами. Причём каждый из них отличается степенью надёжности. Из методов, подразумевающих применение приборов выделяют такие:

  • Замер мультиметром.
  • Подача на резистор напряжения с ограничением (подключение независимого источника питания).
  • Путём подключения осциллографа.

Такие методы хорошо зарекомендовали себя на диодах с малой и средней мощностью и обычным характером свечения. К другим, простым и популярным способам относят:

  • Изучение прилагаемых технических документов.
  • Изображение полярности на схематичном изображении.

Важно! Напоминаем о возможной ошибочной маркировке или несоответствующих сведениях в документации. Происходит такое достаточно часто.


Как разобрать светодиодную лампу и правильно её отремонтировать

Самые популярные, но, к сожалению, ошибочные методы определения:

  • По длине ножек.
  • По величине деталей внутри корпуса.
  • По срезу.
  • По маркировке.

Эти варианты относятся к самым простым и приводящим к ошибочному определению полярности. Поэтому использовать их на практике крайне не рекомендуется.

Мультиметр

Это самый надёжный способ найти на светодиоде анод или катод. Одновременно с определением полярности мультиметр послужит для выявления исправности и цвета свечения элемента. Достижение результат возможно 3 способами:

  • Проверка LED при включенном режиме «Проверка сопротивления 2 кОм».
    При прикосновении красного щупа к аноду, на экране отображается 1 600-1 800 Ом. Если «плюсовой» контакт коснётся катода – экран покажет 1. Это обозначает, что щупы мультиметра необходимо поменять местами. Неисправность диода отразится в том случае, если смена полярности щупов не даст нужного результата (1 600-1 800 Ом). Определить свечение таким образом не удастся.
  • Замер в режиме «Прозвонка, проверка диода» осуществляется прикосновением красного контакта к аноду, а черного к катоду и сопровождающимся свечением. На экране должно появиться значение от 500 до 1 200 мВ.
  • Измерение без щупов выполняется при наличии на мультиметре транзисторов типа PNP NPN. В этом случае используются гнёзда, промаркированные буквой «С» и «Е». Подключение диода в PNP режиме и установке катода в разъём «С», а анода – в «Е», диод начнет светится. Такое свечение означает верное определение. Подключение в NPN сопровождается обратным подключением контактов и соответствующей, аналогичной подсветкой.
Определение полярности мультиметромИсточник stpulscen.ru

Полезно! При отсутствии длинного вывода на диоде и невозможности подсоединения к мультиметру, в разъём можно установить швейные иглы. Тем самым вы увеличите контакт и сможете выполнить все вышеописанные манипуляции.

Источник питания

Не менее надёжный метод поиска полярности и определения анода у диода. Методика также позволяет выявить неисправный элемент на начальном уровне. В качестве источника тока рекомендуется воспользоваться блоком питания с плавной регулировкой. После подсоединения светодиода нужно равномерно поднимать напряжение. По достижении значения 3-4 В элемент должен начать излучать свечение. Если этого не произошло, полярность не соответствует действительной. 

Резистор для включения в электрическую схемуИсточник cdn-reichelt
Диммер для светодиодных ламп: виды, схематика и совместимые источники света

Отсутствие регулируемого блока питания не повод прекратить измерения. В качестве альтернативы возможно использование алкалиновых батарей или аккумулятора от мобильника. Обратите внимание, напряжение на большинстве АКБ достигает 12 В, что не позволяет прямое присоединение светодиода. Для снижения показателя в электрическую цепь впаивается резистор, обладающий соответствующим искомому значением сопротивления. Соединяется он с одним из контактов диода.

Полярность светодиодного элементаИсточник mozgochiny.ru

Полученная конструкция замыкается на выводы элемента питания. При верной полярности, диод загорится. В противном случае следует сменить полярность собранного приспособления и повторить попытку. Отсутствие свечения и в этом случае означает неисправность диода.

Соответствующая полярность подсоединения светодиодовИсточник uk-parkovaya.ru

Аналогом резистора может быть батарейка плоского типа от наручных часов или «материнки» типа CR2032. Такие источники не выдают напряжение выше 6 В, что является допустимой величиной для светодиодов. Батарейка зажимается между выводов диода, а по результатам свечения определяется полярность и работоспособность.

Другие способы

Обратите внимание, все перечисленные далее способы не дают 100% гарантии точного результата, что может привести к неправильно собранной электрической цепи.

Первый способ подразумевает определение полярности диода методом визуального осмотра. В большинстве случаев катод имеет короткий штырёк, анод – длинный. Однако при неоднократных перепаиваниях длина ножек может измениться в любую сторону. Также не исключён вариант подключения по способу, практикуемом на том или ном производстве. А он также может отличаться от вышеупомянутых условий.

Определение полярности по внешнему виду диодаИсточник vamfaza.ru

Полезно! На представленном изображении приведён пример того, как может происходить самостоятельное определение полярности светодиода. Треугольник на нём обозначает анод, вертикальная черта – катод. Двойная стрелочка символизирует свечение.

Ещё один способ – довериться маркировке на корпусе. Такое решение тоже не даёт полной гарантии соответствия. Производитель может легко утолстить любую из ножек диода, а также установить неверную маркировку. Аналогичная ситуация касается и ситуации, когда определение катода осуществляется с оглядкой на скос или техническую документацию устройства. В последнем случае расшифровка контактов может быть приведена в двух вариантах:

  • В письменном описании.
  • В изображении на электрической схеме.

Важно! Ошибка может проявиться даже в том случае, если при покупке партии диодов вы попросите продавца предоставить технические документы на товар. 

Обозначение полярности светодиода на электрической схемеИсточник vamfaza.ru
Светодиодная подсветка: что нужно знать перед покупкой и подключением

Заключение

Знание полярности диода, а точнее: где находится катод и анод, позволяет безошибочно собрать электросхему с гарантией того, что после подключения к питанию, диод не перегреется и продолжит функционировать. Фактически, в определении полярности элемента нет ничего сложного. Справиться с задачей по силам даже человеку, никогда раньше не сталкивающемуся с подобными заданиями.

И анод, и катод, 8 (восемь) букв

Примеры употребления слова электрод в литературе.

Электроды присоединялись к универсальному Центру Поэтического Восприятия, в который, кроме всего прочего, входили усилители образной структуры, ритм-модуляторы, микшеры уподоблений, аллитерационный синтезатор — все для того, чтобы слушатель в полной мере насладился стихами и проникся всеми оттенками поэтической мысли творца.

При свете раннего солнца город был похож на огромный ящик с сокровищами, обитый черным и серым бархатом пепелищ и наполненный миллионами сверкающих драгоценных камней: осколками аккумуляторов, амперметров, анализаторов, батарей, библиотечных автоматов, бутылок, банкнотов, бобин, вентиляторов, генераторов, громкоговорителей, динамо-машин, динамометров, детекторов, калориметров, конденсаторов, копилок, консервных автоматов, вакуумных установок, изоляторов, ламп, магнето, массспектрометров, масштабных линеек, машин по учету личного состава, моек для посуды, мотогенераторов, моторов, механических уборщиков, осциллографов, очистителей, записывающих устройств, напильников, колосников, обогревателей, панелей управления, понижающих трансформаторов, прерывателей, преобразователей, приводных ремней, потенциометров, пылеулавливателей, резцов, распылителей, регуляторов частоты, радиоприемников, реакторов, реле, реостатов, рентгеновских установок, сварочных аппаратов, счетных машин, счетчиков Гейгера, светофоров, сопротив

Выглядела она блистательно и дико — как в предутреннем сне интеллигентного пьяницы, по определению Корнева: сверкали в свете прожекторов конусами сходящиеся в перспективу алюминиевые дуги электродов, стеклянные чаши высоковольтных изоляторов растягивались между ними гирляндами, выстраивались в многоугольные фигуры керамические распорные балки, матово лоснились серые бока аэростатных баллонов, от натяжения капроновых тросов вокруг кабины веерами растопыривались выравнивающие пластины.

Хотя примеси давно уже загрязнили контрольные электроды, а бакта стала такой зеленой и темной, что Илису почти не было видно, Лея знала, что мастерджедай проснулась.

Так вот, после вживления электродов, добились, управляете некоторыми функциями мозга.

Источник: библиотека Максима Мошкова

Положительный или отрицательный анод/катод в электролитической/гальванической ячейке

Анодом является электрод, в котором реакция окисления

\begin{align} \ce{Red -> Ox + e-} \end{align}

происходит, когда катод является электродом, где реакция восстановления

\begin{align} \ce{Ox + e- -> Red} \end{align}

происходит. Так определяются катод и анод.

Гальваническая ячейка

Теперь в гальванической ячейке реакция протекает без внешнего потенциала, помогающего ей. Поскольку на аноде у вас есть реакция окисления, которая производит электроны, вы получаете нарастание отрицательного заряда в ходе реакции до достижения электрохимического равновесия. Таким образом, анод отрицательный.

С другой стороны, на катоде у вас есть реакция восстановления, которая потребляет электроны (оставляя положительные (металлические) ионы на электроде) и, таким образом, приводит к накоплению положительного заряда в ходе реакции до тех пор, пока электрохимическое равновесие не будет достиг. Таким образом, катод положительный.

Электролитическая ячейка

В электролитической ячейке вы применяете внешний потенциал, чтобы заставить реакцию двигаться в противоположном направлении. Теперь рассуждения обращаются вспять. На отрицательном электроде, где вы получили высокий электронный потенциал через внешний источник напряжения, электроны «выталкиваются» из электрода, тем самым уменьшая окисленный вид $ \ ce {Ox} $, поскольку уровень энергии электронов внутри электрода (Ферми Уровень) выше, чем уровень энергии LUMO $ \ ce {Ox} $, и электроны могут понизить свою энергию, заняв эту орбиталь — у вас есть очень реактивные электроны, так сказать. Таким образом, отрицательный электрод будет тем, где будет проводиться реакция восстановления, и, следовательно, это катод.

На положительном электроде, где вы получили низкий потенциал электрона через источник внешнего напряжения, электроны «всасываются» в электрод, оставляя позади уменьшенный вид $ \ ce {Red} $, потому что уровень энергии электронов внутри электрода (уровень Ферми) ниже энергетического уровня HOMO $ \ ce {Red} $. Таким образом, положительный электрод будет тем, где будет проводиться реакция окисления, и, таким образом, это анод.

Рассказ об электронах и водопадах

Поскольку существует некоторая путаница в отношении принципов, на которых работает электролиз, я попробую метафору, чтобы объяснить это. Электроны текут из области с высоким потенциалом в область с низким потенциалом, подобно тому, как вода падает вниз по водопаду или течет по наклонной плоскости. Причина та же: вода и электроны могут таким образом снизить свою энергию. Теперь источник внешнего напряжения действует как две большие реки, связанные с водопадами: один на большой высоте, ведущий к водопаду — это будет минус-полюс — и один на небольшой высоте, ведущей от водопада, — это было бы плюсом столб. Электроды были бы похожи на точки реки незадолго до или после водопадов на этой картине: катод подобен краю водопада, где вода падает, а анод похож на точку, где вода падает.

Хорошо, что происходит при реакции электролиза? На катоде у вас большая высота. Таким образом, электроны текут к «краю их водопада». Они хотят «упасть», потому что за ними река тянется к краю, оказывая какое-то «давление». Но куда они могут упасть? Другой электрод отделен от них раствором и обычно диафрагмой. Но есть молекулы $ \ ce {Ox} $, которые имеют пустые состояния, которые энергетически ниже энергии электрода. Эти пустые состояния похожи на небольшие пруды, расположенные на более низкой высоте, где может попасть небольшая часть воды из реки. Поэтому каждый раз, когда такая молекула $ \ ce {Ox} $ приближается к электроду, электрон имеет возможность перейти к ней и уменьшить ее до $ \ ce {Red} $. Но это не означает, что на электроде внезапно отсутствует электрон, потому что река немедленно заменяет «вытолкнутый» электрон. И источник напряжения (источник реки) не может работать сухим из-за электронов, потому что он получает свои электроны от розетки.

Теперь анод: у анода у вас низкая высота. Итак, здесь река лежит ниже, чем все остальное. Теперь вы можете представить HOMO-состояния молекул $ \ ce {Red} $ как небольшие барьерные озера, расположенные на более высокой высоте, чем наша река. Когда молекула $ \ ce {Red} $ приближается к электроду, это похоже на то, что кто-то открывает шлюзы плотины барьерного озера. Электроны движутся из HOMO в электрод, создавая таким образом молекулу $ \ ce {Ox} $. Но электроны не остаются в электроде, так сказать, они увлекаются рекой. А так как река — такая огромная сущность (много воды) и обычно течет в океан, маленькая «вода», которая добавляется к ней, не сильно меняет реку. Он остается неизменным, неизменным, так что каждый раз, когда открывается шлюз, вода из барьерного озера падает на такое же расстояние.

Как выглядит катод. Анод и катод

Любой электровакуумный прибор имеет электрод, предназначенный для испускания (эмиссии) электронов. Этот электрод называется катодом. Электрод, предназначенный для приема эмиттированных катодом электронов, называется анодом.

На анод подают более высокий и положительный относительно катода потенциал.

Катод должен отдавать с единицы поверхности большой ток эмиссии при возможно низкой температуре нагрева и обладать большим сроком службы. Нагрев катода в электровакуумном приборе производится протекающим по нему током.

Такие термоэлектронные катоды разделяются на две основные группы:

  • катоды прямого накала,
  • катоды косвенного накала (подогревные).

Катоды прямого накала представляют собой металлическую нить, которая непосредственно разогревается током накала и служит для излучения электронов (рис. 6, а ).

Поверхность излучения катодов прямого накала невелика, поэтому от них нельзя получить большой ток эмиссии. Малая теплоемкость нити не позволяет использовать для нагрева переменный ток. Кроме того, при нагреве переменным током температура катода не постоянна во времени, а следовательно, меняется во времени и ток эмиссии.

Положительным свойством катода прямого накала является его экономичность, которая достигается благодаря малому количеству тепла, излучаемого в окружающую среду вследствие малой поверхности катода.

Катоды прямого накала изготовляются из вольфрамовой и никелевой проволоки. Однако большая работа выхода (W 0 = 4,2÷4,5 в) определяет высокую рабочую температуру катода, вследствие чего катод становится неэкономичным. Для повышения экономичности катода вольфрамовую или никелевую проволоку (керн) «активируют» — покрывают пленкой другого элемента. Такие катоды называются активированными.

Если на поверхность керна нанесена электроположительная пленка (пленка из цезия, тория или бария, имеющих меньшую работу выхода, чем материал керна), то происходит поляризация пленки: валентные электроны переходят в керн, и между положительно заряженной пленкой и керном возникает разность потенциалов, ускоряющая движение электрона при выходе его из керна. Работа выхода катода с такой мономолекулярной электроположительной пленкой оказывается меньше работы выхода электрона как из основного металла, так и из металла пленки. При покрытии керна электроотрицательной пленкой, например кислородом, работа выхода катода увеличивается.

Подогревные катоды выполняются в виде никелевых гильз, поверхность которых покрывается активным слоем металла, имеющим малую работу выхода (рис. 6, б ). Внутри катода помещается подогреватель — вольфрамовая нить или спираль, подогрев которой может осуществляться как постоянным, так и переменным током.

Для изоляции подогревателя от гильзы внутренность последней покрывается алундом (Аl 2 O 3).

Подогревные катоды, благодаря их большой тепловой инерции, обычно питают переменным током, значительная поверхность гильзы обеспечивает большой эмиссионный ток. Подогревные катоды, однако, менее экономичны и разогреваются значительно дольше, чем катоды прямого накала.

Параметры и характеристики катодов

Катоды характеризуются следующими основными параметрами:

1. Удельной эмиссией , определяемой величиной тока с одного квадратного сантиметра эмиттирующей поверхности катода при нормальной рабочей температуре.

В электронных лампах с активированными катодами вместо удельной эмиссии часто пользуются параметром,называемым допустимой плотностью катодного тока. Этот параметр характеризуется током, который можно получить с одного квадратного сантиметра поверхности катода при нормальном (рабочем) напряжении накала. Работа при токах с катода, равных току эмиссии в этих лампах, приводит к разрушению поверхности слоя катода.

2. Эффективностью , равной величине тока эмиссии катода, приходящейся на одни ватт затраченной на накал мощности:

Н=I э /P н (12)

где I э — ток эмиссии катода, ма; P н — мощность, затраченная в цепи накала, вт.

3. Сроком службы катода, измеряемым в часах и характеризующим время, в течение которого катод сохраняет необходимые эксплуатационные свойства. Для простых катодов считается, что уменьшение диаметра катода на 10% приводит к его гибели. Соответственно оценивается и срок их службы.

Срок службы активированных катодов определяется уменьшением площади покрытия катода активной пленкой (а следовательно, ухудшением основных параметров лампы) на 20%.

Для выбора оптимального режима работы катода необходимо знать зависимость тока эмиссии катода от его температуры. Непосредственное измерение температуры накаленного катода затруднительно, поэтому пользуются так называемой накальной или эмиссионной характеристикой катода — графически выраженными зависимостями тока накала или тока эмиссии от напряжения или тока накала (рис. 7, а ).

В схеме имеются две цепи: анодная и накальная. Контроль за напряжением накала производится вольтметром V1, непосредственно подключенным в катодную цепь; если необходимо знать ток накала, то в нее включают амперметр. При этом амперметр следует подсоединять к тому зажиму катода, через который проходят накальный и анодный токи в одном направлении: данный конец нити накала нагревается сильнее и работает в наиболее тяжелых тепловых условиях.

Величина тока накала определяется разностью показания амперметра и показания миллиамперметра, но уменьшенного вдвое (так как по этой части цепи проходит примерно половина анодного тока).

Поддерживая постоянным напряжение на аноде, снимают зависимость тока эмиссии от напряжения (или тока) накала. Эмиссионный ток появляется начиная с напряжения на катоде 1-1,5 в и резко возрастает при напряжениях накала, близких к нормальным (рабочим) значениям.

Характеристику I н = ƒ(U н) (см. рис. 7, а ) следует снимать при разомкнутой анодной цепи. Накальная характеристика нелинейна, так как с повышением температуры катода его сопротивление увеличивается. При этом ток накала возрастает меньше, чем увеличивается напряжение накала.

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.

Катод и анод в электрохимии

Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:

В электрохимии под терминами анод и катод понимают следующее:

  1. Электрод, на котором проходит окислительная реакция, называется анодом;
  2. Электрод, на котором осуществляется процедура восстановления, называется катодом.

Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.

Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.

Катод в вакуумных приборах

Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.

В составе любой радиолампы такие элементы:

  • Катод;
  • Анод;
  • Сетка.

Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:

  • Катод прямого разогрева;
  • Катод непрямого разогрева.

Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.

Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.

Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.

Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.

Катод у полупроводниковых приборов

К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.

Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.

Химические реакции, сопровождающиеся переносом электронов () делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав .

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита , и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод (анод ) притягивает отрицательно заряженные частицы (анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода , которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей . Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н 2 О . В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный (до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т. к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H 2 O +2ē → H 2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н +) , то на катоде восстанавливается (разряжается ) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться ) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2H + 2 O +2ē → H 2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H 2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl 2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются . А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H 2 O -2 4ē → O 2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H 2 O -2 4ē → O 2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – 4ē → O 2 0 + 2H 2 O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2CH 3 C +3 OO 2ē → 2C +4 O 2 + CH 3 -CH 3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди . На катоде восстанавли-ваются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды :

Анод (+): 2H 2 O -2 4ē → O 2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом урав-нении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO 4 + 2H 2 O -2 → 2Cu 0 + 2H 2 SO 4 + O 2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород :

Катод (–):

На аноде окисляются хлорид-ионы :

Анод (+): 2Cl 2ē → Cl 2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хло-рида натрия :

2H + 2 O +2NaCl – → H 2 0 + 2NaOH + Cl 2 0

Следующий пример карбоната калия.

На катоде восстанавливается водород из воды :

Катод (–): 2H + 2 O +2ē → H 2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода :

Анод (+): 2H 2 O -2 4ē → O 2 0 + 4H +

Таким образом, при

2H 2 + O -2 → 2H 2 0 + O 2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь :

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора :

Анод (+): 2Cl 2ē → Cl 2 0

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

Cu 2+ Cl 2 – → Cu 0 + Cl 2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды :

Катод (–): 2H + 2 O +2ē → H 2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода :

Анод (+): 4 O -2 H – 4ē → O 2 0 + 2H 2 O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2H 2 + O -2 → 2H 2 0 + O 2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия . На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора :

Анод (+): 2Cl 2ē → Cl 2 0

расплава хлорида натрия :

2Na + Cl → 2Na 0 + Cl 2 0

Еще один пример: электролиз расплава гидроксида натрия . На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы :

Анод (+): 4OH 4ē → O 2 0 + 2H 2 O

Сумарное уравнение электролиза расплава гидроксида натрия :

4Na + OH → 4Na 0 + O 2 0 + 2H 2 O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na 3 плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

Al 2 O 3 = Al 3+ + AlO 3 3-

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы :

Анод (+): 4AlO 3 3 12ē → 2Al 2 O 3 + 3O 2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2Al 2 О 3 = 4Al 0 + 3О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О 2 0 = C +4 O 2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 2ē → Cu 2+

Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
  • Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Какой заряд имеет катод. Анод и катод

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

Автор больше всего боится, что неискушённый читатель далее заголовка читать не станет. Он считает, что определение терминов анод и катод известно каждому грамотному человеку, который, разгадывая кроссворд, на вопрос о наименовании положительного электрода сразу пишет слово анод и по клеточкам всё сходится. Но не так много можно найти вещей страшнее полузнания.

Недавно в поисковой системе Google в разделе «Вопросы и ответы» я нашел даже правило, с помощью которого его авторы предлагают запомнить определение электродов. Вот оно:

«Катод — отрицательный электрод, анод — положительный . А запомнить это проще всего, если посчитать буквы в словах. В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс».

Правило простое, запоминаемое, надо было бы его предложить школьникам, если бы оно было правильным. Хотя стремление педагогов вложить знания в головы учащихся с помощью мнемоники (наука о запоминании) весьма похвально. Но вернемся к нашим электродам.

Для начала возьмем очень серьезный документ, который является ЗАКОНОМ для науки, техники и, конечно, школы. Это «ГОСТ 15596-82 . ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения ». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом ». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом ». (Термины выделены мной. БХ). Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело?

А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается.

Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах — зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным , хотя полярность электродов не меняется .

В зависимости от этого назначение электродов будет разным. При зарядке положительный электрод будет принимать электрический ток, а отрицательный отпускать. При разрядке — наоборот. При отсутствии движения электрического тока разговоры об аноде и катоде бессмысленны .

«Поэтому, во избежание неясности и неопределенности, а также ради большей точности, — записал в своих исследованиях М.Фарадей в январе 1834г., — я в дальнейшем предполагаю применять термины, определение которых сейчас дам».

Каковы же причины введения новых терминов в науку Фарадеем?

А вот они: «Поверхности, у которых, согласно обычной терминологии, электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов ». (Фарадей. Подчеркнуто нами. БХ)

В те времена после открытия Т. Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя » при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца.

Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь (солнца) вверх, катод — путь (солнца) вниз.

В русском языке есть прекрасные термины ВОСХОД и ЗАХОД, которые легко применить для данного случая, но почему-то переводчики Фарадея этого не сделали. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

Ошибкам в применениях терминов АНОД и КАТОД нет числа. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. (Не путать с направлением электронов).

Литература:

1. Михаил Фарадей. Экспериментальные исследования по электричеству. Том 1. Изд-во АН СССР, М. 1947. с.266-268.

2. Б.Г.Хасапов. Как определять термины «анод» и «катод». ВНИИКИ. Научно-техническая терминология. Реферативный сборник №6, Москва, 1989, с.17-20.

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…


Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Помощь с анодами и катодами

Если вы считаете, что контент, доступный с помощью Веб-сайта (как это определено в наших Условиях обслуживания), нарушает одно или более ваших авторских прав, пожалуйста, сообщите нам, предоставив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному агенту, указанному ниже. Если университетские наставники примут меры в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, предоставившей такой контент средства самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении может быть направлено стороне, предоставившей контент, или третьим лицам, таким как так как ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или деятельность нарушают ваши авторские права. Таким образом, если вы не уверены, что содержимое находится на Веб-сайте или на который ссылается Веб-сайт, нарушает ваши авторские права, вам следует сначала обратиться к адвокату.

Чтобы подать уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись владельца авторских прав или лица, уполномоченного действовать от его имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, как вы утверждаете, нарушает ваши авторские права, в \ достаточно подробно, чтобы преподаватели университета могли найти и точно идентифицировать этот контент; например, мы требуем а ссылку на конкретный вопрос (а не только название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Заявление от вас: (а) что вы добросовестно полагаете, что использование контента, который, как вы утверждаете, нарушает ваши авторские права не разрешены законом или владельцем авторских прав или его агентом; б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владельцем авторских прав, либо лицом, уполномоченным действовать от их имени.

Отправьте жалобу нашему назначенному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

 

катод против анода: реакции половинной ячейки | Как определить катод и анод — видео и расшифровка урока

Компоненты гальванического элемента включают два электрода в отдельных емкостях с раствором электролита, соединенных проводом, по которому электроны передаются от анода к катоду. Солевой мостик между растворами позволяет ионам течь, замыкая электрическую цепь

Что такое анод и катод?

Анод и катод являются электродами. Металлические проводники, такие как цинк и железо, используются в качестве электродов. Как проводники, электроны легко перемещаются через эти металлы. Эта высокая реакционная способность металлов является причиной их коррозии или разрушения. В электрохимических элементах твердые электроды реагируют с ионами в растворе электролита, создавая поток электронов.Эти электроны текут от анода к катоду. Анод можно назвать донором электронов, а катод — акцептором электронов. В гальваническом элементе анод отрицательный, а катод положительный. Обратное верно для электролитических ячеек, где анод положительный, а катод отрицательный. Реакция происходит на каждом электроде. Такие реакции называются полуклеточными.

В качестве электродов используются химически активные металлы. {2+}_{(водн.)}|Cu_{(s)} $$

С помощью обозначения ячеек можно легко идентифицировать анод и катод .При записи ячеек анод всегда находится слева от двойных линий, а катод всегда пишется справа. В приведенном выше первом уравнении цинк, написанный слева, является анодом, а медь, написанным справа, является катодом. Точно так же во втором примере Хром, написанный слева, является анодом, а медь справа — катодом. Это же кондитерское изделие используется при рисовании схем электрохимических элементов. Анод показан слева, а катод справа.

E Ячейка катода и анода

E ячейка — это сокращение от электрохимического потенциала ячейки. Это мера энергии, которую клетка может производить. Электрохимический потенциал является результатом разницы в количестве зарядов анода и катода. Точно так же потенциал каждого электрода представляет собой разницу между электродом и его раствором. Эти значения можно посмотреть в таблице. Для определения электрохимического потенциала ячейки найдите разность электрохимических потенциалов катода и анода. \circ = 0,34 В + 0,76 В = 1,10 В $$

Анод и катод

Анод Катод
Место полуреакции окисления Место полуреакции восстановления
Электроны уходят Электроны движутся к
Написано/нарисовано слева Написано/нарисовано справа
Отрицательный в гальваническом элементе, положительный в электролитическом Положительный в гальванических элементах, отрицательный в электролитических

Краткий обзор урока

Электрохимическая ячейка включает поток электронов и химическую реакцию.Существует два типа электрохимических элементов: гальванические или гальванические и электролитические. В гальванических элементах, таких как батареи, химическая реакция генерирует поток электронов. В электролитических ячейках внешний источник обеспечивает электроны для запуска химической реакции. Все электрохимические ячейки включают два электрода. В гальванических элементах они разделены. Электроны текут от одного электрода, называемого анодом , ко второму электроду, называемому катодом . Когда электрохимические элементы или химическая реакция записываются в упрощенной форме обозначения ячеек, анод находится слева, а катод — справа.В ячейке происходят две химические реакции, по одной на каждом электроде. Это так называемые полуреакции. Реакция на аноде представляет собой реакцию окисления, которая высвобождает электроны. Затем эти электроны текут по проводу к катоду, где происходит реакция восстановления. Реакция восстановления происходит, когда к катоду присоединяются дополнительные электроны. Электрохимический потенциал, сокращенно Е-клетка, является мерой электрической энергии клетки. Он определяется разностью электрохимических потенциалов двух электродов.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка браузера на прием файлов cookie

Существует множество причин, по которым файл cookie не может быть установлен правильно. Ниже приведены наиболее распространенные причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
  • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.

Разница между анодом и катодом

Ключевое отличие между анодом и катодом заключается в том, что анод является положительным выводом, а катод — отрицательным.

Аноды и катоды представляют собой электроды с противоположной полярностью. Чтобы узнать разницу между анодом и катодом, нам сначала нужно понять, что они собой представляют. Аноды и катоды — это электроды, которые используются для передачи электрического тока в любое устройство, использующее электричество, или из него.Электрод представляет собой проводящий материал, который позволяет току проходить через него. Электроды обычно изготавливаются из металлов, таких как медь, никель, цинк и т. д., но некоторые электроды также изготавливаются из неметаллов, таких как углерод. Кроме того, электрод замыкает цепь, пропуская через нее ток.

СОДЕРЖАНИЕ

1. Обзор и ключевые отличия
2. Что такое анод
3. Что такое катод
4. Прямые сравнения — анод и катод в табличной форме
5. Резюме

Что такое анод?

Анод – это электрод, через который ток выходит из ячейки и где происходит окисление.Мы также называем его положительным электродом. Простая батарея состоит из трех основных частей: анода, катода и электролита. Традиционно электроды находятся на концах батареи. Когда мы соединяем эти концы с электричеством, внутри батареи начинается химическая реакция. Здесь электроны возмущаются и должны реорганизоваться. Они отталкиваются друг от друга и движутся к катоду, на котором меньше электронов. Это уравновешивает электроны во всем растворе (электролите).

Рисунок 01: Цинковый анод

Как правило, ток течет через катод, когда устройство разряжается. Однако направление тока меняется на противоположное, когда устройство заряжается, и катод начинает функционировать как анод, а анод становится катодом.

В первичном элементе или батарее клеммы необратимые, что означает, что анод всегда будет положительным. Это потому, что мы всегда используем это устройство для разряда электрического тока. Но в случае вторичных элементов или батарей электроды обратимы, когда устройство разряжается, но также получают ток для зарядки.

Что такое катод?

Катод – это электрод, через который в ячейку поступает ток и происходит восстановление. Мы также можем назвать его отрицательным электродом. Однако катод может быть отрицательным в гальванических элементах и ​​положительным в гальванических элементах.

Рисунок 02: Анод и катод в электролизере

Катод обеспечивает электроны для катионов (положительно заряженных ионов). Эти ионы текут к катоду через электролит. Причем катодный ток представляет собой поток электронов от катода к катионам в растворе. Однако термины катод и анод могут иметь разное значение в разных приложениях.

В чем разница между анодом и катодом?

Анод — это электрод, через который ток выходит из ячейки и где происходит окисление, а катод — это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом заключается в том, что анод является положительным выводом, а катод — отрицательным. Однако существуют также биполярные электроды, которые могут функционировать как аноды, так и катоды.Как правило, анод притягивает анионы, а катод притягивает катионы, что привело к названию этих электродов как таковых.

Резюме

— Анод против Катода

Анод — это электрод, через который ток выходит из ячейки и где происходит окисление, а катод — это электрод, через который ток входит в ячейку и происходит восстановление. Ключевое различие между анодом и катодом заключается в том, что анод является положительным выводом, а катод — отрицательным.

Артикул:

1.«Катод». Википедия, Фонд Викимедиа, 27 июня 2019 г., доступно здесь.

Изображение предоставлено:

1. «Цинковый анод 2» — Оригинальная работа: Файл: Zinc anode 2.png от пользователя: MichelJullian (обсуждение) Производная работа: KES47 (обсуждение) — Файл: Zinc anode 2.png (CC BY-SA 3.0) через Commons Wikimedia
2. «Гальванический элемент без потока катионов» – исходным загрузчиком был стандарт Огайо в английской Википедии. — Перенесено из en.wikipedia в Commons авиабазой Берпелсон с использованием CommonsHelper (CC BY-SA 3.0) через Commons Wikimedia

.

Использование графитового войлока в качестве катода и анода в процессе электрофентона

Выбор электродного материала с хорошими характеристиками и низкой стоимостью имеет большое значение для практического применения процесса электрофентона.В этом исследовании графитовый войлок систематически изучался для определения характеристик его применения в системе электрофентона. Исследовано влияние рабочих параметров, рН и напряжения на выход H 2 O 2 и выделение ионов железа, что позволило подобрать оптимальные значения параметров. Степень удаления метиленового синего составила 97,8% после 20-минутного электролиза в условиях напряжения 7 В и pH 3. Эксперименты по ингибированию показали, что система E-Fenton из графитового войлока в основном основана на непрямом окислении ·OH и прямом окислении графита. войлочный анод для разложения метиленового синего.Графитовый войлок продемонстрировал хорошую стабильность в качестве катода при многократном использовании, но проводимость анода и каталитическая активность снизились, а адсорбционная способность повысилась. Наконец, графитовый войлочный электрод был охарактеризован с помощью сканирующей электронной микроскопии (СЭМ), рентгеновской дифракции (РД), Брунауэра-Эммета-Теллера (БЭТ) и рентгеновской фотоэлектронной спектроскопии (РФЭС) для предварительного анализа причины изменения производительность анода.

Эта статья находится в открытом доступе

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова? Видео с вопросом

: Определение анода или катода на основе экспериментальной установки с использованием мобильных ионов

Стенограмма видео

На схеме показано, что электрод справа? (A) Анод, так как он притягивает катион. (B) Катод, как он есть привлечение катиона. (C) Анод, так как он притягивает анион. (D) Катод, как он есть притягивая анион.

На этой диаграмме мы видим два электроды, помещенные в один и тот же химический стакан. Это пример электролитическая ячейка, электрохимическая ячейка, использующая электрическую энергию для приведения в действие несамопроизвольная химическая реакция.Электролитические ячейки используются для электролиз, вид процесса, при котором электрический ток проходит через жидкость, что заставляет вещества внутри разлагаться.

Для поддержания электролитического реакции, мы должны иметь возможность непрерывно получать питание от источника постоянного тока источник, электрическая ячейка или батарея. В этих обозначениях более длинная строка представляет собой положительный полюс электрического элемента и более короткую линию представляет отрицательную клемму. Итак, электрод справа отрицательный, а электрод слева положительный.

В клетке, положительно заряженные ионы, называемые катионами, притягиваются к отрицательному электроду, который мы называем катод. Отрицательно заряженные ионы называются анионы притягиваются к положительному электроду, который мы называем анодом. Итак, на этой схеме анод слева и катод справа.

На схеме видно, что положительно заряженные катионы притягиваются к катоду, а отрицательно заряженные анионы притягиваются к аноду. В заключение, электрод, который справа катод, так как он притягивает катион, вариант ответа (Б).

Электроды, Анод, Катод

Главная | Бесплатные практические тесты

Электроды, анод, катод

Электроды – материалы, проводящие электричество, которые используются для установления контакта с неметаллической частью цепи, такой как так как электролит, вакуум или полупроводник. Они позволяют электрическому току быть передается из одной точки в другую, например, от источника питания к устройству, подобному лампа.

Электроды обычно изготавливаются из металлов, таких как серебро, свинец, медь и цинк. Они также сделаны из некоторых неметаллов, которые проводят электричество, такие как графит и ртуть. Они сделаны в разных формы и формы, включая стержень, полюс, проволоку и пластину.

В электрохимический используется два вида электродов. Это анод и катод.

Анод – это электрод, на котором отрицательные ионы или анионы в клетке мигрируют к. Здесь отрицательные ионы теряют электроны и происходит окисление. Таким образом, анод определяется как электрод, на котором электроны или ток покидают клетку.

Катод – это электрод, на котором катионы или положительные ионы в растворе мигрируют к. Здесь они приобретают электроны и становятся восстановленный (здесь протекает реакция восстановления). Следовательно, катод может быть определяется как электрод, через который электроны или ток входят в ячейку.

Любой из электродов может быть анодом или катодом в электрохимическая ячейка в зависимости от направления протекания тока.

В электролитический ячейка, где к ячейке прикладывается внешний источник энергии, катод это отрицательный электрод, где электроны или ток входят в ячейку. То отрицательно заряженный катод отдает электроны катионам, которые восстанавливаются. Анод с другой стороны становится положительным электродом.

Однако в гальваническом или гальваническом элементе или шахтной батарее, где электрическая энергия вырабатывается из химических веществ, анод становится отрицательный электрод, а катод положительный.

Тип используемого электрода:

Иногда характер используемого электрода может определить ионы, выбрасываемые в электролитическом процессе.

Пример, с учетом электролиза натрия раствор хлорида с использованием отдельно платины и ртутный катод. Используя платиновый катод, H + выгружается вместо Na + в соответствии с положения их ионов в электрохимический ряд — таким образом, газообразный водород производится на катоде.

Добавить комментарий

Ваш адрес email не будет опубликован.